Citation: Yeye Wen, Ming Ren, Jiangtao Di, Jin Zhang. Application of Carbonene Materials for Artificial Muscles[J]. Acta Physico-Chimica Sinica, ;2022, 38(9): 210700. doi: 10.3866/PKU.WHXB202107006 shu

Application of Carbonene Materials for Artificial Muscles

  • Corresponding author: Jin Zhang, jinzhang@pku.edu.cn
  • Received Date: 2 July 2021
    Revised Date: 28 July 2021
    Accepted Date: 28 July 2021
    Available Online: 5 August 2021

    Fund Project: the Beijing National Laboratory for Molecular Sciences BNLMS-CXTD-202001the Ministry of Science and Technology of China 2016YFA0200100the Ministry of Science and Technology of China 2018YFA0703502the National Natural Science Foundation of China 52021006the National Natural Science Foundation of China 51720105003the National Natural Science Foundation of China 21790052the National Natural Science Foundation of China 21974004

  • The development of new types of artificial muscles is of utmost importance as traditional actuators based on mechanical drive systems no longer meet the stringent requirements of flexibility, high efficiency, and multi-stimuli responses in advanced functional fields, such as soft and biomimetic robots, sensors, artificial intelligent control, and artificial intelligence. Carbonene materials refer to carbon materials composed of all carbon atoms with sp2 hybridization, mainly including carbon nanotubes and graphene. Owing to their exceptional properties such as light weight, excellent mechanical performance, high conductivity, flexibility, and large specific surface area, carbonene materials demonstrate significant application potential in artificial muscles, thereby promoting the rapid development of corresponding fields. Herein, the recent progress of the application of carbonene materials in artificial muscles is summarized to provide a comprehensive understanding of the preparation, properties, and applications of artificial muscles composed of carbonene materials. First, carbonene artificial muscles integrating response, actuation, and structure are introduced. As carbonene materials are unique building blocks that can be readily assembled into macroscopic materials with various structures, fibrous and membranous artificial muscles based on carbonene materials are discussed in detail. Carbonene fiber actuators demonstrate diverse actuation performances when fabricated with different structures. Bending actuation typically occurs when carbonene artificial muscles with asymmetric structures are subjected to external stimulation. The untwisting of carbonene artificial muscle fibers with twisted structures causes torsional and tensile actuation, which can be attributed to the volume expansion induced by external stimuli. Furthermore, coiled structures achieved by twisting a fiber until it is fully coiled can enhance the actuation stroke. Thus, the actuation of artificial muscle fibers made of carbonene materials can be classified into bending, rotation, and contraction actuations. Second, carbonene materials have long been considered as a functional component in composite materials for specific applications owing to their excellent physical and chemical properties. Therefore, the application of carbonene materials as an additional component to other artificial muscle materials (such as smart hydrogels, dielectric elastomers, and conducting polymers) is reviewed. By employing carbonene materials, artificial muscle materials exhibit improved electrical and mechanical properties, thereby leading to superior actuation performances. In addition, integrating carbonene materials into artificial muscles can endow the muscles with programmable actuation and sensing functions. Finally, the challenges faced in the application of artificial muscles based on carbonene materials and the future application of carbonene artificial muscles with multi-functional actuation performance are briefly discussed.
  • 加载中
    1. [1]

      Mirvakili, S. M.; Hunter, I. W. Adv. Mater. 2018, 30, 1704407. doi: 10.1002/adma.201704407  doi: 10.1002/adma.201704407

    2. [2]

      Uchino, K. Advanced Piezoelectric Materials: Science and Technology, Woodhead Publishing Limited: Cambridge, UK; 2010.

    3. [3]

      Wang, J.; Gao, D.; Lee, P. S. Adv. Mater. 2021, 33, e2003088. doi: 10.1002/adma.202003088  doi: 10.1002/adma.202003088

    4. [4]

      Zou, M.; Li, S.; Hu, X.; Leng, X.; Wang, R.; Zhou, X.; Liu, Z. F. Adv. Funct. Mater. 2021, 2007437. doi: 10.1002/adfm.202007437  doi: 10.1002/adfm.202007437

    5. [5]

      Foroughi, J.; Spinks, G. Nanoscale Adv. 2019, 1, 4592. doi: 10.1039/c9na00038k  doi: 10.1039/c9na00038k

    6. [6]

      Wang, W.; Ahn, S. H. Soft Rob. 2017, 4, 379. doi: 10.1089/soro.2016.0081  doi: 10.1089/soro.2016.0081

    7. [7]

      Chen, Y.; Chen, C.; Rehman, H. U.; Zheng, X.; Li, H.; Liu, H.; Hedenqvist, M. S. Molecules 2020, 25, 4246. doi: 10.3390/molecules25184246  doi: 10.3390/molecules25184246

    8. [8]

      Qiu, Y.; Zhang, E.; Plamthottam, R.; Pei, Q. Acc. Chem. Res. 2019, 52, 316. doi: 10.1021/acs.accounts.8b00516  doi: 10.1021/acs.accounts.8b00516

    9. [9]

      Chen, Z. Robot. Biomim. 2017, 4, 24. doi: 10.1186/s40638-017-0081-3  doi: 10.1186/s40638-017-0081-3

    10. [10]

      Smela, E. Adv. Mater. 2003, 15, 481. doi: 10.1002/adma.200390113  doi: 10.1002/adma.200390113

    11. [11]

      Mirfakhrai, T.; Madden, J. D. W.; Baughman, R. H. Mater. Today 2007, 10, 30. doi: 10.1016/s1369-7021(07)70048-2  doi: 10.1016/s1369-7021(07)70048-2

    12. [12]

      Yin, Z.; Shi, S.; Liang, X.; Zhang, M.; Zheng, Q.; Zhang, Y. Adv. Fiber Mater. 2019, 1, 197. doi: 10.1007/s42765-019-00021-y  doi: 10.1007/s42765-019-00021-y

    13. [13]

      Jia, T.; Wang, Y.; Dou, Y.; Li, Y.; de Andrade, M. J.; Wang, R.; Fang, S.; Li, J.; Yu, Z.; Qiao, R.; et al. Adv. Funct. Mater. 2019, 29, 1808241. doi: 10.1002/adfm.201808241  doi: 10.1002/adfm.201808241

    14. [14]

      Wang, Y.; Wang, Z.; Lu, Z.; Jung de Andrade, M.; Fang, S.; Zhang, Z.; Wu, J.; Baughman, R. H. ACS Appl. Mater. Interfaces 2021, 13, 6642. doi: 10.1021/acsami.0c20456  doi: 10.1021/acsami.0c20456

    15. [15]

      Wang, Y. L.; Di, J. T.; Li, Q. W. Mater. Rep. 2021, 35, 1183.  doi: 10.11896/cldb.20030153

    16. [16]

      Kong, L.; Chen, W. Adv. Mater. 2014, 26, 1025. doi: 10.1002/adma.201303432  doi: 10.1002/adma.201303432

    17. [17]

      Foroughi, J.; Spinks, G. M.; Wallace, G. G.; Oh, J.; Kozlov, M. E.; Fang, S. L.; Mirfakhrai, T.; Madden, J. D. W.; Shin, M. K.; Kim, S. J.; et al. Science 2011, 334, 494. doi: 10.1126/science.1211220  doi: 10.1126/science.1211220

    18. [18]

      Zhang, S. C.; Zhang, N.; Zhang, J. Acta Phys. -Chim. Sin. 2020, 36, 1907021.  doi: 10.3866/PKU.WHXB201907021

    19. [19]

      Plisko, T. V.; Bildyukevich, A. V. Colloid. Polym. Sci. 2014, 292, 2571. doi: 10.1007/s00396-014-3305-x  doi: 10.1007/s00396-014-3305-x

    20. [20]

      Jian, M. Q.; Zhang, Y. Y.; Liu, Z. F. Acta Phys. -Chim. Sin. 2022, 38, 2007093.  doi: 10.3866/PKU.WHXB202007093

    21. [21]

      Stoychev, G. V.; Ionov, L. ACS Appl. Mater. Interfaces 2016, 8, 24281. doi: 10.1021/acsami.6b07374  doi: 10.1021/acsami.6b07374

    22. [22]

      Di, J.; Zhang, X.; Yong, Z.; Zhang, Y.; Li, D.; Li, R.; Li, Q. Adv. Mater. 2016, 28, 10529. doi: 10.1002/adma.201601186  doi: 10.1002/adma.201601186

    23. [23]

      Lima, M. D.; Li, N.; Jung de Andrade, M.; Fang, S.; Oh, J.; Spinks, G. M.; Kozlov, M. E.; Haines, C. S.; Suh, D.; Foroughi, J.; et al. Science 2012, 338, 928. doi: 10.1126/science.1226762  doi: 10.1126/science.1226762

    24. [24]

      Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nature 2002, 419, 801. doi: 10.1038/419801a  doi: 10.1038/419801a

    25. [25]

      Zhang, M.; Atkinson, K. R.; Baughman, R. H. Science 2004, 306, 1358. doi: 10.1126/science.1104276  doi: 10.1126/science.1104276

    26. [26]

      Zhang, X.; Lu, W.; Zhou, G.; Li, Q. Adv. Mater. 2020, 32, 1902028. doi: 10.1002/adma.201902028  doi: 10.1002/adma.201902028

    27. [27]

      Xu, Z.; Gao, C. Nat. Commun. 2011, 2, 571. doi: 10.1038/ncomms1583  doi: 10.1038/ncomms1583

    28. [28]

      Xia, Z.; Shao, Y. L. Acta Phys. -Chim. Sin. 2022, 38, 2103046.  doi: 10.3866/PKU.WHXB202103046

    29. [29]

      Cheng, H.; Hu, Y.; Zhao, F.; Dong, Z.; Wang, Y.; Chen, N.; Zhang, Z.; Qu, L. Adv. Mater. 2014, 26, 2909. doi: 10.1002/adma.201305708  doi: 10.1002/adma.201305708

    30. [30]

      Janas, D.; Koziol, K. K. Nanoscale 2016, 8, 19475. doi: 10.1039/c6nr07549e  doi: 10.1039/c6nr07549e

    31. [31]

      Guo, S.; Dong, S. Chem. Soc. Rev. 2011, 40, 2644. doi: 10.1039/c0cs00079e  doi: 10.1039/c0cs00079e

    32. [32]

      Munoz, E.; Dalton, A. B.; Collins, S.; Kozlov, M.; Razal, J.; Coleman, J. N.; Kim, B. G.; Ebron, V. H.; Selvidge, M.; Ferraris, J. P.; et al. Adv. Eng. Mater. 2004, 6, 801. doi: 10.1002/adem.200400092  doi: 10.1002/adem.200400092

    33. [33]

      Shin, S. R.; Lee, C. K.; So, I.; Jeon, J. H.; Kang, T. M.; Kee, C.; Kim, S. I.; Spinks, G. M.; Wallace, G. G.; Kim, S. J. Adv. Mater. 2008, 20, 466. doi: 10.1002/adma.200701102  doi: 10.1002/adma.200701102

    34. [34]

      Lee, S. H.; Lee, C. K.; Shin, S. R.; Gu, B. K.; Kim, S. I.; Kang, T. M.; Kim, S. J. Sens. Actuators B-Chem. 2010, 145, 89. doi: 10.1016/j.snb.2009.11.043  doi: 10.1016/j.snb.2009.11.043

    35. [35]

      Spinks, G. M.; Mottaghitalab, V.; Bahrami-Saniani, M.; Whitten, P. G.; Wallace, G. G. Adv. Mater. 2006, 18, 637. doi: 10.1002/adma.200502366  doi: 10.1002/adma.200502366

    36. [36]

      Plaado, M.; Kaasik, F.; Valner, R.; Lust, E.; Saar, R.; Saal, K.; Peikolainen, A. L.; Aabloo, A.; Kiefer, R. Carbon 2015, 94, 911. doi: 10.1016/j.carbon.2015.07.077  doi: 10.1016/j.carbon.2015.07.077

    37. [37]

      Cheng, H.; Liu, J.; Zhao, Y.; Hu, C.; Zhang, Z.; Chen, N.; Jiang, L.; Qu, L. Angew. Chem. Int. Ed. 2013, 52, 10482. doi: 10.1002/anie.201304358  doi: 10.1002/anie.201304358

    38. [38]

      Wang, Y.; Bian, K.; Hu, C.; Zhang, Z.; Chen, N.; Zhang, H.; Qu, L. Electrochem. Commun. 2013, 35, 49. doi: 10.1016/j.elecom.2013.07.044  doi: 10.1016/j.elecom.2013.07.044

    39. [39]

      Lee, J. A.; Kim, Y. T.; Spinks, G. M.; Suh, D.; Lepro, X.; Lima, M. D.; Baughman, R. H.; Kim, S. J. Nano Lett. 2014, 14, 2664. doi: 10.1021/nl500526r  doi: 10.1021/nl500526r

    40. [40]

      He, S.; Chen, P.; Qiu, L.; Wang, B.; Sun, X.; Xu, Y.; Peng, H. Angew. Chem. Int. Ed. 2015, 54, 14880. doi: 10.1002/anie.201507108  doi: 10.1002/anie.201507108

    41. [41]

      Chun, K. Y.; Hyeong Kim, S.; Kyoon Shin, M.; Hoon Kwon, C.; Park, J.; Tae Kim, Y.; Spinks, G. M.; Lima, M. D.; Haines, C. S.; Baughman, R. H.; et al. Nat. Commun. 2014, 5, 3322. doi: 10.1038/ncomms4322  doi: 10.1038/ncomms4322

    42. [42]

      Shi, Q.; Li, J.; Hou, C.; Shao, Y.; Zhang, Q.; Li, Y.; Wang, H. Chem. Commun. 2017, 53, 11118. doi: 10.1039/c7cc03408c  doi: 10.1039/c7cc03408c

    43. [43]

      Wang, W.; Xiang, C.; Sun, D.; Li, M.; Yan, K.; Wang, D. ACS Appl. Mater. Interfaces 2019, 11, 21926. doi: 10.1021/acsami.9b05136  doi: 10.1021/acsami.9b05136

    44. [44]

      Lee, S. H.; Kim, T. H.; Lima, M. D.; Baughman, R. H.; Kim, S. J. Nanoscale 2016, 8, 3248. doi: 10.1039/c5nr07195j  doi: 10.1039/c5nr07195j

    45. [45]

      Gu, X.; Fan, Q.; Yang, F.; Cai, L.; Zhang, N.; Zhou, W.; Zhou, W.; Xie, S. Nanoscale 2016, 8, 17881. doi: 10.1039/c6nr06185k  doi: 10.1039/c6nr06185k

    46. [46]

      Kim, H.; Moon, J. H.; Mun, T. J.; Park, T. G.; Spinks, G. M.; Wallace, G. G.; Kim, S. J. ACS Appl. Mater. Interfaces 2018, 10, 32760. doi: 10.1021/acsami.8b12426  doi: 10.1021/acsami.8b12426

    47. [47]

      Lima, M. D.; Fang, S. L.; Lepro, X.; Lewis, C.; Ovalle-Robles, R.; Carretero-Gonzalez, J.; Castillo-Martinez, E.; Kozlov, M. E.; Oh, J. Y.; Rawat, N.; et al. Science 2011, 331, 51. doi: 10.1126/science.1195912  doi: 10.1126/science.1195912

    48. [48]

      Haines, C. S.; Lima, M. D.; Li, N.; Spinks, G. M.; Foroughi, J.; Madden, J. D. W.; Kim, S. H.; Fang, S.; de Andrade, M. J.; Goktepe, F.; et al. Science 2014, 343, 868. doi: 10.1126/science.1246906  doi: 10.1126/science.1246906

    49. [49]

      Lee, J. A.; Li, N.; Haines, C. S.; Kim, K. J.; Lepro, X.; Ovalle-Robles, R.; Kim, S. J.; Baughman, R. H. Adv. Mater. 2017, 29, 1700870. doi: 10.1002/adma.201700870  doi: 10.1002/adma.201700870

    50. [50]

      Qiao, J.; Di, J.; Zhou, S.; Jin, K.; Zeng, S.; Li, N.; Fang, S.; Song, Y.; Li, M.; Baughman, R. H.; Li, Q. Small 2018, 14, 1801883. doi: 10.1002/smll.201801883  doi: 10.1002/smll.201801883

    51. [51]

      Chu, H.; Hu, X.; Wang, Z.; Mu, J.; Li, N.; Zhou, X.; Fang, S.; Haines, C. S.; Park, J. W.; Qin, S.; et al. Science 2021, 371, 494. doi: 10.1126/science.abc4538  doi: 10.1126/science.abc4538

    52. [52]

      Chen, P. N.; Xu, Y. F.; He, S. S.; Sun, X. M.; Pan, S. W.; Deng, J.; Chen, D. Y.; Peng, H. S. Nat. Nanotechnol. 2015, 10, 1077. doi: 10.1038/nnano.2015.198  doi: 10.1038/nnano.2015.198

    53. [53]

      Hyeon, J. S.; Park, J. W.; Baughman, R. H.; Kim, S. J. Sens Actuators B-Chem. 2019, 286, 237. doi: 10.1016/j.snb.2019.01.140  doi: 10.1016/j.snb.2019.01.140

    54. [54]

      Sun, Y.; Wang, Y.; Hua, C.; Ge, Y.; Hou, S.; Shang, Y.; Cao, A. Carbon 2018, 132, 394. doi: 10.1016/j.carbon.2018.02.086  doi: 10.1016/j.carbon.2018.02.086

    55. [55]

      Lima, M. D.; Hussain, M. W.; Spinks, G. M.; Naficy, S.; Hagenasr, D.; Bykova, J. S.; Tolly, D.; Baughman, R. H. Small 2015, 11, 3113. doi: 10.1002/smll.201500424  doi: 10.1002/smll.201500424

    56. [56]

      Jin, K.; Zhang, S.; Zhou, S.; Qiao, J.; Song, Y.; Di, J.; Zhang, D.; Li, Q. Nanoscale 2018, 10, 8180. doi: 10.1039/c8nr01300d  doi: 10.1039/c8nr01300d

    57. [57]

      Kim, S. H.; Kwon, C. H.; Park, K.; Mun, T. J.; Lepro, X.; Baughman, R. H.; Spinks, G. M.; Kim, S. J. Sci. Rep. 2016, 6, 23016. doi: 10.1038/srep23016  doi: 10.1038/srep23016

    58. [58]

      Jeong, J. H.; Mun, T. J.; Kim, H.; Moon, J. H.; Lee, D. W.; Baughman, R. H.; Kim, S. J. Nanoscale Adv. 2019, 1, 965. doi: 10.1039/c8na00204e  doi: 10.1039/c8na00204e

    59. [59]

      Song, Y.; Zhou, S.; Jin, K.; Qiao, J.; Li, D.; Xu, C.; Hu, D.; Di, J.; Li, M.; Zhang, Z.; et al. Nanoscale 2018, 10, 4077. doi: 10.1039/c7nr08595h  doi: 10.1039/c7nr08595h

    60. [60]

      Xu, L.; Peng, Q.; Zhu, Y.; Zhao, X.; Yang, M.; Wang, S.; Xue, F.; Yuan, Y.; Lin, Z.; Xu, F.; et al. Nanoscale 2019, 11, 8124. doi: 10.1039/c9nr00611g  doi: 10.1039/c9nr00611g

    61. [61]

      Mu, J.; de Andrade, M. J.; Fang, S.; Wang, X.; Gao, E.; Li, N.; Kim, S. H.; Wang, H.; Hou, C.; Zhang, Q.; et al. Science 2019, 365, 150. doi: 10.1126/science.aaw2403  doi: 10.1126/science.aaw2403

    62. [62]

      Ren, M.; Qiao, J.; Wang, Y.; Wu, K.; Dong, L.; Shen, X.; Zhang, H.; Yang, W.; Wu, Y.; Yong, Z.; et al. Small 2021, 17, e2006181. doi: 10.1002/smll.202006181  doi: 10.1002/smll.202006181

    63. [63]

      Wang, Y.; Qiao, J.; Wu, K.; Yang, W.; Ren, M.; Dong, L.; Zhou, Y.; Wu, Y.; Wang, X.; Yong, Z.; et al. Mater. Horiz. 2020, 7, 304. doi: 10.1039/d0mh01352h  doi: 10.1039/d0mh01352h

    64. [64]

      Aliev, A. E.; Oh, J.; Kozlov, M. E.; Kuznetsov, A. A.; Fang, S.; Fonseca, A. F.; Ovalle, R.; Lima, M. D.; Haque, M. H.; Gartstein, Y. N.; et al. Science 2009, 323, 1575. doi: 10.1126/science.1168312  doi: 10.1126/science.1168312

    65. [65]

      Baughman, R. H.; Cui, C. X.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A. G.; et al. Science 1999, 284, 1340. doi: 10.1126/science.284.5418.1340  doi: 10.1126/science.284.5418.1340

    66. [66]

      Xie, X.; Qu, L.; Zhou, C.; Li, Y.; Zhu, J.; Bai, H.; Shi, G.; Dai, L. ACS Nano 2010, 4, 6050. doi: 10.1021/nn101563x  doi: 10.1021/nn101563x

    67. [67]

      Park, S.; An, J.; Suk, J. W.; Ruoff, R. S. Small 2010, 6, 210. doi: 10.1002/smll.200901877  doi: 10.1002/smll.200901877

    68. [68]

      Lerf, A.; Buchsteiner, A.; Pieper, J.; Schöttl, S.; Dekany, I.; Szabo, T.; Boehm, H. P. J. Phys. Chem. Solids 2006, 67, 1106. doi: 10.1016/j.jpcs.2006.01.031  doi: 10.1016/j.jpcs.2006.01.031

    69. [69]

      Sun, G.; Pan, Y.; Zhan, Z.; Zheng, L.; Lu, J.; Pang, J. H. L.; Li, L.; Huang, W. J. Phys. Chem. C 2011, 115, 23741. doi: 10.1021/jp207986m  doi: 10.1021/jp207986m

    70. [70]

      Mu, J.; Hou, C.; Zhu, B.; Wang, H.; Li, Y.; Zhang, Q. Sci. Rep. 2015, 5, 9503. doi: 10.1038/srep09503  doi: 10.1038/srep09503

    71. [71]

      Han, D. D.; Zhang, Y. L.; Jiang, H. B.; Xia, H.; Feng, J.; Chen, Q. D.; Xu, H. L.; Sun, H. B. Adv. Mater. 2015, 27, 332. doi: 10.1002/adma.201403587  doi: 10.1002/adma.201403587

    72. [72]

      Han, D. D.; Zhang, Y. L.; Liu, Y.; Liu, Y. Q.; Jiang, H. B.; Han, B.; Fu, X. Y.; Ding, H.; Xu, H. L.; Sun, H. B. Adv. Funct. Mater. 2015, 25, 4548. doi: 10.1002/adfm.201501511  doi: 10.1002/adfm.201501511

    73. [73]

      Xu, G.; Chen, J.; Zhang, M.; Shi, G. Sens. Actuators B 2017, 242, 418. doi: 10.1016/j.snb.2016.11.068  doi: 10.1016/j.snb.2016.11.068

    74. [74]

      Cheng, H.; Zhao, F.; Xue, J.; Shi, G.; Jiang, L.; Qu, L. ACS Nano 2016, 10, 9529. doi: 10.1021/acsnano.6b04769  doi: 10.1021/acsnano.6b04769

    75. [75]

      Liu, J.; Wang, Z.; Xie, X.; Cheng, H.; Zhao, Y.; Qu, L. J. Mater. Chem. 2012, 22, 4015. doi: 10.1039/c2jm15266e  doi: 10.1039/c2jm15266e

    76. [76]

      Mukai, K.; Yamato, K.; Asaka, K.; Hata, K.; Oike, H. Sens. Actuators B 2012, 161, 1010. doi: 10.1016/j.snb.2011.11.084  doi: 10.1016/j.snb.2011.11.084

    77. [77]

      Shi, Q.; Hou, C.; Wang, H.; Zhang, Q.; Li, Y. Chem. Commun. 2016, 52, 5816. doi: 10.1039/c6cc01590e  doi: 10.1039/c6cc01590e

    78. [78]

      Xu, G.; Zhang, M.; Zhou, Q.; Chen, H.; Gao, T.; Li, C.; Shi, G. Nanoscale 2017, 9, 17465. doi: 10.1039/c7nr07116g  doi: 10.1039/c7nr07116g

    79. [79]

      Chen, L.; Weng, M.; Zhou, Z.; Zhou, Y.; Zhang, L.; Li, J.; Huang, Z.; Zhang, W.; Liu, C.; Fan, S. ACS Nano 2015, 9, 12189. doi: 10.1021/acsnano.5b05413  doi: 10.1021/acsnano.5b05413

    80. [80]

      Hu, Y.; Lan, T.; Wu, G.; Zhu, Z.; Chen, W. Nanoscale 2014, 6, 12703. doi: 10.1039/c4nr02768j  doi: 10.1039/c4nr02768j

    81. [81]

      Chen, L.; Liu, C.; Liu, K.; Meng, C.; Hu, C.; Wang, J.; Fan, S. ACS Nano 2011, 5, 1588. doi: 10.1021/nn102251a  doi: 10.1021/nn102251a

    82. [82]

      Wen, Y.; Wu, M.; Zhang, M.; Li, C.; Shi, G. Adv. Mater. 2017, 29, 1702831. doi: 10.1002/adma.201702831  doi: 10.1002/adma.201702831

    83. [83]

      Wan, S.; Peng, J.; Jiang, L.; Cheng, Q. Adv. Mater. 2016, 28, 7862. doi: 10.1002/adma.201601934  doi: 10.1002/adma.201601934

    84. [84]

      Kim, J.; Jeon, J. H.; Kim, H. J.; Lim, H.; Oh, I. K. ACS Nano 2014, 8, 2986. doi: 10.1021/nn500283q  doi: 10.1021/nn500283q

    85. [85]

      Li, J.; Ma, W.; Song, L.; Niu, Z.; Cai, L.; Zeng, Q.; Zhang, X.; Dong, H.; Zhao, D.; Zhou, W.; et al. Nano Lett. 2011, 11, 4636. doi: 10.1021/nl202132m  doi: 10.1021/nl202132m

    86. [86]

      Im, K. H.; Choi, H. J. Korean Phys. Soc. 2014, 64, 623. doi: 10.3938/jkps.64.623  doi: 10.3938/jkps.64.623

    87. [87]

      Liu, S.; Liu, Y.; Cebeci, H.; de Villoria, R. G.; Lin, J. H.; Wardle, B. L.; Zhang, Q. M. Adv. Funct. Mater. 2010, 20, 3266. doi: 10.1002/adfm.201000570  doi: 10.1002/adfm.201000570

    88. [88]

      Kim, J.; Bae, S. H.; Kotal, M.; Stalbaum, T.; Kim, K. J.; Oh, I. K. Small 2017, 13, 1701314. doi: 10.1002/smll.201701314  doi: 10.1002/smll.201701314

    89. [89]

      Shian, S.; Diebold, R. M.; Clarke, D. R. Opt. Express 2013, 21, 8669. doi: 10.1364/OE.21.008669  doi: 10.1364/OE.21.008669

    90. [90]

      Yuan, W.; Hu, L. B.; Yu, Z. B.; Lam, T.; Biggs, J.; Ha, S. M.; Xi, D. J.; Chen, B.; Senesky, M. K.; Grüner, G.; et al. Adv. Mater. 2008, 20, 621. doi: 10.1002/adma.200701018  doi: 10.1002/adma.200701018

    91. [91]

      Kinloch, I. A.; Suhr, J.; Lou, J.; Young, R. J.; Ajayan, P. M. Science 2018, 362, 547. doi: 10.1126/science.aat7439  doi: 10.1126/science.aat7439

    92. [92]

      Yuan, J.; Neri, W.; Zakri, C.; Merzeau, P.; Kratz, K.; Lendlein, A.; Poulin, P. Science 2019, 365, 155. doi: 10.1126/science.aaw3722  doi: 10.1126/science.aaw3722

    93. [93]

      Wang, Y.; Sun, L. Z. Appl. Phys. Lett. 2017, 111, 161904. doi: 10.1063/1.4997092  doi: 10.1063/1.4997092

    94. [94]

      Zhang, F.; Li, T.; Luo, Y. Compos. Sci. Technol. 2018, 156, 151. doi: 10.1016/j.compscitech.2017.12.016  doi: 10.1016/j.compscitech.2017.12.016

    95. [95]

      Kim, D.; Lee, H. S.; Yoon, J. Sci. Rep. 2016, 6, 20921. doi: 10.1038/srep20921  doi: 10.1038/srep20921

    96. [96]

      Kim, H.; Ahn, S. K.; Mackie, D. M.; Kwon, J.; Kim, S. H.; Choi, C.; Moon, Y. H.; Lee, H. B.; Ko, S. H. Mater. Today 2020, 41, 243. doi: 10.1016/j.mattod.2020.06.005  doi: 10.1016/j.mattod.2020.06.005

    97. [97]

      Mirvakili, S. M.; Hunter, I. W. Adv. Mater. 2017, 29, 1604734. doi: 10.1002/adma.201604734  doi: 10.1002/adma.201604734

    98. [98]

      Li, Q.; Liu, C.; Lin, Y. H.; Liu, L.; Jiang, K.; Fan, S. ACS Nano 2015, 9, 409. doi: 10.1021/nn505535k  doi: 10.1021/nn505535k

    99. [99]

      Oh, J. H.; Anas, M.; Barnes, E.; Moores, L. C.; Green, M. J. Adv. Eng. Mater. 2021, 23, 2000873. doi: 10.1002/adem.202000873  doi: 10.1002/adem.202000873

    100. [100]

      Ling, Y.; Pang, W.; Li, X.; Goswami, S.; Xu, Z.; Stroman, D.; Liu, Y.; Fei, Q.; Xu, Y.; Zhao, G.; et al. Adv. Mater. 2020, 32, 1908475. doi: 10.1002/adma.201908475  doi: 10.1002/adma.201908475

    101. [101]

      Han, B.; Zhang, Y. L.; Zhu, L.; Li, Y.; Ma, Z. C.; Liu, Y. Q.; Zhang, X. L.; Cao, X. W.; Chen, Q. D.; Qiu, C. W.; et al. Adv. Mater. 2019, 31, 1806386. doi: 10.1002/adma.201806386  doi: 10.1002/adma.201806386

    102. [102]

      Mu, J.; Hou, C.; Wang, H.; Li, Y.; Zhang, Q.; Zhu, M. Sci. Adv. 2015, 1, e1500533. doi: 10.1126/sciadv.1500533  doi: 10.1126/sciadv.1500533

    103. [103]

      Dong, Y.; Wang, J.; Guo, X.; Yang, S.; Ozen, M. O.; Chen, P.; Liu, X.; Du, W.; Xiao, F.; Demirci, U.; Liu, B. F. Nat. Commun. 2019, 10, 4087. doi: 10.1038/s41467-019-12044-5  doi: 10.1038/s41467-019-12044-5

    104. [104]

      Chen, L.; Weng, M.; Zhou, P.; Huang, F.; Liu, C.; Fan, S.; Zhang, W. Adv. Funct. Mater. 2019, 29, 1806057. doi: 10.1002/adfm.201806057  doi: 10.1002/adfm.201806057

    105. [105]

      Zhao, H.; Hu, R.; Li, P.; Gao, A.; Sun, X.; Zhang, X.; Qi, X.; Fan, Q.; Liu, Y.; Liu, X.; et al. Nano Energy 2020, 76, 104926. doi: 10.1016/j.nanoen.2020.104926  doi: 10.1016/j.nanoen.2020.104926

    106. [106]

      Wang, X. Q.; Chan, K. H.; Cheng, Y.; Ding, T.; Li, T.; Achavananthadith, S.; Ahmet, S.; Ho, J. S.; Ho, G. W. Adv. Mater. 2020, 32, e2000351. doi: 10.1002/adma.202000351  doi: 10.1002/adma.202000351

    107. [107]

      Xiao, Y.; Lin, J.; Xiao, J.; Weng, M.; Zhang, W.; Zhou, P.; Luo, Z.; Chen, L. Nanoscale 2021, 13, 6259. doi: 10.1039/d0nr09210j  doi: 10.1039/d0nr09210j

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    3. [3]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    4. [4]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    6. [6]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    7. [7]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    12. [12]

      Yajun Jian Quanguo Zhai Quan Gu Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006

    13. [13]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    14. [14]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    15. [15]

      Wen Shi Zhangwen Wei Mei Pan Chengyong Su . Explorations on the Course Construction of Structural Chemistry Practice and Application Targeting the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 96-100. doi: 10.12461/PKU.DXHX202409036

    16. [16]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    17. [17]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    20. [20]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

Metrics
  • PDF Downloads(29)
  • Abstract views(1045)
  • HTML views(335)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return