Citation: Jianghui Zhao, Maoling Xie, Haiyang Zhang, Ruowei Yi, Chenji Hu, Tuo Kang, Lei Zheng, Ruiguang Cui, Hongwei Chen, Yanbin Shen, Liwei Chen. In Situ Modification Strategy for Development of Room-Temperature Solid-State Lithium Batteries with High Rate Capability[J]. Acta Physico-Chimica Sinica, ;2021, 37(12): 210400. doi: 10.3866/PKU.WHXB202104003 shu

In Situ Modification Strategy for Development of Room-Temperature Solid-State Lithium Batteries with High Rate Capability

  • Corresponding author: Yanbin Shen, ybshen2017@sinano.ac.cn
  • These authors contributed equally to this work.
  • Received Date: 1 April 2021
    Revised Date: 23 April 2021
    Accepted Date: 23 April 2021
    Available Online: 28 April 2021

    Fund Project: the National Natural Science Foundation of China 21625304the National Natural Science Foundation of China 21733012the National Natural Science Foundation of China 21772190the Ministry of Science and Technology of China 2016YFB0100102

  • The increasing development of society has resulted in the ever-growing demand for energy storage devices. To satisfy this demand, both energy density and safety performance of lithium batteries must be improved, which is challenging. Solid-state lithium batteries are promising in this regard because of their safe operation and high electrochemical performance. In recent years, intense effort has been devoted toward the exploration of materials with high ionic conductivity for room-temperature solid-state batteries. Among several types of solid-state electrolytes, Li1.5Al0.5Ge1.5(PO4)3 (LAGP), an inorganic NASICON-type electrolyte, has drawn considerable attention because of its high ionic conductivity, wide electrochemical window, and environmental stability. However, the formation of lithium-ion-conducting networks within the electrode and between the electrode-LAGP interface is limited because of high interfacial resistance caused by the direct contact and volume expansion between the electrode and electrolyte. Thus, the application of LAGP in the fabrication of solid-state batteries is limited. Moreover, the occurrence of the unavoidable side reaction because of the direct contact of LAGP with the lithium metal anode shortens battery life. In addition, the rigid brittle nature of the LAGP electrolyte leads to the limits the facile fabrication of solid-state batteries. To overcome these limitations, herein, a novel strategy based on in situ polymerization of a vinylene carbonate solid polymer electrolyte (PVC-SPE) was proposed. The in situ formed PVC-SPE can effectively construct ion-conducting pathways within the cathode and on the interfaces of the LAGP electrolyte and electrodes. Furthermore, the PVC-SPE can significantly inhibit the side reaction between the lithium anode and LAGP electrolyte. The electrochemical performances of Li | LAGP | Li and Li | LAGP | Li with in situ PVC-SPE modified interface symmetrical solid-state batteries were compared. The in situ modified Li | LAGP | Li symmetrical solid-state battery exhibited stability toward plating and stripping for over 2700 h and a low overpotential (34 mV) at room temperature. Moreover, a Li | LAGP | LiFePO4 solid-state battery exhibited a capacity retention of 94% at 0.2 C after 200 cycles with a capacity of 158 mAh·g-1. In addition, high rate capability (72.4% capacity retention at 3 C) was achieved at room temperature. Therefore, the proposed in situ modification strategy was found to resolve the interface-related problem and facilitated the construction of the ion-conducting network within the electrode; thus, it can be a promising approach for the fabrication of high-performance solid batteries.
  • 加载中
    1. [1]

      Goodenough, J. B. ACS Catal. 2017, 7, 1132. doi: 10.1021/acscatal.6b03110  doi: 10.1021/acscatal.6b03110

    2. [2]

      Takada, K. Acta Mater. 2013, 61, 759. doi: 10.1016/j.actamat.2012.10.034  doi: 10.1016/j.actamat.2012.10.034

    3. [3]

      Janek, J.; Zeier, W. G. Nat. Energy 2016, 1, 16141. doi: 10.1038/nenergy.2016.141  doi: 10.1038/nenergy.2016.141

    4. [4]

      Hu, Y. S. Nat. Energy 2016, 1, 16042. doi: 10.1038/nenergy.2016.42  doi: 10.1038/nenergy.2016.42

    5. [5]

      Hu, C.; Shen, Y.; Shen, M.; Liu, X.; Chen, H.; Liu, C.; Kang, T.; Jin, F.; Li, L.; Li, J.; et al. J. Am. Chem. Soc. 2020, 142, 18035. doi: 10.1021/jacs.0c07060  doi: 10.1021/jacs.0c07060

    6. [6]

      Jin, F.; Li, J.; Hu, C. J.; Dong, H. C.; Chen, P.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35, 1399.  doi: 10.3866/PKU.WHXB201904085

    7. [7]

      Blanchard, D.; Nale, A.; Sveinbjornsson, D.; Eggenhuisen, T. M.; Verkuijlen, M. H. W.; Suwarno; Vegge, T.; Kentgens, A. P. M.; De Jongh, P. E. Adv. Funct. Mater. 2015, 25, 184. doi: 10.1002/adfm.201402538  doi: 10.1002/adfm.201402538

    8. [8]

      Liu, Q.; Yu, Q.; Li, S.; Wang, S.; Zhang, L.; Cai, B.; Zhou, D.; Li, B. Energy Storage Mater. 2020, 25, 613. doi: 10.1016/j.ensm.2019.09.023  doi: 10.1016/j.ensm.2019.09.023

    9. [9]

      Cheng, Z. J.; Mao, Y. Y.; Dong, Q. Y.; Jin, F.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35, 868.  doi: 10.3866/PKU.WHXB201811033

    10. [10]

      Augustyn, V.; McDowell, M. T.; Vojvodic, A. Joule 2018, 2, 2189. doi: 10.1016/j.joule.2018.10.014  doi: 10.1016/j.joule.2018.10.014

    11. [11]

      Kerman, K.; Luntz, A.; Viswanathan, V.; Chiang, Y. M.; Chen, Z. J. Electrochem. Soc. 2017, 164, A1731. doi: 10.1149/2.1571707jes  doi: 10.1149/2.1571707jes

    12. [12]

      Xu, L.; Tang, S.; Cheng, Y.; Wang, K.; Liang, J.; Liu, C.; Cao, Y. C.; Wei, F.; Mai, L. Joule 2018, 2, 1991. doi: 10.1016/j.joule.2018.07.009  doi: 10.1016/j.joule.2018.07.009

    13. [13]

      Wu, X. L.; Zong, J.; Xu, H.; Wang, W.; Liu, X. J. RSC Adv. 2016, 6, 57346. doi: 10.1039/c6ra08048k  doi: 10.1039/c6ra08048k

    14. [14]

      Liu, Q.; Geng, Z.; Han, C.; Fu, Y.; Li, S.; He, Y. B.; Kang, F.; Li, B. J. Power Sources 2018, 389, 120. doi: 10.1016/j.jpowsour.2018.04.019  doi: 10.1016/j.jpowsour.2018.04.019

    15. [15]

      Hu, R.; Qiu, H.; Zhang, H.; Wang, P.; Du, X.; Ma, J.; Wu, T.; Lu, C.; Zhou, X.; Cui, G. Small 2020, 16, e1907163. doi: 10.1002/smll.201907163  doi: 10.1002/smll.201907163

    16. [16]

      Li, X.; Han, X.; Zhang, H.; Hu, R.; Du, X.; Wang, P.; Zhang, B.; Cui, G. ACS Appl. Mat. Interfaces 2020, 12, 51374. doi: 10.1021/acsami.0c13520  doi: 10.1021/acsami.0c13520

    17. [17]

      Han, F.; Gao, T.; Zhu, Y.; Gaskell, K. J.; Wang, C. Adv. Mater. 2015, 27, 3473. doi: 10.1002/adma.201500180  doi: 10.1002/adma.201500180

    18. [18]

      Tao, X.; Liu, Y.; Liu, W.; Zhou, G.; Zhao, J.; Lin, D.; Zu, C.; Sheng, O.; Zhang, W.; Lee, H. W.; et al. Nano Lett. 2017, 17, 2967. doi: 10.1021/acs.nanolett.7b00221  doi: 10.1021/acs.nanolett.7b00221

    19. [19]

      Chen, G. H.; Bai, Y.; Gao, Y. S.; Wu, F., Wu, C. Acta Phys. -Chim. Sin. 2020, 36, 1905009.  doi: 10.3866/PKU.WHXB201905009

    20. [20]

      Liang, J. Y.; Zeng, X. X.; Zhang, X. D.; Wang, P. F.; Ma, J. Y.; Yin, Y. X.; Wu, X. W.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2018, 140, 6767. doi: 10.1021/jacs.8b03319  doi: 10.1021/jacs.8b03319

    21. [21]

      Kim, D. H.; Oh, D. Y.; Park, K. H.; Choi, Y. E.; Nam, Y. J.; Lee, H. A.; Lee, S. M.; Jung, Y. S. Nano Lett. 2017, 17, 5, 3013. doi: 10.1021/acs.nanolett.7b00330  doi: 10.1021/acs.nanolett.7b00330

    22. [22]

      Fei, H. F.; Liu, Y. P.; Wei, C. L.; Zhang, Y. C.; Feng, J. K.; Chen, C. Z.; Yu, H. J. Acta Phys. -Chim. Sin. 2020, 36, 1905015.  doi: 10.3866/PKU.WHXB201905015

    23. [23]

      Gong, Y.; Fu, K.; Xu, S.; Dai, J.; Hamann, T. R.; Zhang, L.; Hitz, G. T.; Fu, Z.; Ma, Z.; McOwen, D. W.; et al. Mater. Today 2018, 21, 594. doi: 10.1016/j.mattod.2018.01.001  doi: 10.1016/j.mattod.2018.01.001

    24. [24]

      Wu, B.; Wang, S.; Evans, W. J.; Deng, D. Z.; Yang, J.; Xiao, J. J. Mater. Chem. A 2016, 4, 15266. doi: 10.1039/c6ta05439k  doi: 10.1039/c6ta05439k

    25. [25]

      Xu, L. Q.; Li, J. Y.; Liu, C.; Zou, G. Q.; Hou, H. S.; Ji, X. B.; Acta Phys. -Chim. Sin. 2020, 36, 1905013.  doi: 10.3866/PKU.WHXB201905013

    26. [26]

      Han, X.; Gong, Y.; Fu, K.; He, X.; Hitz, G. T.; Dai, J.; Pearse, A.; Liu, B.; Wang, H.; Rubloff, G.; et al. Nat. Mater. 2017, 16, 572. doi: 10.1038/nmat4821  doi: 10.1038/nmat4821

    27. [27]

      Dong, D.; Zhou, B.; Sun, Y.; Zhang, H.; Zhong, G.; Dong, Q.; Fu, F.; Qian, H.; Lin, Z.; Lu, D.; et al. Nano Lett. 2019, 19, 2343. doi: 10.1021/acs.nanolett.8b05019  doi: 10.1021/acs.nanolett.8b05019

    28. [28]

      Chen, L. Q. Acta Phys. -Chim. Sin. 2020, 36, 2001035.  doi: 10.3866/PKU.WHXB202001035

    29. [29]

      Wei, X.; Shriver, D. F. Chem. Mater. 1998, 10, 2307. doi: 10.1021/cm980170z  doi: 10.1021/cm980170z

    30. [30]

      Zhang, J.; Yang, J.; Dong, T.; Zhang, M.; Chai, J.; Dong, S.; Wu, T.; Zhou, X.; Cui, G. Small 2018, 14, 1800821. doi: 10.1002/smll.201800821  doi: 10.1002/smll.201800821

    31. [31]

      Chai, J.; Liu, Z.; Ma, J.; Wang, J.; Liu, X.; Liu, H.; Zhang, J.; Cui, G.; Chen, L. Adv. Sci. (Weinh) 2017, 4, 1600377. doi: 10.1002/advs.201600377  doi: 10.1002/advs.201600377

    32. [32]

      Arbi, K.; Bucheli, W.; Jiménez, R.; Sanz, J. J. Eur. Ceram. Soc. 2015, 35, 1477. doi: 10.1016/j.jeurceramsoc.2014.11.023  doi: 10.1016/j.jeurceramsoc.2014.11.023

    33. [33]

      Kotobuki, M.; Koishi, M. J. Asian Ceram. Soc. 2019, 7, 551. doi: 10.1080/21870764.2019.1693680  doi: 10.1080/21870764.2019.1693680

    34. [34]

      Smets, G.; Hayashi, K. J. Polym. Sci. 1958, 29, 257. doi: 10.1002/pol.1958.1202911919  doi: 10.1002/pol.1958.1202911919

    35. [35]

      Chen, S.; Che, H.; Feng, F.; Liao, J.; Wang, H.; Yin, Y.; Ma, Z. F. ACS Appl. Mat. Interfaces 2019, 11, 43056. doi: 10.1021/acsami.9b11259  doi: 10.1021/acsami.9b11259

    36. [36]

      Huang, S.; Cui, Z.; Qiao, L.; Xu, G.; Zhang, J.; Tang, K.; Liu, X.; Wang, Q.; Zhou, X.; Zhang, B.; et al. Electrochim. Acta 2019, 299, 820. doi: 10.1016/j.electacta.2019.01.039  doi: 10.1016/j.electacta.2019.01.039

    37. [37]

      Yi, J.; Liu, Y.; Qiao, Y.; He, P.; Zhou, H. ACS Energy Lett. 2017, 2, 1378. doi: 10.1021/acsenergylett.7b00292  doi: 10.1021/acsenergylett.7b00292

    38. [38]

      Hiller, M. M.; Joost, M.; Gores, H. J.; Passerini, S.; Wiemhöfer, H. D. Electrochim. Acta 2013, 114, 21. doi: 10.1016/j.electacta.2013.09.138  doi: 10.1016/j.electacta.2013.09.138

    39. [39]

      Liu, Y.; Li, C.; Li, B.; Song, H.; Cheng, Z.; Chen, M.; He, P.; Zhou, H. Adv. Energy Mater. 2018, 8, 1702374. doi: 10.1002/aenm.201702374  doi: 10.1002/aenm.201702374

    40. [40]

      Tsai, C. L.; Roddatis, V.; Chandran, C. V.; Ma, Q.; Uhlenbruck, S.; Bram, M.; Heitjans, P.; Guillon, O. ACS Appl. Mat. Interfaces 2016, 8, 10617. doi: 10.1021/acsami.6b00831  doi: 10.1021/acsami.6b00831

    41. [41]

      Chung, H.; Kang, B. Chem. Mater. 2017, 29, 8611. doi: 10.1021/acs.chemmater.7b02301  doi: 10.1021/acs.chemmater.7b02301

    42. [42]

      Guo, J.; Wen, Z.; Wu, M.; Jin, J.; Liu, Y., Electrochem. Commun. 2015, 51, 59. doi: 10.1016/j.elecom.2014.12.008  doi: 10.1016/j.elecom.2014.12.008

    43. [43]

      Fan, L.; Wei, S.; Li, S.; Li, Q.; Lu, Y. Adv. Energy Mater. 2018, 8, 1702657. doi: 10.1002/aenm.201702657  doi: 10.1002/aenm.201702657

    44. [44]

      Huang, Q.; Turcheniuk, K.; Ren, X.; Magasinski, A.; Song, A. Y.; Xiao, Y.; Kim, D.; Yushin, G. Nat. Mater. 2019, 18, 1343. doi: 10.1038/s41563-019-0472-7  doi: 10.1038/s41563-019-0472-7

    45. [45]

      Xia, S.; Lopez, J.; Liang, C.; Zhang, Z.; Bao, Z.; Cui, Y.; Liu, W. Adv. Sci. 2019, 6, 1802353. doi: 10.1002/advs.201802353  doi: 10.1002/advs.201802353

    46. [46]

      Jing, B.; Evans, C. M. J. Am. Chem. Soc. 2019, 141, 18932. doi: 10.1021/jacs.9b09811  doi: 10.1021/jacs.9b09811

    47. [47]

      Liu, Q.; Zhou, D.; Shanmukaraj, D.; Li, P.; Kang, F.; Li, B.; Armand, M.; Wang, G., ACS Energy Lett. 2020, 5, 1456. doi: 10.1021/acsenergylett.0c00542  doi: 10.1021/acsenergylett.0c00542

    48. [48]

      Zhang, H.; Zhang, J.; Ma, J.; Xu, G.; Dong, T.; Cui, G. Electrochem. Ener. Rev. 2019, 2, 128. doi: 10.1007/s41918-018-00027-x  doi: 10.1007/s41918-018-00027-x

    49. [49]

      Zhou, J.; Qian, T.; Liu, J.; Wang, M.; Zhang, L.; Yan, C. Nano Lett. 2019, 19, 3066. doi: 10.1021/acs.nanolett.9b00450  doi: 10.1021/acs.nanolett.9b00450

  • 加载中
    1. [1]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    2. [2]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    3. [3]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    4. [4]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    5. [5]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    6. [6]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    7. [7]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    8. [8]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    9. [9]

      Dong SuiJiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417

    10. [10]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    11. [11]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    12. [12]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    13. [13]

      Han YanJingming YaoZhangran YeQiaoquan LinZiqi ZhangShulin LiDawei SongZhenyu WangChuang YuLong Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568

    14. [14]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    15. [15]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    16. [16]

      Yang Deng Yitao Ouyang Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276

    17. [17]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    18. [18]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

    19. [19]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    20. [20]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

Metrics
  • PDF Downloads(7)
  • Abstract views(318)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return