Citation: Kunjie Wu, Yongyi Zhang, Zhenzhong Yong, Qingwen Li. Continuous Preparation and Performance Enhancement Techniques of Carbon Nanotube Fibers[J]. Acta Physico-Chimica Sinica, ;2022, 38(9): 210603. doi: 10.3866/PKU.WHXB202106034 shu

Continuous Preparation and Performance Enhancement Techniques of Carbon Nanotube Fibers

  • Corresponding author: Yongyi Zhang, yyzhang2011@sinano.ac.cn Zhenzhong Yong, zzyong2008@sinano.ac.cn
  • Received Date: 24 June 2021
    Revised Date: 24 July 2021
    Accepted Date: 26 July 2021
    Available Online: 2 August 2021

    Fund Project: the National Key Research and Development Program of China 2016YFA0203301the National Natural Science Foundation of China 21773293the Jiangxi Provincial Natural Science Foundation, China 20202BAB204006the Jiangxi Provincial Key Research and Development Project, China 20192ACB80002the Jiangxi Provincial Key Research and Development Project, China 20202BBEL53027the Jiangxi Provincial Key Research and Development Project, China 20192BCD40017

  • Carbon nanotube fiber (CNTF) comprises continuous yarn-like macro aggregates with a large amount of carbon nanotubes and bundles thereof. CNTFs have excellent properties, such as high strength, toughness, and conductivity, because of which, they have broad prospects in several fields, such as structure-function integrated composite materials, fibrous energy devices, artificial muscle, and lightweight conductive wire. After two decades of development, breakthroughs have been made in continuous preparation technology, performance enhancement, and application exploration of CNTF materials. In this review, the development history of CNTF materials is summarized, and various continuous preparation technologies of CNTFs, including wet spinning, array spinning, and floating catalyst chemical vapor deposition (FCCVD) direct spinning, are described and compared. The wet spinning technology for fabricating CNTFs can be easily scaled due to its similarity to the conventional wet spinning technology used for fabricating high-performance fibers, while the obtained CNTFs have relatively high conductivity. The main challenges in wet spinning are the mass preparation and appropriate dispersion of high-quality carbon nanotubes (CNTs) with large aspect ratios. The array spinning technology can produce CNTFs with high purity and controllable structures, and its challenges are the relatively low preparation efficiency and high cost, because of which, it is challenging to meet the needs of large-scale applications. The FCCVD direct spinning technology can continuously produce CNTFs with relatively high strengths and at low cost, and it is easily adaptable for large-scale fabrication. The main drawbacks of CNTFs obtained from direct spinning are the relatively high impurity content and nonuniform CNT structures. Since CNTFs were first reported in 2000, one of the major challenges has been transferring the excellent properties of individual CNTs to the macroscopic assemblies of CNTs. To answer this question, the correlation between the structures and properties of CNTFs is discussed in detail, and contemporary techniques used for the enhancement of mechanical and electrical properties of CNTFs are reviewed. Based on the fiber fracture mechanism of slippage between CNTs, typical mechanical performance enhancement techniques include manipulating the CNT structures (namely wall number, diameter, aspect ratio, and collapse state), aligning the CNT along the fiber axis, enhancing the packing density and the interaction between CNTs, and combining with other reinforcing materials. The electrical performance of CNTFs is attributed to a 3D hopping electron transport mechanism in CNTFs. Conductivity enhancement techniques mainly include improving the assembly structure of CNTFs, using conductive materials as fillers between the CNTs, oxidative p-doping, and combining with metallic conductors. Finally, the main challenges in terms of performance enhancement and large-scale fabrication are discussed, and the development directions of CNTF materials are proposed.
  • 加载中
    1. [1]

      Zhang, J.; Zhang, Y. Y. Carbon Nanotubes: Growth Mechanism and Structural Control; Science Press: Beijing, 2019.

    2. [2]

      Bai, Y. X.; Zhang, R. F.; Ye, X.; Zhu, Z. X.; Xie, H. H.; Shen, B. Y.; Cai, D. L.; Liu, B. F.; Zhang, C. X.; Jia, Z.; et al. Nat. Nanotechnol. 2018, 13, 589. doi: 10.1038/s41565-018-0141-z  doi: 10.1038/s41565-018-0141-z

    3. [3]

      Peng, B.; Locascio, M.; Zapol, P.; Li, S. Y.; Mielke, S. L.; Schatz, G. C.; Espinosa, H. D. Nat. Nanotechnol. 2008, 3, 626. doi: 10.1038/nnano.2008.211  doi: 10.1038/nnano.2008.211

    4. [4]

      Ebbesen, T.; Lezec, H.; Hiura, H.; Bennett, J.; Ghaemi, H.; Thio, T. Nature 1996, 382, 54. doi: 10.1038/382054a0  doi: 10.1038/382054a0

    5. [5]

      Purewal, M. S.; Hong, B. H.; Ravi, A.; Chandra, B.; Hone, J.; Kim, P. Phys. Rev. Lett. 2007, 98, 186808. doi: 10.1103/PhysRevLett.98.186808  doi: 10.1103/PhysRevLett.98.186808

    6. [6]

      Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Nature 2003, 424, 654. doi: 10.1038/nature01797  doi: 10.1038/nature01797

    7. [7]

      Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Appl. Phys. Lett. 2001, 79, 1172. doi: 10.1063/1.1396632  doi: 10.1063/1.1396632

    8. [8]

      Yao, Z.; Kane, C. L.; Dekker, C. Phys. Rev. Lett. 2000, 84, 2941. doi: 10.1103/PhysRevLett.84.2941  doi: 10.1103/PhysRevLett.84.2941

    9. [9]

      Zhang, X.; Lu, W.; Zhou, G.; Li, Q. Adv. Mater. 2020, 32, 1902028. doi: 10.1002/adma.201902028  doi: 10.1002/adma.201902028

    10. [10]

      Lu, W.; Zu, M.; Byun, J. H.; Kim, B. S.; Chou, T. W. Adv. Mater. 2012, 24, 1805. doi: 10.1002/adma.201104672  doi: 10.1002/adma.201104672

    11. [11]

      Li, Q. W.; Zhao, J. N.; Zhang, X. H. J. Textile Res. 2018, 39, 145.  doi: 10.13475/j.fzxb.20180806607

    12. [12]

      Vigolo, B.; Penicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P. Science 2000, 290, 1331. doi: 10.1126/science.290.5495.1331  doi: 10.1126/science.290.5495.1331

    13. [13]

      Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nature 2002, 419, 801. doi: 10.1038/419801a  doi: 10.1038/419801a

    14. [14]

      Li, Y. L.; Kinloch, I. A.; Windle, A. H. Science 2004, 304, 276. doi: 10.1126/science.1094982  doi: 10.1126/science.1094982

    15. [15]

      Wang, H. M.; He, M. S.; Zhang, Y. Y. Acta Phys. -Chim. Sin. 2019, 35, 1207.  doi: 10.3866/PKU.WHXB201811011

    16. [16]

      Xu, W.; Chen, Y.; Zhan, H.; Wang, J. N. Nano Lett. 2016, 16, 946. doi: 10.1021/acs.nanolett.5b03863  doi: 10.1021/acs.nanolett.5b03863

    17. [17]

      Taylor, L. W.; Dewey, O. S.; Headrick, R. J.; Komatsu, N.; Peraca, N. M.; Wehmeyer, G.; Kono, J.; Pasquali, M. Carbon 2021, 171, 689. doi: 10.1016/j.carbon.2020.07.058  doi: 10.1016/j.carbon.2020.07.058

    18. [18]

      Li, Q. W.; Lv, W. B.; Zhang, X. H.; Zhang, Y. Y. Carbon Nanotube Fiber; National Defense Industry Press: Beijing, 2018.

    19. [19]

      Xie, D.; Zhang, J. S.; Pan, G. X.; Li, H. G.; Xie, S. L.; Wang, S. S.; Fan, H. B.; Cheng, F. L.; Xia, X. H. ACS Appl. Mater. Interfaces 2019, 11, 18662. doi: 10.1021/acsami.9b05667  doi: 10.1021/acsami.9b05667

    20. [20]

      Lu, Q.; Zou, X.; Liao, K.; Ran, R.; Zhou, W.; Ni, M.; Shao, Z. Carbon Energy 2020, 2, 461. doi: 10.1002/cey2.50  doi: 10.1002/cey2.50

    21. [21]

      Liang, X. Q.; Chen, M. H.; Pan, G. X.; Wu, J. B.; Xia, X. H. Funct. Mater. Lett. 2019, 12, 1950049. doi: 10.1142/s1793604719500498  doi: 10.1142/s1793604719500498

    22. [22]

      Cai, W.; Zhang, Y.; Jia, Y.; Yan, J. Carbon Energy 2020, 2, 472. doi: 10.1002/cey2.46  doi: 10.1002/cey2.46

    23. [23]

      Liu, L.; Ma, W.; Zhang, Z. Small 2011, 7, 1504. doi: 10.1002/smll.201002198  doi: 10.1002/smll.201002198

    24. [24]

      Ericson, L. M.; Fan, H.; Peng, H. Q.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y. H.; Booker, R.; Vavro, J.; Guthy, C.; et al. Science 2004, 305, 1447. doi: 10.1126/science.1101398  doi: 10.1126/science.1101398

    25. [25]

      Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; ter Waarbeek, R. F.; de Jong, J. J.; Hoogerwerf, R. E.; et al. Science 2013, 339, 182. doi: 10.1126/science.1228061  doi: 10.1126/science.1228061

    26. [26]

      Meng, J.; Zhang, Y.; Song, K.; Minus, M. L. Macromol. Mater. Eng. 2014, 299, 144. doi: 10.1002/mame.201300025  doi: 10.1002/mame.201300025

    27. [27]

      Jiang, K.; Wang, J.; Li, Q.; Liu, L.; Liu, C.; Fan, S. Adv. Mater. 2011, 23, 1154. doi: 10.1002/adma.201003989  doi: 10.1002/adma.201003989

    28. [28]

      Miao, M. Particuology 2013, 11, 378. doi: 10.1016/j.partic.2012.06.017  doi: 10.1016/j.partic.2012.06.017

    29. [29]

      Liu, K.; Sun, Y.; Chen, L.; Feng, C.; Feng, X.; Jiang, K.; Zhao, Y.; Fan, S. Nano Lett. 2008, 8, 700. doi: 10.1021/nl0723073  doi: 10.1021/nl0723073

    30. [30]

      Ye, Y. T.; Zhang, X. H.; Meng, F. C.; Zhao, J. N.; Li, Q. W. J. Mater. Chem. C 2013, 1, 2009. doi: 10.1039/c3tc00539a  doi: 10.1039/c3tc00539a

    31. [31]

      Liu, K.; Sun, Y. H.; Zhou, R. F.; Zhu, H. Y.; Wang, J. P.; Liu, L.; Fan, S. S.; Jiang, K. L. Nanotechnology 2010, 21, 045708. doi: 10.1088/0957-4484/21/4/045708  doi: 10.1088/0957-4484/21/4/045708

    32. [32]

      Zhang, M.; Atkinson, K. R.; Baughman, R. H. Science 2004, 306, 1358. doi: 10.1126/science.1104276  doi: 10.1126/science.1104276

    33. [33]

      Li, Q.; Zhang, X.; DePaula, R. F.; Zheng, L.; Zhao, Y.; Stan, L.; Holesinger, T. G.; Arendt, P. N.; Peterson, D. E.; Zhu, Y. T. Adv. Mater. 2006, 18, 3160. doi: 10.1002/adma.200601344  doi: 10.1002/adma.200601344

    34. [34]

      Zhang, X.; Li, Q.; Holesinger, T. G.; Arendt, P. N.; Huang, J.; Kirven, P. D.; Clapp, T. G.; DePaula, R. F.; Liao, X.; Zhao, Y.; et al. Adv. Mater. 2007, 19, 4198. doi: 10.1002/adma.200700776  doi: 10.1002/adma.200700776

    35. [35]

      Di, J.; Hu, D.; Chen, H.; Yong, Z.; Chen, M.; Feng, Z.; Zhu, Y.; Li, Q. ACS Nano 2012, 6, 5457. doi: 10.1021/nn301321j  doi: 10.1021/nn301321j

    36. [36]

      Zhang, M.; Fang, S. L.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H. Science 2005, 309, 1215. doi: 10.1126/science.1115311  doi: 10.1126/science.1115311

    37. [37]

      Inoue, Y.; Suzuki, Y.; Minami, Y.; Muramatsu, J.; Shimamura, Y.; Suzuki, K.; Ghemes, A.; Okada, M.; Sakakibara, S.; Mimura, F.; Naito, K. Carbon 2011, 49, 2437. doi: 10.1016/j.carbon.2011.02.010  doi: 10.1016/j.carbon.2011.02.010

    38. [38]

      Chen, T.; Wang, S. T.; Yang, Z. B.; Feng, Q. Y.; Sun, X. M.; Li, L.; Wang, Z. S.; Peng, H. S. Angew. Chem. Int. Edit. 2011, 50, 1815. doi: 10.1002/anie.201003870  doi: 10.1002/anie.201003870

    39. [39]

      Zhao, J.; Zhang, X.; Di, J.; Xu, G.; Yang, X.; Liu, X.; Yong, Z.; Chen, M.; Li, Q. Small 2010, 6, 2612. doi: 10.1002/smll.201001120  doi: 10.1002/smll.201001120

    40. [40]

      Li, S.; Zhang, X.; Zhao, J.; Meng, F.; Xu, G.; Yong, Z.; Jia, J.; Zhang, Z.; Li, Q. Compos. Sci. Technol. 2012, 72, 1402. doi: 10.1016/j.compscitech.2012.05.013  doi: 10.1016/j.compscitech.2012.05.013

    41. [41]

      Zhong, X. H.; Li, Y. L.; Liu, Y. K.; Qiao, X. H.; Feng, Y.; Liang, J.; Jin, J.; Zhu, L.; Hou, F.; Li, J. Y. Adv. Mater. 2010, 22, 692. doi: 10.1002/adma.200902943  doi: 10.1002/adma.200902943

    42. [42]

      Janas, D.; Koziol, K. K. Nanoscale 2016, 8, 19475. doi: 10.1039/c6nr07549e  doi: 10.1039/c6nr07549e

    43. [43]

      Smail, F.; Boies, A.; Windle, A. Carbon 2019, 152, 218. doi: 10.1016/j.carbon.2019.05.024  doi: 10.1016/j.carbon.2019.05.024

    44. [44]

      Cheng, H. M.; Li, F.; Su, G.; Pan, H. Y.; He, L. L.; Sun, X.; Dresselhaus, M. S. Appl. Phys. Lett. 1998, 72, 3282. doi: 10.1063/1.121624  doi: 10.1063/1.121624

    45. [45]

      Zhu, H. W.; Xu, C. L.; Wu, D. H.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Science 2002, 296, 884. doi: 10.1126/science.1066996  doi: 10.1126/science.1066996

    46. [46]

      Feng, J. M. Fabrication of Continuous Carbon Nanotube Fibers by a Safe CVD Method. Ph. D. Dissertation, Tianjin University, Tianjin, 2012

    47. [47]

      Wang, J. N.; Luo, X. G.; Wu, T.; Chen, Y. Nat. Commun. 2014, 5, 3848. doi: 10.1038/ncomms4848  doi: 10.1038/ncomms4848

    48. [48]

      Zhou, T.; Niu, Y.; Li, Z.; Li, H.; Yong, Z.; Wu, K.; Zhang, Y.; Li, Q. Mater. Design 2021, 203, 109557. doi: 10.1016/j.matdes.2021.109557  doi: 10.1016/j.matdes.2021.109557

    49. [49]

      Yadav, M. D.; Dasgupta, K.; Patwardhan, A. W.; Joshi, J. B. Ind. Eng. Chem. Res. 2017, 56, 12407. doi: 10.1021/acs.iecr.7b02269  doi: 10.1021/acs.iecr.7b02269

    50. [50]

      Jung, Y.; Cho, Y. S.; Lee, J. W.; Oh, J. Y.; Park, C. R. Compos. Sci. Technol. 2018, 166, 95. doi: 10.1016/j.compscitech.2018.02.010  doi: 10.1016/j.compscitech.2018.02.010

    51. [51]

      Xu, Z. C.; Wu, L. L.; Chen, T. China Textile Leader 2019, 67.  doi: 10.16481/j.cnki.ctl.2019.06.013

    52. [52]

      Bai, Y.; Yue, H.; Wang, J.; Shen, B.; Sun, S.; Wang, S.; Wang, H.; Li, X.; Xu, Z.; Zhang, R.; Wei, F. Science 2020, 369, 1104. doi: 10.1126/science.aay5220  doi: 10.1126/science.aay5220

    53. [53]

      Berber, S.; Kwon, Y. K.; Tomanek, D. Phys. Rev. Lett. 2000, 84, 4613. doi: 10.1103/PhysRevLett.84.4613  doi: 10.1103/PhysRevLett.84.4613

    54. [54]

      Pop, E.; Mann, D.; Wang, Q.; Goodson, K. E.; Dai, H. J. Nano Lett. 2006, 6, 96. doi: 10.1021/nl052145f  doi: 10.1021/nl052145f

    55. [55]

      Vilatela, J. J.; Elliott, J. A.; Windle, A. H. ACS Nano 2011, 5, 1921. doi: 10.1021/nn102925a  doi: 10.1021/nn102925a

    56. [56]

      Zhao, J. N. Study of Mechanical Properties of Various Assembled Carbon Nanotube Fibers. Ph. D. Dissertation, Soochow University, Suzhou, 2016

    57. [57]

      Wu, K.; Niu, Y.; Zhang, Y.; Yong, Z.; Li, Q. Compos. Part A 2021, 144, 106359. doi: 10.1016/j.compositesa.2021.106359  doi: 10.1016/j.compositesa.2021.106359

    58. [58]

      Jia, J.; Zhao, J.; Xu, G.; Di, J.; Yong, Z.; Tao, Y.; Fang, C.; Zhang, Z.; Zhang, X.; Zheng, L.; Li, Q. Carbon 2011, 49, 1333. doi: 10.1016/j.carbon.2010.11.054  doi: 10.1016/j.carbon.2010.11.054

    59. [59]

      Weller, L.; Smail, F. R.; Elliott, J. A.; Windle, A. H.; Boies, A. M.; Hochgreb, S. Carbon 2019, 146, 789. doi: 10.1016/j.carbon.2019.01.091  doi: 10.1016/j.carbon.2019.01.091

    60. [60]

      Jung, D. W.; Lee, K. H.; Kim, J. H.; Burk, D.; Overzet, L. J.; Lee, G. S.; Kong, S. H. J. Nanosci. Nanotechnol. 2012, 12, 5663. doi: 10.1166/jnn.2012.6349  doi: 10.1166/jnn.2012.6349

    61. [61]

      Zhang, S. C.; Zhang, N.; Zhang, J. Acta Phys. -Chim. Sin. 2020, 36, 54  doi: 10.3866/PKU.WHXB201907021

    62. [62]

      Aleman, B.; Reguero, V.; Mas, B.; Vilatela, J. J. ACS Nano 2015, 9, 7392. doi: 10.1021/acsnano.5b02408  doi: 10.1021/acsnano.5b02408

    63. [63]

      Koziol, K.; Vilatela, J.; Moisala, A.; Motta, M.; Cunniff, P.; Sennett, M.; Windle, A. Science 2007, 318, 1892. doi: 10.1126/science.1147635  doi: 10.1126/science.1147635

    64. [64]

      Beese, A. M.; Wei, X.; Sarkar, S.; Ramachandramoorthy, R.; Roenbeck, M. R.; Moravsky, A.; Ford, M.; Yavari, F.; Keane, D. T.; Loutfy, R. O.; et al. ACS Nano 2014, 8, 11454. doi: 10.1021/nn5045504  doi: 10.1021/nn5045504

    65. [65]

      Liu, Q. L.; Li, M.; Gu, Y. Z.; Zhang, Y. Y.; Wang, S. K.; Li, Q. W.; Zhang, Z. G. Nanoscale 2014, 6, 4338. doi: 10.1039/c3nr06704a  doi: 10.1039/c3nr06704a

    66. [66]

      Vigolo, B.; Poulin, P.; Lucas, M.; Launois, P.; Bernier, P. Appl. Phys. Lett. 2002, 81, 1210. doi: 10.1063/1.1497706  doi: 10.1063/1.1497706

    67. [67]

      Motta, M.; Li, Y. L.; Kinloch, I.; Windle, A. Nano Lett. 2005, 5, 1529. doi: 10.1021/nl050634+  doi: 10.1021/nl050634+

    68. [68]

      Elliott, J. A.; Sandler, J. K. W.; Windle, A. H.; Young, R. J.; Shaffer, M. S. P. Phys. Rev. Lett. 2004, 92, 095501. doi: 10.1103/PhysRevLett.92.095501  doi: 10.1103/PhysRevLett.92.095501

    69. [69]

      Motta, M.; Moisala, A.; Kinloch, I. A.; Windle, A. H. Adv. Mater. 2007, 19, 3721. doi: 10.1002/adma.200700516  doi: 10.1002/adma.200700516

    70. [70]

      Zhang, X.; Li, Q. ACS Nano 2010, 4, 312. doi: 10.1021/nn901515j  doi: 10.1021/nn901515j

    71. [71]

      Gadagkar, V.; Maiti, P. K.; Lansac, Y.; Jagota, A.; Sood, A. K. Phys. Rev. B 2006, 73, 085402. doi: 10.1103/PhysRevB.73.085402  doi: 10.1103/PhysRevB.73.085402

    72. [72]

      Tsentalovich, D. E.; Headrick, R. J.; Mirri, F.; Hao, J.; Behabtu, N.; Young, C. C.; Pasquali, M. ACS Appl. Mater. Interfaces 2017, 9, 36189. doi: 10.1021/acsami.7b10968  doi: 10.1021/acsami.7b10968

    73. [73]

      Fang, S. L.; Zhang, M.; Zakhidov, A. A.; Baughman, R. H. J. Phys. -Condens. Mat. 2010, 22, 334221. doi: 10.1088/0953-8984/22/33/334221  doi: 10.1088/0953-8984/22/33/334221

    74. [74]

      Zhang, X.; Li, Q.; Tu, Y.; Li, Y.; Coulter, J. Y.; Zheng, L.; Zhao, Y.; Jia, Q.; Peterson, D. E.; Zhu, Y. Small 2007, 3, 244. doi: 10.1002/smll.200600368  doi: 10.1002/smll.200600368

    75. [75]

      Ghemes, A.; Minami, Y.; Muramatsu, J.; Okada, M.; Mimura, H.; Inoue, Y. Carbon 2012, 50, 4579. doi: 10.1016/j.carbon.2012.05.043  doi: 10.1016/j.carbon.2012.05.043

    76. [76]

      Shaffer, M. S. P.; Windle, A. H. Macromolecules 1999, 32, 6864. doi: 10.1021/ma990095t  doi: 10.1021/ma990095t

    77. [77]

      Cheng, Q.; Bao, J.; Park, J.; Liang, Z.; Zhang, C.; Wang, B. Adv. Funct. Mater. 2009, 19, 3219. doi: 10.1002/adfm.200900663  doi: 10.1002/adfm.200900663

    78. [78]

      Zhang, L.; Wang, X.; Xu, W.; Zhang, Y.; Li, Q.; Bradford, P. D.; Zhu, Y. Small 2015, 11, 3830. doi: 10.1002/smll.201500111  doi: 10.1002/smll.201500111

    79. [79]

      Davis, V. A.; Parra-Vasquez, A. N. G.; Green, M. J.; Rai, P. K.; Behabtu, N.; Prieto, V.; Booker, R. D.; Schmidt, J.; Kesselman, E.; Zhou, W.; et al. Nat. Nanotechnol. 2009, 4, 830. doi: 10.1038/nnano.2009.302  doi: 10.1038/nnano.2009.302

    80. [80]

      Zhou, W.; Vavro, J.; Guthy, C.; Winey, K. I.; Fischer, J. E.; Ericson, L. M.; Ramesh, S.; Saini, R.; Davis, V. A.; Kittrell, C.; et al. J. Appl. Phys. 2004, 95, 649. doi: 10.1063/1.1627457  doi: 10.1063/1.1627457

    81. [81]

      Zheng, L.; Sun, G.; Zhan, Z. Small 2010, 6, 132. doi: 10.1002/smll.200900954  doi: 10.1002/smll.200900954

    82. [82]

      Wang, J. J.; Zhao, J. N.; Qiu, L.; Li, F. C.; Xu, C. L.; Wu, K. J.; Wang, P. F.; Zhang, X. H.; Li, Q. W. RSC Adv. 2020, 10, 18715. doi: 10.1039/d0ra02675a  doi: 10.1039/d0ra02675a

    83. [83]

      Wang, X.; Bradford, P. D.; Liu, W.; Zhao, H.; Inoue, Y.; Maria, J. P.; Li, Q.; Yuan, F. G.; Zhu, Y. Compos. Sci. Technol. 2011, 71, 1677. doi: 10.1016/j.compscitech.2011.07.023  doi: 10.1016/j.compscitech.2011.07.023

    84. [84]

      Cheng, Q.; Wang, B.; Zhang, C.; Liang, Z. Small 2010, 6, 763. doi: 10.1002/smll.200901957  doi: 10.1002/smll.200901957

    85. [85]

      Downes, R.; Wang, S.; Haldane, D.; Moench, A.; Liang, R. Adv. Eng. Mater. 2015, 17, 349. doi: 10.1002/adem.201400045  doi: 10.1002/adem.201400045

    86. [86]

      Han, Y.; Zhang, X.; Yu, X.; Zhao, J.; Li, S.; Liu, F.; Gao, P.; Zhang, Y.; Zhao, T.; Li, Q. Sci. Rep. 2015, 5, 11533. doi: 10.1038/srep11533  doi: 10.1038/srep11533

    87. [87]

      Miaudet, P.; Badaire, S.; Maugey, M.; Derre, A.; Pichot, V.; Launois, P.; Poulin, P.; Zakri, C. Nano Lett. 2005, 5, 2212. doi: 10.1021/nl051419w  doi: 10.1021/nl051419w

    88. [88]

      Liu, J.; Gong, W.; Yao, Y.; Li, Q.; Jiang, J.; Wang, Y.; Zhou, G.; Qu, S.; Lu, W. Compos. Sci. Technol. 2018, 164, 290. doi: 10.1016/j.compscitech.2018.06.003  doi: 10.1016/j.compscitech.2018.06.003

    89. [89]

      Lee, J.; Lee, D. M.; Jung, Y.; Park, J.; Lee, H. S.; Kim, Y. K.; Park, C. R.; Jeong, H. S.; Kim, S. M. Nat. Commun. 2019, 10, 2962. doi: 10.1038/s41467-019-10998-0  doi: 10.1038/s41467-019-10998-0

    90. [90]

      Wang, S.; Liu, Q.; Li, M.; Li, T.; Gu, Y.; Li, Q.; Zhang, Z. Compos. Part A 2017, 103, 106. doi: 10.1016/j.compositesa.2017.10.002  doi: 10.1016/j.compositesa.2017.10.002

    91. [91]

      Cho, H.; Lee, H.; Oh, E.; Lee, S. H.; Park, J.; Park, H. J.; Yoon, S. B.; Lee, C. H.; Kwak, G. H.; Lee, W. J.; et al. Carbon 2018, 136, 409. doi: 10.1016/j.carbon.2018.04.071  doi: 10.1016/j.carbon.2018.04.071

    92. [92]

      Oh, E.; Cho, H.; Kim, J.; Kim, J. E.; Yi, Y.; Choi, J.; Lee, H.; Im, Y. H.; Lee, K. H.; Lee, W. J. ACS Appl. Mater. Interfaces 2020, 12, 13107. doi: 10.1021/acsami.9b19861  doi: 10.1021/acsami.9b19861

    93. [93]

      Zhang, L.; Wang, X.; Li, R.; Li, Q.; Bradford, P. D.; Zhu, Y. Compos. Sci. Technol. 2016, 123, 92. doi: 10.1016/j.compscitech.2015.12.012  doi: 10.1016/j.compscitech.2015.12.012

    94. [94]

      Han, B. S.; Xue, X.; Zhao, Z. Y.; Niu, T.; Qu, H. T.; Xu, Y. J.; Hou, H. L. J. Mater. Eng. 2018, 46, 37.  doi: 10.11868/j.issn.1001-4381.2016.001159

    95. [95]

      Wu, T. An Investigation of the Preparation and Properties of High Performance Carbon Nanotube Fiber. Ph. D. Dissertation, Shanghai Jiao Tong University, Shanghai, 2017

    96. [96]

      Alvarenga, J.; Jarosz, P. R.; Schauerman, C. M.; Moses, B. T.; Landi, B. J.; Cress, C. D.; Raffaelle, R. P. Appl. Phys. Lett. 2010, 97, 182106. doi: 10.1063/1.3506703  doi: 10.1063/1.3506703

    97. [97]

      Han, B. S.; Xue, X.; Xu, Y. J.; Zhao, Z. Y.; Guo, E. Y.; Liu, C.; Luo, L. S.; Hou, H. L. Carbon 2017, 122, 496. doi: 10.1016/j.carbon.2017.04.072  doi: 10.1016/j.carbon.2017.04.072

    98. [98]

      Liu, G.; Zhao, Y.; Deng, K.; Liu, Z.; Chu, W.; Chen, J.; Yang, Y.; Zheng, K.; Huang, H.; Ma, W.; et al. Nano Lett. 2008, 8, 1071. doi: 10.1021/nl073007o  doi: 10.1021/nl073007o

    99. [99]

      Shang, Y.; Wang, Y.; Li, S.; Hua, C.; Zou, M.; Cao, A. Carbon 2017, 119, 47. doi: 10.1016/j.carbon.2017.03.101  doi: 10.1016/j.carbon.2017.03.101

    100. [100]

      Wang, Y.; Li, M.; Gu, Y.; Zhang, X.; Wang, S.; Li, Q.; Zhang, Z. Nanoscale 2015, 7, 3060. doi: 10.1039/c4nr06401a  doi: 10.1039/c4nr06401a

    101. [101]

      Tran, T. Q.; Fan, Z.; Liu, P.; Myint, S. M.; Duong, H. M. Carbon 2016, 99, 407. doi: 10.1016/j.carbon.2015.12.048  doi: 10.1016/j.carbon.2015.12.048

    102. [102]

      Hou, G.; Wang, G.; Deng, Y.; Zhang, J.; Nshimiyimana, J. P.; Chi, X.; Hu, X.; Chu, W.; Dong, H.; Zhang, Z.; Liu, L.; Sun, L. RSC Adv. 2016, 6, 97012. doi: 10.1039/c6ra21238g  doi: 10.1039/c6ra21238g

    103. [103]

      Qiu, J.; Terrones, J.; Vilatela, J. J.; Vickers, M. E.; Elliott, J. A.; Windle, A. H. ACS Nano 2013, 7, 8412. doi: 10.1021/nn401337m  doi: 10.1021/nn401337m

    104. [104]

      Kis, A.; Csanyi, G.; Salvetat, J. P.; Lee, T. N.; Couteau, E.; Kulik, A. J.; Benoit, W.; Brugger, J.; Forro, L. Nat. Mater. 2004, 3, 153. doi: 10.1038/nmat1076  doi: 10.1038/nmat1076

    105. [105]

      Filleter, T.; Bernal, R.; Li, S.; Espinosa, H. D. Adv. Mater. 2011, 23, 2855. doi: 10.1002/adma.201100547  doi: 10.1002/adma.201100547

    106. [106]

      Miller, S. G.; Williams, T. S.; Baker, J. S.; Sola, F.; Lebion-Colon, M.; McCorkle, L. S.; Wilmoth, N. G.; Gaier, J.; Chen, M.; Meador, M. A. ACS Appl. Mater. Interfaces 2014, 6, 6120. doi: 10.1021/am4058277  doi: 10.1021/am4058277

    107. [107]

      Di, J. T.; Fang, S. L.; Moura, F. A.; Galvao, D. S.; Bykova, J.; Aliev, A.; de Andrade, M. J.; Lepro, X.; Li, N.; Haines, C.; et al. Adv. Mater. 2016, 28, 6598. doi: 10.1002/adma.201600628  doi: 10.1002/adma.201600628

    108. [108]

      Fang, C.; Zhao, J.; Jia, J.; Zhang, Z.; Zhang, X.; Li, Q. Appl. Phys. Lett. 2010, 97, 181906. doi: 10.1063/1.3511451  doi: 10.1063/1.3511451

    109. [109]

      Han, Y.; Li, S.; Chen, F.; Zhao, T. Mater. Today Commun. 2016, 6, 56. doi: 10.1016/j.mtcomm.2015.12.002  doi: 10.1016/j.mtcomm.2015.12.002

    110. [110]

      Lin, X. Y.; Zhao, W.; Zhou, W. B.; Liu, P.; Luo, S.; Wei, H. M.; Yang, G. Z.; Yang, J. H.; Cui, J.; Yu, R. C.; et al. ACS Nano 2017, 11, 1257. doi: 10.1021/acsnano.6b04855  doi: 10.1021/acsnano.6b04855

    111. [111]

      Nam, K. H.; Im, Y. O.; Park, H. J.; Lee, H.; Park, J.; Jeong, S.; Kim, S. M.; You, N. H.; Choi, J. H.; Han, H.; et al. Compos. Sci. Technol. 2017, 153, 136. doi: 10.1016/j.compscitech.2017.10.014  doi: 10.1016/j.compscitech.2017.10.014

    112. [112]

      Wang, G. J.; Cai, Y. P.; Ma, Y. J.; Tang, S. C.; Syed, J. A.; Cao, Z. H.; Meng, X. K. Nano Lett. 2019, 19, 6255. doi: 10.1021/acs.nanolett.9b02332  doi: 10.1021/acs.nanolett.9b02332

    113. [113]

      Wang, Y.; Colas, G.; Filleter, T. Carbon 2016, 98, 291. doi: 10.1016/j.carbon.2015.11.008  doi: 10.1016/j.carbon.2015.11.008

    114. [114]

      Shin, M. K.; Lee, B.; Kim, S. H.; Lee, J. A.; Spinks, G. M.; Gambhir, S.; Wallace, G. G.; Kozlov, M. E.; Baughman, R. H.; Kim, S. J. Nat. Commun. 2012, 3, 650. doi: 10.1038/ncomms1661  doi: 10.1038/ncomms1661

    115. [115]

      Ryu, S.; Lee, Y.; Hwang, J. W.; Hong, S.; Kim, C.; Park, T. G.; Lee, H.; Hong, S. H. Adv. Mater. 2011, 23, 1971. doi: 10.1002/adma.201004228  doi: 10.1002/adma.201004228

    116. [116]

      Ryu, S.; Chou, J. B.; Lee, K.; Lee, D.; Hong, S. H.; Zhao, R.; Lee, H.; Kim, S. G. Adv. Mater. 2015, 27, 3250. doi: 10.1002/adma.201500914  doi: 10.1002/adma.201500914

    117. [117]

      Mulvihill, D. M.; O'Brien, N. P.; Curtin, W. A.; McCarthy, M. A. Carbon 2016, 96, 1138. doi: 10.1016/j.carbon.2015.10.055  doi: 10.1016/j.carbon.2015.10.055

    118. [118]

      Song, Y. H.; Di, J. T.; Zhang, C.; Zhao, J. N.; Zhang, Y. Y.; Hu, D. M.; Li, M.; Zhang, Z. G.; Wei, H. Z.; Li, Q. W. Nanoscale 2019, 11, 13909. doi: 10.1039/c9nr03400e  doi: 10.1039/c9nr03400e

    119. [119]

      Liu, W.; Zhang, X.; Xu, G.; Bradford, P. D.; Wang, X.; Zhao, H.; Zhang, Y.; Jia, Q.; Yuan, F. G.; Li, Q.; et al. Carbon 2011, 49, 4786. doi: 10.1016/j.carbon.2011.06.089  doi: 10.1016/j.carbon.2011.06.089

    120. [120]

      Liu, K.; Sun, Y.; Lin, X.; Zhou, R.; Wang, J.; Fan, S.; Jiang, K. ACS Nano 2010, 4, 5827. doi: 10.1021/nn1017318  doi: 10.1021/nn1017318

    121. [121]

      Jung, Y.; Kim, T.; Park, C. R. Carbon 2015, 88, 60. doi: 10.1016/j.carbon.2015.02.065  doi: 10.1016/j.carbon.2015.02.065

    122. [122]

      Guo, W.; Liu, C.; Sun, X.; Yang, Z.; Kia, H. G.; Peng, H. J. Mater. Chem. 2012, 22, 903. doi: 10.1039/c1jm13769g  doi: 10.1039/c1jm13769g

    123. [123]

      Boncel, S.; Sundaram, R. M.; Windle, A. H.; Koziol, K. K. K. ACS Nano 2011, 5, 9339. doi: 10.1021/nn202685x  doi: 10.1021/nn202685x

    124. [124]

      Kim, J. W.; Siochi, E. J.; Carpena-Nunez, J.; Wise, K. E.; Connell, J. W.; Lin, Y.; Wincheski, R. A. ACS Appl. Mater. Interfaces 2013, 5, 8597. doi: 10.1021/am402077d  doi: 10.1021/am402077d

    125. [125]

      Cheng, Q.; Li, M.; Jiang, L.; Tang, Z. Adv. Mater. 2012, 24, 1838. doi: 10.1002/adma.201200179  doi: 10.1002/adma.201200179

    126. [126]

      Ma, W.; Liu, L.; Zhang, Z.; Yang, R.; Liu, G.; Zhang, T.; An, X.; Yi, X.; Ren, Y.; Niu, Z.; et al. Nano Lett. 2009, 9, 2855. doi: 10.1021/nl901035v  doi: 10.1021/nl901035v

    127. [127]

      Park, O. K.; Choi, H.; Jeong, H.; Jung, Y.; Yu, J.; Lee, J. K.; Hwang, J. Y.; Kim, S. M.; Jeong, Y.; Park, C. R.; et al. Carbon 2017, 118, 413. doi: 10.1016/j.carbon.2017.03.079  doi: 10.1016/j.carbon.2017.03.079

    128. [128]

      Beese, A. M.; Sarkar, S.; Nair, A.; Naraghi, M.; An, Z.; Moravsky, A.; Loutfy, R. O.; Buehler, M. J.; Nguyen, S. T.; Espinosa, H. D. ACS Nano 2013, 7, 3434. doi: 10.1021/nn400346r  doi: 10.1021/nn400346r

    129. [129]

      Min, J.; Cai, J. Y.; Sridhar, M.; Easton, C. D.; Gengenbach, T. R.; McDonnell, J.; Humphries, W.; Lucas, S. Carbon 2013, 52, 520. doi: 10.1016/j.carbon.2012.10.004  doi: 10.1016/j.carbon.2012.10.004

    130. [130]

      Tran, T. Q.; Fan, Z.; Mikhalchan, A.; Liu, P.; Duong, H. M. ACS Appl. Mater. Interfaces 2016, 8, 7948. doi: 10.1021/acsami.5b09912  doi: 10.1021/acsami.5b09912

    131. [131]

      Ventura, D. N.; Stone, R. A.; Chen, K. S.; Hariri, H. H.; Riddle, K. A.; Fellers, T. J.; Yun, C. S.; Strouse, G. F.; Kroto, H. W.; Acquah, S. F. A. Carbon 2010, 48, 987. doi: 10.1016/j.carbon.2009.11.016  doi: 10.1016/j.carbon.2009.11.016

    132. [132]

      Zhou, Z.; Wang, X.; Faraji, S.; Bradford, P. D.; Li, Q. W.; Zhu, Y. T. Carbon 2014, 75, 307. doi: 10.1016/j.carbon.2014.04.008  doi: 10.1016/j.carbon.2014.04.008

    133. [133]

      Lee, J.; Kim, T.; Jung, Y.; Jung, K.; Park, J.; Lee, D. M.; Jeong, H. S.; Hwang, J. Y.; Park, C. R.; Lee, K. H.; Kim, S. M. Nanoscale 2016, 8, 18972. doi: 10.1039/c6nr06479e  doi: 10.1039/c6nr06479e

    134. [134]

      Li, M.; Song, Y. H.; Zhang, C.; Yong, Z. Z.; Qiao, J.; Hu, D. M.; Zhang, Z. G.; Wei, H. Z.; Di, J. T.; Li, Q. W. Carbon 2019, 146, 627. doi: 10.1016/j.carbon.2019.02.059  doi: 10.1016/j.carbon.2019.02.059

    135. [135]

      Jarosz, P. R.; Shaukat, A.; Schauerman, C. M.; Cress, C. D.; Kladitis, P. E.; Ridgley, R. D.; Landi, B. J. ACS Appl. Mater. Interfaces 2012, 4, 1103. doi: 10.1021/am201729g  doi: 10.1021/am201729g

    136. [136]

      Kurzepa, L.; Lekawa-Raus, A.; Patmore, J.; Koziol, K. Adv. Funct. Mater. 2014, 24, 619. doi: 10.1002/adfm.201302497  doi: 10.1002/adfm.201302497

    137. [137]

      Lekawa-Raus, A.; Patmore, J.; Kurzepa, L.; Bulmer, J.; Koziol, K. Adv. Funct. Mater. 2014, 24, 3661. doi: 10.1002/adfm.201303716  doi: 10.1002/adfm.201303716

    138. [138]

      Jarosz, P.; Schauerman, C.; Alvarenga, J.; Moses, B.; Mastrangelo, T.; Raffaelle, R.; Ridgley, R.; Landi, B. Nanoscale 2011, 3, 4542. doi: 10.1039/c1nr10814j  doi: 10.1039/c1nr10814j

    139. [139]

      Zhang, S. L.; Nguyen, N.; Leonhardt, B.; Jolowsky, C.; Hao, A.; Park, J. G.; Liang, R. Adv. Electron. Mater. 2019, 5, 1800811. doi: 10.1002/aelm.201800811  doi: 10.1002/aelm.201800811

    140. [140]

      Sun, H.; Zhang, Y.; Zhang, J.; Sun, X. M.; Peng, H. S. Nat. Rev. Mater. 2017, 2, 17023. doi: 10.1038/natrevmats.2017.23  doi: 10.1038/natrevmats.2017.23

    141. [141]

      Kaiser, A. B.; Dusberg, G.; Roth, S. Phys. Rev. B 1998, 57, 1418. doi: 10.1103/PhysRevB.57.1418  doi: 10.1103/PhysRevB.57.1418

    142. [142]

      Li, Q.; Li, Y.; Zhang, X.; Chikkannanavar, S. B.; Zhao, Y.; Dangelewicz, A. M.; Zheng, L.; Doorn, S. K.; Jia, Q.; Peterson, D. E.; et al. Adv. Mater. 2007, 19, 3358. doi: 10.1002/adma.200602966  doi: 10.1002/adma.200602966

    143. [143]

      Chen, G.; Futaba, D. N.; Sakurai, S.; Yumura, M.; Hata, K. Carbon 2014, 67, 318. doi: 10.1016/j.carbon.2013.10.001  doi: 10.1016/j.carbon.2013.10.001

    144. [144]

      Rossi, J. E.; Cress, C. D.; Goodman, S. M.; Cox, N. D.; Puchades, I.; Bucossi, A. R.; Merrill, A.; Landi, B. J. J. Phys. Chem. C 2016, 120, 15488. doi: 10.1021/acs.jpcc.6b04881  doi: 10.1021/acs.jpcc.6b04881

    145. [145]

      Lee, J.; Stein, I. Y.; Devoe, M. E.; Lewis, D. J.; Lachman, N.; Kessler, S. S.; Buschhorn, S. T.; Wardle, B. L. Appl. Phys. Lett. 2015, 106, 053110. doi: 10.1063/1.4907608  doi: 10.1063/1.4907608

    146. [146]

      Wang, X.; Jiang, Q.; Xu, W.; Cai, W.; Inoue, Y.; Zhu, Y. Carbon 2013, 53, 145. doi: 10.1016/j.carbon.2012.10.041  doi: 10.1016/j.carbon.2012.10.041

    147. [147]

      Guo, F. M.; Li, C.; Wei, J. Q.; Xu, R. Q.; Zhang, Z. L.; Cui, X.; Wang, K. L.; Wu, D. H. Mater. Res. Express 2015, 2, 095604. doi: 10.1088/2053-1591/2/9/095604  doi: 10.1088/2053-1591/2/9/095604

    148. [148]

      Bucossi, A. R.; Cress, C. D.; Schauerman, C. M.; Rossi, J. E.; Puchades, I.; Landi, B. J. ACS Appl. Mater. Interfaces 2015, 7, 27299. doi: 10.1021/acsami.5b08668  doi: 10.1021/acsami.5b08668

    149. [149]

      Zhang, S.; Park, J. G.; Nam, N.; Jolowsky, C.; Hao, A.; Liang, R. Carbon 2017, 125, 649. doi: 10.1016/j.carbon.2017.09.089  doi: 10.1016/j.carbon.2017.09.089

    150. [150]

      Miao, M. Carbon 2011, 49, 3755. doi: 10.1016/j.carbon.2011.05.008  doi: 10.1016/j.carbon.2011.05.008

    151. [151]

      Chen, I. W. P.; Liang, R.; Zhao, H.; Wang, B.; Zhang, C. Nanotechnology 2011, 22, 485708. doi: 10.1088/0957-4484/22/48/485708  doi: 10.1088/0957-4484/22/48/485708

    152. [152]

      Wang, H.; Lu, W. B.; Di, J. T.; Li, D.; Zhang, X. H.; Li, M.; Zhang, Z. G.; Zheng, L. X.; Li, Q. W. Adv. Funct. Mater. 2017, 27, 1606220. doi: 10.1002/adfm.201606220  doi: 10.1002/adfm.201606220

    153. [153]

      Zhao, J. N.; Li, Q. S.; Gao, B.; Wang, X. H.; Zou, J. Y.; Cong, S.; Zhang, X. H.; Pan, Z. J.; Li, Q. W. Carbon 2016, 101, 114. doi: 10.1016/j.carbon.2016.01.085  doi: 10.1016/j.carbon.2016.01.085

    154. [154]

      Yi, Q. H.; Dai, X.; Zhao, J.; Sun, Y. H.; Lou, Y. H.; Su, X. D.; Li, Q. W.; Sun, B. Q.; Zheng, H. H.; Shen, M. R.; et al. Nanoscale 2013, 5, 6923. doi: 10.1039/c3nr01857a  doi: 10.1039/c3nr01857a

    155. [155]

      Do, J. W.; Estrada, D.; Xie, X.; Chang, N. N.; Mallek, J.; Girolami, G. S.; Rogers, J. A.; Pop, E.; Lyding, J. W. Nano Lett. 2013, 13, 5844. doi: 10.1021/nl4026083  doi: 10.1021/nl4026083

    156. [156]

      Allen, R.; Pan, L.; Fuller, G. G.; Bao, Z. ACS Appl. Mater. Interfaces 2014, 6, 9966. doi: 10.1021/am5019995  doi: 10.1021/am5019995

    157. [157]

      Ma, Y.; Cheung, W.; Wei, D.; Bogozi, A.; Chiu, P. L.; Wang, L.; Pontoriero, F.; Mendelsohn, R.; He, H. ACS Nano 2008, 2, 1197. doi: 10.1021/nn800201n  doi: 10.1021/nn800201n

    158. [158]

      Park, O. K.; Lee, W.; Hwang, J. Y.; You, N. H.; Jeong, Y.; Kim, S. M.; Ku, B. C. Compos. Part A 2016, 91, 222. doi: 10.1016/j.compositesa.2016.10.016  doi: 10.1016/j.compositesa.2016.10.016

    159. [159]

      Foroughi, J.; Spinks, G. M.; Antiohos, D.; Mirabedini, A.; Gambhir, S.; Wallace, G. G.; Ghorbani, S. R.; Peleckis, G.; Kozlov, M. E.; Lima, M. D.; Baughman, R. H. Adv. Funct. Mater. 2014, 24, 5859. doi: 10.1002/adfm.201401412  doi: 10.1002/adfm.201401412

    160. [160]

      Zhang, S.; Hao, A.; Nam, N.; Oluwalowo, A.; Liu, Z.; Dessureault, Y.; Park, J. G.; Liang, R. Carbon 2019, 144, 628. doi: 10.1016/j.carbon.2018.12.091  doi: 10.1016/j.carbon.2018.12.091

    161. [161]

      Faraji, S.; Stano, K.; Rost, C.; Maria, J. P.; Zhu, Y. T.; Bradford, P. D. Carbon 2014, 79, 113. doi: 10.1016/j.carbon.2014.07.049  doi: 10.1016/j.carbon.2014.07.049

    162. [162]

      Tonkikh, A. A.; Tsebro, V. I.; Obraztsova, E. A.; Suenaga, K.; Kataura, H.; Nasibulin, A. G.; Kauppinen, E. I.; Obraztsova, E. D. Carbon 2015, 94, 768. doi: 10.1016/j.carbon.2015.07.062  doi: 10.1016/j.carbon.2015.07.062

    163. [163]

      Dettlaff-Weglikowska, U.; Skakalova, V.; Graupner, R.; Jhang, S. H.; Kim, B. H.; Lee, H. J.; Ley, L.; Park, Y. W.; Berber, S.; Tomanek, D.; Roth, S. J. Am. Chem. Soc. 2005, 127, 5125. doi: 10.1021/ja046685a  doi: 10.1021/ja046685a

    164. [164]

      Janas, D.; Boncel, S.; Koziol, K. K. K. Carbon 2014, 73, 259. doi: 10.1016/j.carbon.2014.02.062  doi: 10.1016/j.carbon.2014.02.062

    165. [165]

      Janas, D.; Herman, A. P.; Boncel, S.; Koziol, K. K. K. Carbon 2014, 73, 225. doi: 10.1016/j.carbon.2014.02.058  doi: 10.1016/j.carbon.2014.02.058

    166. [166]

      Janas, D.; Milowska, K. Z.; Bristowe, P. D.; Koziol, K. K. K. Nanoscale 2017, 9, 3212. doi: 10.1039/c7nr00224f  doi: 10.1039/c7nr00224f

    167. [167]

      Puchades, I.; Lawlor, C. C.; Schauerman, C. M.; Bucossi, A. R.; Rossi, J. E.; Cox, N. D.; Landi, B. J. J. Mater. Chem. C 2015, 3, 10256. doi: 10.1039/c5tc02053k  doi: 10.1039/c5tc02053k

    168. [168]

      Wang, P.; Liu, D.; Zou, J.; Ye, Y.; Hou, L.; Zhao, J.; Men, C.; Zhang, X.; Li, Q. Mater. Design 2018, 159, 138. doi: 10.1016/j.matdes.2018.08.030  doi: 10.1016/j.matdes.2018.08.030

    169. [169]

      Morelos-Gomez, A.; Fujishige, M.; Vega-Diaz, S. M.; Ito, I.; Fukuyo, T.; Cruz-Silva, R.; Tristan-Lopez, F.; Fujisawa, K.; Fujimori, T.; Futamura, R.; et al. J. Mater. Chem. A 2016, 4, 74. doi: 10.1039/c5ta06662j  doi: 10.1039/c5ta06662j

    170. [170]

      Zhao, Y.; Wei, J.; Vajtai, R.; Ajayan, P. M.; Barrera, E. V. Sci. Rep. 2011, 1, 83. doi: 10.1038/srep00083  doi: 10.1038/srep00083

    171. [171]

      Jackson, R.; Domercq, B.; Jain, R.; Kippelen, B.; Graham, S. Adv. Funct. Mater. 2008, 18, 2548. doi: 10.1002/adfm.200800324  doi: 10.1002/adfm.200800324

    172. [172]

      Zhang, S.; Leonhardt, B. E.; Nam, N.; Oluwalowo, A.; Jolowsky, C.; Hao, A.; Liang, R.; Park, J. G. RSC Adv. 2018, 8, 12692. doi: 10.1039/c8ra01212a  doi: 10.1039/c8ra01212a

    173. [173]

      Sundaram, R. M.; Sekiguchi, A.; Sekiya, M.; Yamada, T.; Hata, K. R. Soc. Open. Sci. 2018, 5, 180814. doi: 10.1098/rsos.180814  doi: 10.1098/rsos.180814

    174. [174]

      Randeniya, L. K.; Bendavid, A.; Martin, P. J.; Tran, C. D. Small 2010, 6, 1806. doi: 10.1002/smll.201000493  doi: 10.1002/smll.201000493

    175. [175]

      Zou, J. Y.; Zhao, J. N.; Zhang, X. H.; Zhang, Y. Y.; Huang, Y. Y.; Li, Q. W. Mater. Rep. 2014, 28, 30.  doi: 10.11896/j.issn.1005-023X.2014.21.006

    176. [176]

      Sundaram, R.; Yamada, T.; Hata, K.; Sekiguchi, A. Sci. Rep. 2017, 7, 9267. doi: 10.1038/s41598-017-09279-x  doi: 10.1038/s41598-017-09279-x

    177. [177]

      Rho, H.; Park, M.; Park, M.; Park, J.; Han, J.; Lee, A.; Bae, S.; Kim, T. W.; Ha, J. S.; Kim, S. M.; et al. NPG Asia Mater. 2018, 10, 146. doi: 10.1038/s41427-018-0028-3  doi: 10.1038/s41427-018-0028-3

    178. [178]

      Subramaniam, C.; Sekiguchi, A.; Yamada, T.; Futaba, D. N.; Hata, K. Nanoscale 2016, 8, 3888. doi: 10.1039/c5nr03762j  doi: 10.1039/c5nr03762j

    179. [179]

      Chai, Y.; Chan, P. C. H. In IEEE International Electron Devices Meeting 2008, Technical Digest 2008, p. 607.

    180. [180]

      Hannula, P. M.; Peltonen, A.; Aromaa, J.; Janas, D.; Lundström, M.; Wilson, B. P.; Koziol, K.; Forsén, O. Carbon 2016, 107, 281. doi: 10.1016/j.carbon.2016.06.008  doi: 10.1016/j.carbon.2016.06.008

    181. [181]

      Sundaram, R.; Yamada, T.; Hata, K.; Sekiguchi, A. Mater. Today Commun. 2017, 13, 119. doi: 10.1016/j.mtcomm.2017.09.003  doi: 10.1016/j.mtcomm.2017.09.003

    182. [182]

      Wang, G. J.; Ma, Y. J.; Cai, Y. P.; Cao, Z. H.; Meng, X. K. Carbon 2019, 146, 293. doi: 10.1016/j.carbon.2019.01.111  doi: 10.1016/j.carbon.2019.01.111

    183. [183]

      Han, B.; Guo, E.; Xue, X.; Zhao, Z.; Luo, L.; Qu, H.; Niu, T.; Xu, Y.; Hou, H. Carbon 2017, 123, 593. doi: 10.1016/j.carbon.2017.08.004  doi: 10.1016/j.carbon.2017.08.004

    184. [184]

      Subramaniam, C.; Yamada, T.; Kobashi, K.; Sekiguchi, A.; Futaba, D. N.; Yumura, M.; Hata, K. Nat. Commun. 2013, 4, 2202. doi: 10.1038/ncomms3202  doi: 10.1038/ncomms3202

    185. [185]

      Hannula, P. M.; Aromaa, J.; Wilson, B. P.; Janas, D.; Koziol, K.; Forsen, O.; Lundstrom, M. Electrochim. Acta 2017, 232, 495. doi: 10.1016/j.electacta.2017.03.006  doi: 10.1016/j.electacta.2017.03.006

    186. [186]

      Xu, G.; Zhao, J.; Li, S.; Zhang, X.; Yong, Z.; Li, Q. Nanoscale 2011, 3, 4215. doi: 10.1039/c1nr10571j  doi: 10.1039/c1nr10571j

    187. [187]

      Zou, J. Y.; Liu, D. D.; Zhao, J. N.; Hou, L. G.; Liu, T.; Zhang, X. H.; Zhao, Y. H.; Zhu, Y. T. T.; Li, Q. W. ACS Appl. Mater. Interfaces 2018, 10, 8197. doi: 10.1021/acsami.7b19012  doi: 10.1021/acsami.7b19012

    188. [188]

      Milowska, K. Z.; Ghorbani-Asl, M.; Burda, M.; Wolanicka, L.; Catic, N.; Bristowe, P. D.; Koziol, K. K. K. Nanoscale 2017, 9, 8458. doi: 10.1039/c7nr02142a  doi: 10.1039/c7nr02142a

    189. [189]

      Zhong, X. H.; Wang, R.; Wen, Y. Y. Phys. Chem. Chem. Phys. 2013, 15, 3861. doi: 10.1039/c3cp44085k  doi: 10.1039/c3cp44085k

    190. [190]

      Ganguli, S.; Reed, A.; Jayasinghe, C.; Sprengard, J.; Roy, A. K.; Voevodin, A. A.; Muratore, C. Carbon 2013, 59, 479. doi: 10.1016/j.carbon.2013.03.042  doi: 10.1016/j.carbon.2013.03.042

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    6. [6]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    7. [7]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    8. [8]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    9. [9]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    12. [12]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    15. [15]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    16. [16]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    17. [17]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    19. [19]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(95)
  • Abstract views(1472)
  • HTML views(427)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return