In Situ Modification Strategy for Development of Room-Temperature Solid-State Lithium Batteries with High Rate Capability
- Corresponding author: Yanbin Shen, ybshen2017@sinano.ac.cn † These authors contributed equally to this work.
Citation: Jianghui Zhao, Maoling Xie, Haiyang Zhang, Ruowei Yi, Chenji Hu, Tuo Kang, Lei Zheng, Ruiguang Cui, Hongwei Chen, Yanbin Shen, Liwei Chen. In Situ Modification Strategy for Development of Room-Temperature Solid-State Lithium Batteries with High Rate Capability[J]. Acta Physico-Chimica Sinica, ;2021, 37(12): 210400. doi: 10.3866/PKU.WHXB202104003
Goodenough, J. B. ACS Catal. 2017, 7, 1132. doi: 10.1021/acscatal.6b03110
doi: 10.1021/acscatal.6b03110
Takada, K. Acta Mater. 2013, 61, 759. doi: 10.1016/j.actamat.2012.10.034
doi: 10.1016/j.actamat.2012.10.034
Janek, J.; Zeier, W. G. Nat. Energy 2016, 1, 16141. doi: 10.1038/nenergy.2016.141
doi: 10.1038/nenergy.2016.141
Hu, Y. S. Nat. Energy 2016, 1, 16042. doi: 10.1038/nenergy.2016.42
doi: 10.1038/nenergy.2016.42
Hu, C.; Shen, Y.; Shen, M.; Liu, X.; Chen, H.; Liu, C.; Kang, T.; Jin, F.; Li, L.; Li, J.; et al. J. Am. Chem. Soc. 2020, 142, 18035. doi: 10.1021/jacs.0c07060
doi: 10.1021/jacs.0c07060
Jin, F.; Li, J.; Hu, C. J.; Dong, H. C.; Chen, P.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35, 1399.
doi: 10.3866/PKU.WHXB201904085
Blanchard, D.; Nale, A.; Sveinbjornsson, D.; Eggenhuisen, T. M.; Verkuijlen, M. H. W.; Suwarno; Vegge, T.; Kentgens, A. P. M.; De Jongh, P. E. Adv. Funct. Mater. 2015, 25, 184. doi: 10.1002/adfm.201402538
doi: 10.1002/adfm.201402538
Liu, Q.; Yu, Q.; Li, S.; Wang, S.; Zhang, L.; Cai, B.; Zhou, D.; Li, B. Energy Storage Mater. 2020, 25, 613. doi: 10.1016/j.ensm.2019.09.023
doi: 10.1016/j.ensm.2019.09.023
Cheng, Z. J.; Mao, Y. Y.; Dong, Q. Y.; Jin, F.; Shen, Y. B.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35, 868.
doi: 10.3866/PKU.WHXB201811033
Augustyn, V.; McDowell, M. T.; Vojvodic, A. Joule 2018, 2, 2189. doi: 10.1016/j.joule.2018.10.014
doi: 10.1016/j.joule.2018.10.014
Kerman, K.; Luntz, A.; Viswanathan, V.; Chiang, Y. M.; Chen, Z. J. Electrochem. Soc. 2017, 164, A1731. doi: 10.1149/2.1571707jes
doi: 10.1149/2.1571707jes
Xu, L.; Tang, S.; Cheng, Y.; Wang, K.; Liang, J.; Liu, C.; Cao, Y. C.; Wei, F.; Mai, L. Joule 2018, 2, 1991. doi: 10.1016/j.joule.2018.07.009
doi: 10.1016/j.joule.2018.07.009
Wu, X. L.; Zong, J.; Xu, H.; Wang, W.; Liu, X. J. RSC Adv. 2016, 6, 57346. doi: 10.1039/c6ra08048k
doi: 10.1039/c6ra08048k
Liu, Q.; Geng, Z.; Han, C.; Fu, Y.; Li, S.; He, Y. B.; Kang, F.; Li, B. J. Power Sources 2018, 389, 120. doi: 10.1016/j.jpowsour.2018.04.019
doi: 10.1016/j.jpowsour.2018.04.019
Hu, R.; Qiu, H.; Zhang, H.; Wang, P.; Du, X.; Ma, J.; Wu, T.; Lu, C.; Zhou, X.; Cui, G. Small 2020, 16, e1907163. doi: 10.1002/smll.201907163
doi: 10.1002/smll.201907163
Li, X.; Han, X.; Zhang, H.; Hu, R.; Du, X.; Wang, P.; Zhang, B.; Cui, G. ACS Appl. Mat. Interfaces 2020, 12, 51374. doi: 10.1021/acsami.0c13520
doi: 10.1021/acsami.0c13520
Han, F.; Gao, T.; Zhu, Y.; Gaskell, K. J.; Wang, C. Adv. Mater. 2015, 27, 3473. doi: 10.1002/adma.201500180
doi: 10.1002/adma.201500180
Tao, X.; Liu, Y.; Liu, W.; Zhou, G.; Zhao, J.; Lin, D.; Zu, C.; Sheng, O.; Zhang, W.; Lee, H. W.; et al. Nano Lett. 2017, 17, 2967. doi: 10.1021/acs.nanolett.7b00221
doi: 10.1021/acs.nanolett.7b00221
Chen, G. H.; Bai, Y.; Gao, Y. S.; Wu, F., Wu, C. Acta Phys. -Chim. Sin. 2020, 36, 1905009.
doi: 10.3866/PKU.WHXB201905009
Liang, J. Y.; Zeng, X. X.; Zhang, X. D.; Wang, P. F.; Ma, J. Y.; Yin, Y. X.; Wu, X. W.; Guo, Y. G.; Wan, L. J. J. Am. Chem. Soc. 2018, 140, 6767. doi: 10.1021/jacs.8b03319
doi: 10.1021/jacs.8b03319
Kim, D. H.; Oh, D. Y.; Park, K. H.; Choi, Y. E.; Nam, Y. J.; Lee, H. A.; Lee, S. M.; Jung, Y. S. Nano Lett. 2017, 17, 5, 3013. doi: 10.1021/acs.nanolett.7b00330
doi: 10.1021/acs.nanolett.7b00330
Fei, H. F.; Liu, Y. P.; Wei, C. L.; Zhang, Y. C.; Feng, J. K.; Chen, C. Z.; Yu, H. J. Acta Phys. -Chim. Sin. 2020, 36, 1905015.
doi: 10.3866/PKU.WHXB201905015
Gong, Y.; Fu, K.; Xu, S.; Dai, J.; Hamann, T. R.; Zhang, L.; Hitz, G. T.; Fu, Z.; Ma, Z.; McOwen, D. W.; et al. Mater. Today 2018, 21, 594. doi: 10.1016/j.mattod.2018.01.001
doi: 10.1016/j.mattod.2018.01.001
Wu, B.; Wang, S.; Evans, W. J.; Deng, D. Z.; Yang, J.; Xiao, J. J. Mater. Chem. A 2016, 4, 15266. doi: 10.1039/c6ta05439k
doi: 10.1039/c6ta05439k
Xu, L. Q.; Li, J. Y.; Liu, C.; Zou, G. Q.; Hou, H. S.; Ji, X. B.; Acta Phys. -Chim. Sin. 2020, 36, 1905013.
doi: 10.3866/PKU.WHXB201905013
Han, X.; Gong, Y.; Fu, K.; He, X.; Hitz, G. T.; Dai, J.; Pearse, A.; Liu, B.; Wang, H.; Rubloff, G.; et al. Nat. Mater. 2017, 16, 572. doi: 10.1038/nmat4821
doi: 10.1038/nmat4821
Dong, D.; Zhou, B.; Sun, Y.; Zhang, H.; Zhong, G.; Dong, Q.; Fu, F.; Qian, H.; Lin, Z.; Lu, D.; et al. Nano Lett. 2019, 19, 2343. doi: 10.1021/acs.nanolett.8b05019
doi: 10.1021/acs.nanolett.8b05019
Chen, L. Q. Acta Phys. -Chim. Sin. 2020, 36, 2001035.
doi: 10.3866/PKU.WHXB202001035
Wei, X.; Shriver, D. F. Chem. Mater. 1998, 10, 2307. doi: 10.1021/cm980170z
doi: 10.1021/cm980170z
Zhang, J.; Yang, J.; Dong, T.; Zhang, M.; Chai, J.; Dong, S.; Wu, T.; Zhou, X.; Cui, G. Small 2018, 14, 1800821. doi: 10.1002/smll.201800821
doi: 10.1002/smll.201800821
Chai, J.; Liu, Z.; Ma, J.; Wang, J.; Liu, X.; Liu, H.; Zhang, J.; Cui, G.; Chen, L. Adv. Sci. (Weinh) 2017, 4, 1600377. doi: 10.1002/advs.201600377
doi: 10.1002/advs.201600377
Arbi, K.; Bucheli, W.; Jiménez, R.; Sanz, J. J. Eur. Ceram. Soc. 2015, 35, 1477. doi: 10.1016/j.jeurceramsoc.2014.11.023
doi: 10.1016/j.jeurceramsoc.2014.11.023
Kotobuki, M.; Koishi, M. J. Asian Ceram. Soc. 2019, 7, 551. doi: 10.1080/21870764.2019.1693680
doi: 10.1080/21870764.2019.1693680
Smets, G.; Hayashi, K. J. Polym. Sci. 1958, 29, 257. doi: 10.1002/pol.1958.1202911919
doi: 10.1002/pol.1958.1202911919
Chen, S.; Che, H.; Feng, F.; Liao, J.; Wang, H.; Yin, Y.; Ma, Z. F. ACS Appl. Mat. Interfaces 2019, 11, 43056. doi: 10.1021/acsami.9b11259
doi: 10.1021/acsami.9b11259
Huang, S.; Cui, Z.; Qiao, L.; Xu, G.; Zhang, J.; Tang, K.; Liu, X.; Wang, Q.; Zhou, X.; Zhang, B.; et al. Electrochim. Acta 2019, 299, 820. doi: 10.1016/j.electacta.2019.01.039
doi: 10.1016/j.electacta.2019.01.039
Yi, J.; Liu, Y.; Qiao, Y.; He, P.; Zhou, H. ACS Energy Lett. 2017, 2, 1378. doi: 10.1021/acsenergylett.7b00292
doi: 10.1021/acsenergylett.7b00292
Hiller, M. M.; Joost, M.; Gores, H. J.; Passerini, S.; Wiemhöfer, H. D. Electrochim. Acta 2013, 114, 21. doi: 10.1016/j.electacta.2013.09.138
doi: 10.1016/j.electacta.2013.09.138
Liu, Y.; Li, C.; Li, B.; Song, H.; Cheng, Z.; Chen, M.; He, P.; Zhou, H. Adv. Energy Mater. 2018, 8, 1702374. doi: 10.1002/aenm.201702374
doi: 10.1002/aenm.201702374
Tsai, C. L.; Roddatis, V.; Chandran, C. V.; Ma, Q.; Uhlenbruck, S.; Bram, M.; Heitjans, P.; Guillon, O. ACS Appl. Mat. Interfaces 2016, 8, 10617. doi: 10.1021/acsami.6b00831
doi: 10.1021/acsami.6b00831
Chung, H.; Kang, B. Chem. Mater. 2017, 29, 8611. doi: 10.1021/acs.chemmater.7b02301
doi: 10.1021/acs.chemmater.7b02301
Guo, J.; Wen, Z.; Wu, M.; Jin, J.; Liu, Y., Electrochem. Commun. 2015, 51, 59. doi: 10.1016/j.elecom.2014.12.008
doi: 10.1016/j.elecom.2014.12.008
Fan, L.; Wei, S.; Li, S.; Li, Q.; Lu, Y. Adv. Energy Mater. 2018, 8, 1702657. doi: 10.1002/aenm.201702657
doi: 10.1002/aenm.201702657
Huang, Q.; Turcheniuk, K.; Ren, X.; Magasinski, A.; Song, A. Y.; Xiao, Y.; Kim, D.; Yushin, G. Nat. Mater. 2019, 18, 1343. doi: 10.1038/s41563-019-0472-7
doi: 10.1038/s41563-019-0472-7
Xia, S.; Lopez, J.; Liang, C.; Zhang, Z.; Bao, Z.; Cui, Y.; Liu, W. Adv. Sci. 2019, 6, 1802353. doi: 10.1002/advs.201802353
doi: 10.1002/advs.201802353
Jing, B.; Evans, C. M. J. Am. Chem. Soc. 2019, 141, 18932. doi: 10.1021/jacs.9b09811
doi: 10.1021/jacs.9b09811
Liu, Q.; Zhou, D.; Shanmukaraj, D.; Li, P.; Kang, F.; Li, B.; Armand, M.; Wang, G., ACS Energy Lett. 2020, 5, 1456. doi: 10.1021/acsenergylett.0c00542
doi: 10.1021/acsenergylett.0c00542
Zhang, H.; Zhang, J.; Ma, J.; Xu, G.; Dong, T.; Cui, G. Electrochem. Ener. Rev. 2019, 2, 128. doi: 10.1007/s41918-018-00027-x
doi: 10.1007/s41918-018-00027-x
Zhou, J.; Qian, T.; Liu, J.; Wang, M.; Zhang, L.; Yan, C. Nano Lett. 2019, 19, 3066. doi: 10.1021/acs.nanolett.9b00450
doi: 10.1021/acs.nanolett.9b00450
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Biao Fang , Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Linhui Liu , Wuwan Xiong , Mingli Fu , Junliang Wu , Zhenguo Li , Daiqi Ye , Peirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
Xinzhi Ding , Chong Liu , Jing Niu , Nan Chen , Shutao Xu , Yingxu Wei , Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247
Tianyi Hou , Yunhui Huang , Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313
Qian Wang , Ting Gao , Xiwen Lu , Hangchao Wang , Minggui Xu , Longtao Ren , Zheng Chang , Wen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Ting WANG , Peipei ZHANG , Shuqin LIU , Ruihong WANG , Jianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134
Yang Deng , Yitao Ouyang , Chao Han . Constriction-susceptible makes fast cycling of lithium metal in solid-state batteries: Silicon as an example. Chinese Journal of Structural Chemistry, 2024, 43(7): 100276-100276. doi: 10.1016/j.cjsc.2024.100276
Haixia Wu , Kailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550
Ziling Jiang , Shaoqing Chen , Chaochao Wei , Ziqi Zhang , Zhongkai Wu , Qiyue Luo , Liang Ming , Long Zhang , Chuang Yu . Enabling superior electrochemical performance of NCA cathode in Li5.5PS4.5Cl1.5-based solid-state batteries with a dual-electrolyte layer. Chinese Chemical Letters, 2024, 35(4): 108561-. doi: 10.1016/j.cclet.2023.108561
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Lili Wang , Ya Yan , Rulin Li , Xujie Han , Jiahui Li , Ting Ran , Jialu Li , Baichuan Xiong , Xiaorong Song , Zhaohui Yin , Hong Wang , Qingjun Zhu , Bowen Cheng , Zhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011
Jie Zhou , Quanyu Li , Xiaomeng Hu , Weifeng Wei , Xiaobo Ji , Guichao Kuang , Liangjun Zhou , Libao Chen , Yuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143
Yue Qian , Zhoujia Liu , Haixin Song , Ruize Yin , Hanni Yang , Siyang Li , Weiwei Xiong , Saisai Yuan , Junhao Zhang , Huan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785