Citation: Hao-Tian Teng, Wen-Tao Wang, Xiao-Feng Han, Xiang Hao, Ruizhi Yang, Jing-Hua Tian. Recent Development and Perspectives of Flexible Zinc-Air Batteries[J]. Acta Physico-Chimica Sinica, ;2023, 39(1): 210701. doi: 10.3866/PKU.WHXB202107017 shu

Recent Development and Perspectives of Flexible Zinc-Air Batteries

  • Corresponding author: Ruizhi Yang, yangrz@suda.edu.cn Jing-Hua Tian, jhtian@suda.edu.cn
  • Received Date: 6 July 2021
    Revised Date: 7 August 2021
    Accepted Date: 19 August 2021
    Available Online: 26 August 2021

    Fund Project: the National Key R & D Program of China 2020YFB1505703the National Natural Science Foundation of China 21673153the National Natural Science Foundation of China 51972220the National Natural Science Foundation of China 51572181

  • In recent years, flexible and wearable electronic devices have attracted increasing research, industrial, and consumer attention. In particular, flexible zinc-air batteries (ZABs) are expected to become a promising power supply source for next-generation electronic products, especially the flexible and wearable ones, because of their high theoretical energy density, high specific capacity, high safety, and adaptability to uneven surfaces like human body. In the research field of flexible ZABs, a steady progress has been observed, and various ZAB preparation methods have been recently proposed. In this review, the main achievements and limitations of the recent research related to flexible ZABs are described. Firstly, the importance and applications of ZABs are discussed, followed by the working principle and configuration of typical ZABs. In the main text, the recent development of gel electrolytes, anodes, and cathodes is reviewed in detail. Currently, one of the most important limitations in the preparation of high-performance ZABs is the selection or preparation of a suitable gel electrolyte. A good gel electrolyte should have the ability of high-water holding capacity, high and low temperature resistance, high CO2-tolerance, excellent ionic conductivity, and good mechanical ductility. Several gel electrolytes with various functions have been developed. However, novel gel electrolytes with multifunctional properties have not been developed. In addition, interfaces between the gel electrolyte and air cathode and those between the gel electrolyte and metal anode must be investigated in detail for ZAB performance improvement. Till now, only the effects of physical compression on the electrolyte-air cathode and electrolyte-metal anode interfaces have been adopted and investigated. Moreover, the air cathode and metal anode must exhibit high flexibility to expand the application scope of ZABs as flexible power supplies. Carbon cloth has been typically used as the substrate of the air cathode; however, carbon corrosion occurs under high potential, which needs to be overcome. Meanwhile, the use of nickel mesh or copper foam as the substrate for the cathode will make the flexible ZABs too rigid and not bendable. For the metal anode, mostly zinc sheet or zinc spring have been used to meet the demand of flexibility. However, if novel strategies for the development of doped zinc anodes are investigated, such as those based on the utilization of zinc powder-metal combination, ZAB performance will be significantly improved. If the above-mentioned limitations are overcome, flexible ZABs will not be limited to laboratory use, and can be widely applied in commercial wearable electronic products. Furthermore, the challenges and future perspectives of ZABs are discussed in this review.
  • 加载中
    1. [1]

      Guo, Y.; Li, H.; Zhai, T. Adv. Mater. 2017, 29, 1700007. doi: 10.1002/adma.201700007  doi: 10.1002/adma.201700007

    2. [2]

      Ye, L.; Hong, Y.; Liao, M.; Wang, B.; Wei, D.; Peng, H.; Ye, L.; Hong, Y.; Liao, M.; Wang, B.; et al. Energy Storage Mater. 2020, 28, 364. doi: 10.1016/j.ensm.2020.03.015  doi: 10.1016/j.ensm.2020.03.015

    3. [3]

      Peng, X.; Wei, L.; Liu, Y.; Cen, T.; Ye, Z.; Zhu, Z.; Ni, Z.; Yuan, D. Energy Fuels 2020, 34, 8931. doi: 10.1021/acs.energyfuels.0c01167  doi: 10.1021/acs.energyfuels.0c01167

    4. [4]

      Lin, X.; Kang, Q.; Zhang, Z.; Liu, R.; Li, Y.; Huang, Z.; Feng, X.; Ma, Y.; Huang, W. J. Mater. Chem. A 2017, 5, 3638. doi: 10.1039/c6ta09806a  doi: 10.1039/c6ta09806a

    5. [5]

      Qin, R.; Wang, P.; Lin, C.; Cao, F.; Zhang, J.; Chen, L.; Mu, S. Acta Phys. -Chim. Sin. 2021, 37, 2009099.  doi: 10.3866/PKU.WHXB202009099

    6. [6]

      Yang, B.; Yuan, W. ACS Appl. Mater. Interfaces 2019, 11, 16765. doi: 10.1021/acsami.9b01989  doi: 10.1021/acsami.9b01989

    7. [7]

      Xu, Y.; Zhang, Y.; Guo, Z.; Ren, J.; Wang, Y.; Peng, H. Angew. Chem. Int. Ed. 2015, 54, 15390. doi: 10.1002/anie.201508848  doi: 10.1002/anie.201508848

    8. [8]

      Zhang, K.; Simic, R.; Yan, W.; Spencer, N. D. ACS Appl. Mater. Interfaces 2019, 11, 25427. doi: 10.1021/acsami.9b07387  doi: 10.1021/acsami.9b07387

    9. [9]

      Karami, P.; Wyss, C. S.; Khoushabi, A.; Schmocker, A.; Broome, M.; Moser, C.; Bourban, P. E.; Pioletti, D. P. ACS Appl. Mater. Interfaces 2018, 10, 38692. doi: 10.1021/acsami.8b10735  doi: 10.1021/acsami.8b10735

    10. [10]

      Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Adv. Mater. 2003, 15, 1155. doi: 10.1002/adma.200304907  doi: 10.1002/adma.200304907

    11. [11]

      Fotouhi, G.; Ogier, C.; Kim, J. -H.; Kim, S.; Cao, G.; Shen, A. Q.; Kramlich, J.; Chung, J. -H. J. Micromec. Microen. 2016, 26, 8. doi: 10.1088/0960-1317/26/5/055011  doi: 10.1088/0960-1317/26/5/055011

    12. [12]

      Fan, X.; Liu, J.; Song, Z.; Han, X.; Deng, Y.; Zhong, C.; Hu, W. Nano Energy 2019, 56, 454. doi: 10.1016/j.nanoen.2018.11.057  doi: 10.1016/j.nanoen.2018.11.057

    13. [13]

      Zhao, S.; Xia, D.; Li, M.; Cheng, D.; Wang, K.; Meng, Y. S.; Chen, Z.; Bae, J. ACS Appl. Mater. Interfaces 2021, 13, 12033. doi: 10.1021/acsami.1c00012  doi: 10.1021/acsami.1c00012

    14. [14]

      Li, M.; Liu, B.; Fan, X.; Liu, X.; Liu, J.; Ding, J.; Han, X.; Deng, Y.; Hu, W.; Zhong, C. ACS Appl. Mater. Interfaces 2019, 11, 28909. doi: 10.1021/acsami.9b09086  doi: 10.1021/acsami.9b09086

    15. [15]

      Chen, R.; Xu, X.; Peng, S.; Chen, J.; Yu, D.; Xiao, C.; Li, Y.; Chen, Y.; Hu, X.; Liu, M.; et al. ACS Sustain. Chem. Eng. 2020, 8, 11501. doi: 10.1021/acssuschemeng.0c01111  doi: 10.1021/acssuschemeng.0c01111

    16. [16]

      Ma, L.; Chen, S.; Wang, D.; Yang, Q.; Mo, F.; Liang, G.; Li, N.; Zhang, H.; Zapien, J. A.; Zhi, C. Adv. Energy Mater. 2019, 9, 46. doi: 10.1002/aenm.201803046  doi: 10.1002/aenm.201803046

    17. [17]

      Sun, N.; Lu, F.; Yu, Y.; Su, L.; Gao, X.; Zheng, L. ACS Appl. Mater. Interfaces 2020, 12, 11778. doi: 10.1021/acsami.0c00325  doi: 10.1021/acsami.0c00325

    18. [18]

      Jiang, G.; Goledzinowski, M.; Comeau, F. J. E.; Zarrin, H.; Lui, G.; Lenos, J.; Veileux, A.; Liu, G.; Zhang, J.; Hemmati, S.; et al. Adv. Funct. Mater. 2016, 26, 1729. doi: 10.1002/adfm.201504604  doi: 10.1002/adfm.201504604

    19. [19]

      Gao, W.; Wu, G.; Janicke, M. T.; Cullen, D. A.; Mukundan, R.; Baldwin, J. K.; Brosha, E. L.; Galande, C.; Ajayan, P. M.; More, K. L.; et al. Angew. Chem. Int. Ed. 2014, 53, 3588. doi: 10.1002/anie.201310908  doi: 10.1002/anie.201310908

    20. [20]

      Zhang, J.; Fu, J.; Song, X.; Jiang, G.; Zarrin, H.; Xu, P.; Li, K.; Yu, A.; Chen, Z. Adv. Energy Mater. 2016, 6, 476. doi: 10.1002/aenm.20160047620.  doi: 10.1002/aenm.20160047620

    21. [21]

      Song, Z.; Ding, J.; Liu, B.; Liu, X.; Han, X.; Deng, Y.; Hu, W.; Zhong, C. Adv. Mater. 2020, 32, e1908127. doi: 10.1002/adma.201908127  doi: 10.1002/adma.201908127

    22. [22]

      Haynes, W. M. CRC Handbook of Chemistry and Physics, 97th ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 5–17.

    23. [23]

      Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A.; Fowler, M.; Chen, Z. Adv. Mater. 2017, 29, 1604685. doi: 10.1002/adma.201604685  doi: 10.1002/adma.201604685

    24. [24]

      Shin, H. -J.; Kwak, W. -J.; Aurbach, D.; Sun, Y. -K. Adv. Funct. Mater. 2017, 27, 1605500. doi: 10.1002/adfm.201605500  doi: 10.1002/adfm.201605500

    25. [25]

      Banik, S. J.; Akolkar, R. J. Electrochem. Soc. 2013, 160, D519. doi: 10.1149/2.040311jes  doi: 10.1149/2.040311jes

    26. [26]

      Khezri, R.; Hosseini, S.; Lahiri, A.; Motlagh, S. R.; Nguyen, M. T.; Yonezawa, T.; Kheawhom, S. Int. J. Mol. Sci. 2020, 21, 7303. doi: 10.3390/ijms21197303  doi: 10.3390/ijms21197303

    27. [27]

      Yang, X.; Wu, X.; Guo, Z.; Li, Q.; Wang, H.; Ke, C.; Zeng, W.; Qiu, X.; He, Y.; Liang, X.; et al. RSC Adv. 2020, 10, 33327. doi: 10.1039/d0ra04827e  doi: 10.1039/d0ra04827e

    28. [28]

      Pan, Z.; Yang, J.; Zang, W.; Kou, Z.; Wang, C.; Ding, X.; Guan, C.; Xiong, T.; Chen, H.; Zhang, Q.; et al. Energy Storage Mater. 2019, 23, 375. doi: 10.1016/j.ensm.2019.04.036  doi: 10.1016/j.ensm.2019.04.036

    29. [29]

      Qu, S.; Liu, B.; Wu, J.; Zhao, Z.; Liu, J.; Ding, J.; Han, X.; Deng, Y.; Zhong, C.; Hu, W. ACS Appl. Mater. Interfaces 2020, 12, 54833. doi: 10.1021/acsami.0c17479  doi: 10.1021/acsami.0c17479

    30. [30]

      Wang, Z.; Meng, X.; Wu, Z.; Mitra, S. J. Energy Chem. 2017, 26, 129. doi: 10.1016/j.jechem.2016.08.007  doi: 10.1016/j.jechem.2016.08.007

    31. [31]

      Fu, J.; Lee, D. U.; Hassan, F. M.; Yang, L.; Bai, Z.; Park, M. G.; Chen, Z. Adv. Mater. 2015, 27, 5617. doi: 10.1002/adma.201502853  doi: 10.1002/adma.201502853

    32. [32]

      Kangasniemi, K. H.; Condit, D. A.; Jarvi, T. D. J. Electrochem. Soc. 2004, 151, E125. doi: 10.1149/1.1649756  doi: 10.1149/1.1649756

    33. [33]

      Wang, X.; Li, W.; Chen, Z.; Waje, M.; Yan, Y. J. Power Sources. 2006, 158, 154. doi: 10.1016/j.jpowsour.2005.09.039  doi: 10.1016/j.jpowsour.2005.09.039

    34. [34]

      Xu, N.; Wilson, J. A.; Wang, Y. -D.; Su, T.; Wei, Y.; Qiao, J.; Zhou, X. -D.; Zhang, Y.; Sun, S. Appl. Catal. B. 2020, 272, 118953. doi: 10.1016/j.apcatb.2020.118953  doi: 10.1016/j.apcatb.2020.118953

    35. [35]

      Wu, M.; Zhang, G.; Chen, N.; Chen, W.; Qiao, J.; Sun, S. Energy Storage Mater. 2020, 24, 272. doi: 10.1016/j.ensm.2019.08.009  doi: 10.1016/j.ensm.2019.08.009

    36. [36]

      Yang, X.; Wu, X.; Guo, Z.; Li, Q.; Wang, H.; Ke, C.; Zeng, W.; Qiu, X.; He, Y.; Liang, X.; et al. RSC Adv. 2020, 10, 33327. doi: 10.1039/d0ra04827e  doi: 10.1039/d0ra04827e

    37. [37]

      Tan, Y.; Zhang, Z.; Lei, Z.; Wu, W.; Zhu, W.; Cheng, N.; Mu, S. J. Power Sources 2020, 473, 228570. doi: 10.1016/j.jpowsour.2020.228570  doi: 10.1016/j.jpowsour.2020.228570

    38. [38]

      Lei, Z.; Tan, Y.; Zhang, Z.; Wu, W.; Cheng, N.; Chen, R.; Mu, S.; Sun, X. Nano Res. 2020, 14, 868. doi: 10.1007/s12274-020-3127-8  doi: 10.1007/s12274-020-3127-8

    39. [39]

      Zhang, W.; Li, Z.; Chen, J.; Wang, X.; Li, X.; Yang, K.; Li, L. Nanotechnology 2020, 31, 185703. doi: 10.1088/1361-6528/ab6cd9  doi: 10.1088/1361-6528/ab6cd9

    40. [40]

      Park, J.; Park, M.; Nam, G.; Lee, J. S.; Cho, J. Adv. Mater. 2015, 27, 1396. doi: 10.1002/adma.201404639  doi: 10.1002/adma.201404639

    41. [41]

      Li, S.; Yang, X.; Yang, S.; Gao, Q.; Zhang, S.; Yu, X.; Fang, Y.; Yang, S.; Cai, X. J. Mater. Chem. A 2020, 8, 5601. doi: 10.1039/d0ta00888e  doi: 10.1039/d0ta00888e

    42. [42]

      Zeng, S.; Tong, X.; Zhou, S.; Lv, B.; Qiao, J.; Song, Y.; Chen, M.; Di, J.; Li, Q. Small 2018, 14, e1803409. doi: 10.1002/smll.20180340  doi: 10.1002/smll.20180340

  • 加载中
    1. [1]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    2. [2]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    3. [3]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    6. [6]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    7. [7]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    8. [8]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    9. [9]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    10. [10]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    11. [11]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    14. [14]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    17. [17]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    18. [18]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    19. [19]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    20. [20]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

Metrics
  • PDF Downloads(0)
  • Abstract views(433)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return