Citation: Zhou Xia, Yuanlong Shao. Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications[J]. Acta Physico-Chimica Sinica, ;2022, 38(9): 210304. doi: 10.3866/PKU.WHXB202103046 shu

Wet Spinning Assembled Graphene Fiber: Processing, Structure, Property, and Smart Applications

  • Corresponding author: Yuanlong Shao, ylshao@suda.edu.cn
  • Received Date: 22 March 2021
    Revised Date: 22 April 2021
    Accepted Date: 23 April 2021
    Available Online: 29 April 2021

    Fund Project: the National Natural Science Foundation of China 51432002the Natural Science Foundation of Jiangsu Province, China BK2020043448the Open Research Funds of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, China KF2104

  • Graphene fiber, a macroscopic one-dimensional material formed by assembling elementary graphene flakes, has emerged in response to the increasing demand for multifunctional or even smart fibers. Based on the astonishing properties of graphene building blocks, graphene fiber presents a series of attractive features, such as superior mechanical strength and electronic conductivity, light-weight, and efficient thermal conductivity. As a result, graphene fiber exhibits broad prospects for application in ultralight cables for aerospace, wearable energy storage devices, biosensors, and neuroelectronics. graphene fiber may provide a critical breakthrough for realizing multi-functional fibers or even smart textiles. Since it was first prepared in 2011, numerous fabrication techniques have been developed to assemble graphene fiber, such as wet spinning, space-confined hydrothermal assembly, film twisting approaches, and template-assisted chemical vapor deposition. Among various graphene fiber preparation approaches, wet spinning has great application potential, as it affords the best mechanical strength and electrical conductivity of the prepared graphene fiber, along with great compatibility with the commercialized wet spinning technique. Therefore, the wet spinning approach has attracted extensive attention for batch production of high-performance graphene fiber. Herein, we introduce the pivotal steps of the wet spinning preparation of graphene fiber, with focus on summarizing the detailed strategies for enhancing the fiber properties and we also discuss the relationship between the structure and assembly approaches. The wet spinning technology for assembling graphene fiber includes a series of critical steps, such as preparation of the spinning liquid, bath coagulation, spinneret design, and post-treatment process. These procedures may have a significant influence on the micro-, meso-, and macro-structure of the final prepared graphene fiber. We also discuss the fundamental relationship between the typical properties of graphene fibers and their hierarchical structures, such as the in-planar structure of graphene sheets, aggregation structure of graphene flakes, and the macrostructure or morphology of graphene fiber. The recent advances in graphene fiber-based smart fibers and fabric applications are also analyzed, highlighting possible strategies for promoting structural-functional integrated applications. Finally, the current challenges and possible approaches for further improving the mechanical and electric properties of graphene fiber are presented. This review can be briefly divided into three parts: (1) details of the wet spinning process and its specific influence on the structural features of graphene fiber, (2) characteristics of current graphene fibers and promising strategies for enhancing the properties, (3) latest studies of graphene fiber applications and perspectives for future application.
  • 加载中
    1. [1]

      Geim A. K.; Novoselov K.S. Nat. Mater.; 2007, 6, 183. doi: 10.1038/nmat1849  doi: 10.1038/nmat1849

    2. [2]

      Xu, Z.; Gao, C. Mater. Today 2015, 18, 480. doi: 10.1016/j.mattod.2015.06.009  doi: 10.1016/j.mattod.2015.06.009

    3. [3]

      Meng, F.; Lu, W.; Li, Q.; Byun, J. H.; Oh, Y.; Chou, T. W. Adv Mater. 2015, 27, 5113. doi: 10.1002/adma.201501126  doi: 10.1002/adma.201501126

    4. [4]

      Xu, Z.; Gao, C. Acc. Chem. Res. 2014, 47, 1267. doi: 10.1021/ar4002813  doi: 10.1021/ar4002813

    5. [5]

      Cheng, H.; Hu, C.; Zhao, Y.; Qu, L. NPG Asia Mater. 2014, 6, e113. doi: 10.1038/am.2014.48  doi: 10.1038/am.2014.48

    6. [6]

      Li, Q. W.; Li, Y.; Zhang, X. F.; Chikkannanavar, S. B.; Zhao, Y. H.; Dangelewicz, A. M.; Zhu, Y. T. Adv. Mater. 2007, 19, 3358. doi: 10.1002/adma.200602966  doi: 10.1002/adma.200602966

    7. [7]

      Zhu, M. F. Application of carbon-based fibers in wearable energy storage devices, Energy Frontier Forum, Shanghai, March 30, 2020.

    8. [8]

      Jeffries, R. Nature 1971, 232, 304. doi: 10.1038/232304a0  doi: 10.1038/232304a0

    9. [9]

      Ko, T. H.; Huang, L. C. J. Appl. Polymer Sci. 1998, 70, 2409. doi: 10.1002/(SICI)1097-4628(19981219)70:12<2409::AID-APP13>3.3.CO;2-S  doi: 10.1002/(SICI)1097-4628(19981219)70:12<2409::AID-APP13>3.3.CO;2-S

    10. [10]

      Diefendorf, R. J. ACS Symp. Ser. 1976, 21, 315. doi: 10.1021/bk-1976-0021.ch022  doi: 10.1021/bk-1976-0021.ch022

    11. [11]

      Yang, J. L. Acta Phys. -Chim. Sin. 2019, 35, 1043.  doi: 10.3866/PKU.WHXB201903011

    12. [12]

      Cheng, H. M. Acta Phys. -Chim. Sin. 2020, 36, 1909042.  doi: 10.3866/PKU.WHXB201909042

    13. [13]

      Ago, H.; Imamoto, K.; Ishigami, N.; Ohdo, R.; Ikeda, K. I.; Tsuji, M. Appl. Phys. Lett. 2007, 90, 123112. doi: 10.1063/1.2715031  doi: 10.1063/1.2715031

    14. [14]

      Wang, K. X.; Shi, L. R.; Wang, M. Z.; Yang. H.; Liu. Z. F.; Peng. H. L. Acta Phys. -Chim. Sin. 2019, 35, 1112.  doi: 10.3866/PKU.WHXB201805032

    15. [15]

      Zhang, S. C.; Zhang, N.; Zhang, J. Acta Phys. -Chim. Sin. 2020, 36, 1907021.  doi: 10.3866/PKU.WHXB201907021

    16. [16]

      Cheng, H. M.; Li, F.; Su, G.; Pan, H. Y.; He, L. L.; Sun, X.; Dresselhaus, M. S. Appl. Phy. Lett. 1998, 72; 3282. doi: 10.1063/1.121624  doi: 10.1063/1.121624

    17. [17]

      Wu, A. S.; Chou, T. W. Mater. Today 2012, 15, 302.. doi: 10.1016/s1369-7021(12)70135  doi: 10.1016/s1369-7021(12)70135

    18. [18]

      Xia, K. L; Jian, M. Q.; Zhang, Y. Y. Acta Phys. -Chim. Sin. 2016, 32, 2427.  doi: 10.3866/PKU.WHXB201607261

    19. [19]

      Zhang, M.; Atkinson, K. R.; Baughman, R. H. Science 2004, 306, 1358. doi: 10.1126/science.1104276  doi: 10.1126/science.1104276

    20. [20]

      Wang, H. M.; He, M. S.; Zhang, Y. Y. Acta Phys. -Chim. Sin. 2019, 35, 1207.  doi: 10.3866/PKU.WHXB201811011

    21. [21]

      Vigolo, B.; Penicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Poulin, P. Science 2000, 290, 1331. doi: 10.1126/science.290.5495.1331  doi: 10.1126/science.290.5495.1331

    22. [22]

      Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nature 2002, 419, 801. doi: 10.1038/419801a  doi: 10.1038/419801a

    23. [23]

      Ericson, L. M.; Fan, H.; Peng, H.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Smalley, R. E. Science 2004, 305, 1447. doi: 10.1126/science.1101398  doi: 10.1126/science.1101398

    24. [24]

      Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W.; Pasquali, M. Science 2013, 339, 182. doi: 10.1126/science.1228061  doi: 10.1126/science.1228061

    25. [25]

      Bai, Y.; Zhang, R.; Ye, X.; Zhu, Z.; Xie, H.; Shen, B.; Cai, D.; Liu, B.; Zhang, C.; Jia, Z.; et al. Nat. Nanotechnol. 2018, 13, 589. doi: 10.1038/s41565-018-0141-z  doi: 10.1038/s41565-018-0141-z

    26. [26]

      Zhang X. H.; Lu W. B.; Zhou G.H.; Li Q. W. Adv. Mater. 2020, 32, 1902028. doi: 10.1002/adma.201902028  doi: 10.1002/adma.201902028

    27. [27]

      Xu, Z.; Gao, C. Nat. Commun. 2011, 2, 571. doi: 10.1038/ncomms1583  doi: 10.1038/ncomms1583

    28. [28]

      Xu, Z.; Sun, H.; Zhao, X.; Gao, C. Adv. Mater. 2013, 25, 188. doi: 10.1002/adma.201203448  doi: 10.1002/adma.201203448

    29. [29]

      Xiang, C.; Young, C. C.; Wang, X.; Yan, Z.; Hwang, C. C.; Cerioti, G.; Tour, J. M. Adv. Mater. 2013, 25, 4592. doi: 10.1002/adma.201301065  doi: 10.1002/adma.201301065

    30. [30]

      Jalili; R.; Aboutalebi, S. H.; Esrafilzadeh, D.; Shepherd, R. L.; Chen, J.; Aminorroaya-Yamini, S.; Wallace, G. G. Adv. Funct. Mater. 2013, 23, 5345. doi: 10.1002/adfm.201300765  doi: 10.1002/adfm.201300765

    31. [31]

      Xin, G. Q.; Yao, T. K.; Sun, H. T.; Scott, S. M.; Shao, D. L; Wang, G. K.; Lian, J. Science 2015, 349, 1083. doi: 10.1126/science.aaa6502  doi: 10.1126/science.aaa6502

    32. [32]

      Xin, G. Q.; Zhu, W. G.; Deng, Y. X.; Cheng, J.; Zhagn, L. T.; Chung, A. J.; De, S.; Lian, J. Nat. Nanotechnol. 2019, 14, 168. doi: 10.1038/s41565-018-0330-9  doi: 10.1038/s41565-018-0330-9

    33. [33]

      Xu, Z.; Liu, Y.; Zhao, X.; Peng, L.; Sun, H.; Xu, Y.; Gao, C. Adv. Mater. 2016, 28, 6449. doi: 10.1002/adma.201506426  doi: 10.1002/adma.201506426

    34. [34]

      Li, P.; Liu, Y.; Shi, S.; Xu, Z.; Ma, W.; Wang, Z.; Gao, C. Adv. Funct. Mater. 2020, 30, 52, 2006584. doi: 10.1002/adfm.202006584  doi: 10.1002/adfm.202006584

    35. [35]

      Huang, G.; Hou, C.; Shao, Y.; Wang, H.; Zhang, Q.; Li, Y.; Zhu, M. Sci. Rep. 2014, 4, 4248. doi: 10.1038/srep04248  doi: 10.1038/srep04248

    36. [36]

      Tian, Q.; Xu, Z.; Liu, Y.; Fang, B.; Peng, L.; Xi, J.; Gao, C.; Nanoscale 2017, 9, 12335. doi: 10.1039/c7nr03895j  doi: 10.1039/c7nr03895j

    37. [37]

      Feng, L.; Chang, Y.; Zhong, J.; Jia, D. C. Sci. Rep. 2018, 8, 10803. doi: 10.1038/s41598-018-29157-4  doi: 10.1038/s41598-018-29157-4

    38. [38]

      Xiang, C. S.; Behabtu, N.; Liu, Y. D.; Chae, H. G.; Young, C. C.; Genorio, B.; Tsentalovich, D. E.; Zhang, C. G.; Kosynkin, D. V.; Lomeda, J. R.; et al. ACS Nano 2013, 7, 1628. doi: 10.1021/nn305506s  doi: 10.1021/nn305506s

    39. [39]

      Jang, Y.; Carretero, G. J.; Choi, A.; Kim, W. J.; Kozlov, E. M.; Kim, T.; Kang, T. J.; Beak, S. J.; Kim, D. W.; Peak, Y. W. Nanotechnology 2012, 23, 235601. doi: 10.1088/0957-4484/23/23/235601  doi: 10.1088/0957-4484/23/23/235601

    40. [40]

      Dong, Z.; Jiang, C.; Cheng, H.; Zhao, Y.; Shi, G.; Jiang, L.; Qu, L. Adv. Mater. 2012, 24, 1856. doi: 10.1002/adma.201200170  doi: 10.1002/adma.201200170

    41. [41]

      Meng, Y.; Zhao, Y.; Hu, C.; Cheng, H.; Hu, Y.; Zhang, Z.; Qu, L. Adv. Mater. 2013, 25; 2326. doi: 10.1002/adma.201300132  doi: 10.1002/adma.201300132

    42. [42]

      Hu, C.; Zhao, Y.; Cheng, H.; Wang, Y.; Dong, Z.; Jiang, C.; Qu, L. Nano Lett. 2012, 12, 5879. doi: 10.1021/nl303243h  doi: 10.1021/nl303243h

    43. [43]

      Rodolfo, C. S.; Aaron, M. G.; Hyung-ick, K.; Hong-kyu, J.; Ferdinando, T.; Sofia, V. D.; Lakshmy, P. R.; Ana, L. E.; Nestor, P. L.; Jonghwan, S.; et al. ACS Nano 2014, 8, 5959. doi: 10.1021/nn501098d  doi: 10.1021/nn501098d

    44. [44]

      Wang, R.; Xu, Z.; Zhuang, J.; Liu, Z.; Peng, L.; Li, Z.; Gao, C. Adv. Electron. Mater. 2017, 3, 1600425. doi: 10.1002/aelm.201600425  doi: 10.1002/aelm.201600425

    45. [45]

      Carretero, G. J.; Castillo, M. E.; Dias, L. M.; Acik, M.; Rogers, D. M. Sovich, J.; Baughman, R. H. Adv. Mater. 2012, 24, 5695. doi: 10.1002/adma.201201602  doi: 10.1002/adma.201201602

    46. [46]

      Sun, Y.; Wang, Y.; Hua, C.; Ge, Y.; Hou, S.; Shang, Y.; Cao, A. Carbon 2018, 132, 394. doi: 10.1016/j.carbon.2018.02.086  doi: 10.1016/j.carbon.2018.02.086

    47. [47]

      Zheng, B.; Gao, W.; Liu, Y.; Wang, R.; Li, Z.; Xu, Z.; Gao, C. Carbon 2020, 158, 157. doi: 10.1016/j.carbon.2019.11.072  doi: 10.1016/j.carbon.2019.11.072

    48. [48]

      Li, X.; Zhao, T.; Wang, K.; Yang, Y.; Wei, J.; Kang, F.; Zhu, H. Langmuir 2011, 27, 12164. doi: 10.1021/la202380g  doi: 10.1021/la202380g

    49. [49]

      Wang, H.; Wang, C.; Jian, M.; Wang, Q.; Xia, K.; Yin, Z.; Zhang, Y. Nano Res. 2018, 11, 2347. doi: 10.1007/s12274-017-1782-1  doi: 10.1007/s12274-017-1782-1

    50. [50]

      Chen, T.; Dai, L. Angew. Chem. Int. Ed. 2015, 54, 14947. doi: 10.1002/anie.201507246  doi: 10.1002/anie.201507246

    51. [51]

      Wang, X.; Qiu, Y.; Cao, W.; Hu, P. Chem. Mater. 2015, 27, 6969. doi: 10.1021/acs.chemmater.5b02098  doi: 10.1021/acs.chemmater.5b02098

    52. [52]

      Chen, K.; Shi, L.; Zhang, Y.; Liu, Z. Chem. Soc. Rev. 2018, 47, 3018. doi: 10.1039/c7cs00852j  doi: 10.1039/c7cs00852j

    53. [53]

      Zeng, J.; Ji, X.; Ma, Y.; Zhang, Z.; Wang, S.; Ren, Z.; Yu, J. Adv. Mater. 2018, 30, 1705380. doi: 10.1002/adma.201705380  doi: 10.1002/adma.201705380

    54. [54]

      Chen, K.; Zhou, X.; Cheng, X.; Qiao, R.; Cheng, Y.; Liu, C.; Liu, Z. Nat. Photon. 2019, 13, 754. doi: 10.1038/s41566-019-0492-5  doi: 10.1038/s41566-019-0492-5

    55. [55]

      Chen, Z.; Qi, Y.; Chen, X.; Zhang, Y.; Liu, Z. Adv. Mater. 2019, 31, e1803639. doi: 10.1002/adma.201803639  doi: 10.1002/adma.201803639

    56. [56]

      Deng, B.; Liu, Z.; Peng, H. Adv. Mater. 2019, 31, 1800996. doi: 10.1002/adma.201800996  doi: 10.1002/adma.201800996

    57. [57]

      Deng, B.; Xin, Z.; Xue, R.; Zhang, S.; Xu, X.; Gao, J.; Peng, H. Sci. Bull. 2019, 64, 659. doi: 10.1016/j.scib.2019.04.030  doi: 10.1016/j.scib.2019.04.030

    58. [58]

      Lin, L.; Peng, H.; Liu, Z. Nat. Mater. 2019, 18, 520. doi: 10.1038/s41563-019-0341-4  doi: 10.1038/s41563-019-0341-4

    59. [59]

      Cui, G.; Cheng, Y.; Liu, C.; Huang, K.; Li, J.; Wang, P.; Liu, Z. ACS Nano 2020, 14, 5938. doi: 10.1021/acsnano.0c01298  doi: 10.1021/acsnano.0c01298

    60. [60]

      Cheng, Y.; Wang, K.; Qi, Y.; Liu, Z. F. Acta Phys. -Chim. Sin. 2022, 38, 2006046.  doi: 10.3866/PKU.WHXB202006046

    61. [61]

      Suter, L. J.; Sinclair, C. R.; Coveney, V. P. Adv. Mater. 2020, 32, e2003213. doi: 10.1002/adma.202003213  doi: 10.1002/adma.202003213

    62. [62]

      Xu, Z.; Zhang, Y.; Li, P. G.; Gao, C. ACS Nano 2012, 6, 7103. doi: 10.1021/nn3021772  doi: 10.1021/nn3021772

    63. [63]

      Jalili, R.; Aboutalebi, S. H.; Esrafilzadeh, D.; Konstantinov, K.; Razal, J. M.; Moulton, S. E.; Wallace, G. G.; Mater. Horiz. 2014, 1, 87. doi: 10.1039/c3mh00050h  doi: 10.1039/c3mh00050h

    64. [64]

      Chen, S.; Ma, W.; Cheng, Y.; Weng, Z.; Sun, B.; Wang, L.; Cheng, H. M.; Nano Energy 2015, 15, 642. doi: 10.1016/j.nanoen.2015.05.004  doi: 10.1016/j.nanoen.2015.05.004

    65. [65]

      Chen, L.; He, Y.; Chai, S.; Qiang, H.; Chen, F.; Fu Q. Nanoscale 2013, 5, 5809. doi: 10.1039/c3nr01083j  doi: 10.1039/c3nr01083j

    66. [66]

      Shin, M. K.; Lee, B.; Kim, S. H.; Lee, J. A.; Spinks, G. M.; Gambhir, S.; Kim, S. J. Nat. Commun. 2012, 3, 65. doi: 10.1038/ncomms1661  doi: 10.1038/ncomms1661

    67. [67]

      Ma, T.; Gao, H. L.; Cong, H. P.; Yao, H. B.; Wu, L.; Yu, Z. Y.; Yu, S. H. Adv. Mater. 2018, 30, e1706435. doi: 10.1002/adma.201706435  doi: 10.1002/adma.201706435

    68. [68]

      Kim, I. H.; Yun, T.; Kim, J. E.; Yu, H.; Sasikala, S. P.; Lee, K. E.; Kim, S. O. Adv. Mater. 2018, 30, e1803267. doi: 10.1002/adma.201803267  doi: 10.1002/adma.201803267

    69. [69]

      Li, M.; Zhang, X.; Wang, X.; Ru, Y.; Qiao, J. Nano Lett. 2016, 16, 6511. doi: 10.1021/acs.nanolett.6b03108  doi: 10.1021/acs.nanolett.6b03108

    70. [70]

      Zhen, X. Chao, G. ACS Nano 2011, 5, 2908. doi: 10.1021/nn200069w  doi: 10.1021/nn200069w

    71. [71]

      Park, H.; Lee, K. H.; Kim, Y. B.; Ambade, S. B.; Noh, S. H.; Eom, W.; Hwang, J. Y.; Lee, W. J.; Huang, J.; Han, T. H. Sci. Adv. 2018, 4, eaau2014. doi: 10.1126/sciadv.aau2104  doi: 10.1126/sciadv.aau2104

    72. [72]

      He, H. Y.; Klinowski, J.; Forster, M.; Lerf, A. Chem. Phys. Lett. 1998, 287, 53. doi: 10.1016/s0009-2614(98)00144-4  doi: 10.1016/s0009-2614(98)00144-4

    73. [73]

      Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. J. Phys. Chem. B 2006, 110, 8535. doi: 10.1021/jp060936f  doi: 10.1021/jp060936f

    74. [74]

      Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Nat. Commun. 2010, 1, 73. doi: 10.1038/ncomms1067  doi: 10.1038/ncomms1067

    75. [75]

      Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A.; et al. Carbon 2009, 47, 145. doi: 10.1016/j.carbon.2008.09.045  doi: 10.1016/j.carbon.2008.09.045

    76. [76]

      Kotov, N. A.; Dekany, I.; Fendler, J. H. Adv. Mater. 1996, 8, 8. doi: 10.1002/adma.19960080806  doi: 10.1002/adma.19960080806

    77. [77]

      Sun, W.; Wang, L.; Yang, Z.; Zhu, T.; Wu, T.; Dong, C.; Liu, G. Chem. Mater. 2018, 30, 7473. doi: 10.1021/acs.chemmater.8b01902  doi: 10.1021/acs.chemmater.8b01902

    78. [78]

      Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J.; Ren, W.; Wang, F.; Dong, S. Chem. Eur. J. 2009, 15, 6116. doi: 10.1002/chem.200900596  doi: 10.1002/chem.200900596

    79. [79]

      Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y. J.; Chhowalla, M.; Shenoy, V. B. Nat. Chem. 2010, 2, 581. doi: 10.1038/nchem.686  doi: 10.1038/nchem.686

    80. [80]

      Pei, S; Cheng, H. M.; Carbon 2012, 50, 3210. doi: 10.1016/j.carbon.2011.11.010  doi: 10.1016/j.carbon.2011.11.010

    81. [81]

      Chae, H. G.; Kumar, S. Mater. Sci. 2014, 319, 908. doi: 10.1126/science.1153911  doi: 10.1126/science.1153911

    82. [82]

      Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. Rev. Mod. Phys. 2009, 81, 109. doi: 10.1103/RevModPhys.81.109  doi: 10.1103/RevModPhys.81.109

    83. [83]

      Liu, Y.; Liang, H.; Xu, Z.; Xi, J.; Chen, G.; Gao, W.; Gao, C. ACS Nano 2017, 11, 4301. doi: 10.1021/acsnano.7b01491  doi: 10.1021/acsnano.7b01491

    84. [84]

      Xu, Z.; Sun, H.; Gao, C. Adv. Mater. 2013, 25, 3249. doi: 10.1002/adma.201300774  doi: 10.1002/adma.201300774

    85. [85]

      Liu, Y.; Xu, Z.; Zhan, J.; Li, P.; Gao, C. Adv. Mater. 2016, 28, 7941. doi: 10.1002/adma.201602444  doi: 10.1002/adma.201602444

    86. [86]

      Fang, B.; Chang, D.; Xu, Z.; Gao, C. Adv. Mater. 2020, 32, 1902664. doi: 10.1002/adma.201902664  doi: 10.1002/adma.201902664

    87. [87]

      Chen, Z. L.; Gao, P.; Liu, Z. F. Acta Phys. -Chim. Sin. 2020, 36, 1907004.  doi: 10.3866/PKU.WHXB201907004

    88. [88]

      Zhang, L. Y.; He, S. J.; Chen, S. L.; Guo, Q. H.; Hou, H. Q. Acta Phys. -Chim. Sin. 2010, 26, 3181.  doi: 10.3866/PKU.WHXB20101135

    89. [89]

      Tian, D.; Lu, X. F.; Li, W. M.; Li, Y.; Wang, C. Acta Phys. -Chim. Sin. 2020, 36, 1904056.  doi: 10.3866/PKU.WHXB201904056

    90. [90]

      Li, Z.; Xu, Z.; Liu, Y.; Wang, R.; Gao, C. Nat. Commun. 2016, 7, 13684. doi: 10.1038/ncomms13684  doi: 10.1038/ncomms13684

    91. [91]

      Seyedin, S.; Romano, M. S.; Minett, A. I.; Razal, J. M. Sci. Rep. 2015, 5, 14946. doi: 10.1038/srep14946  doi: 10.1038/srep14946

    92. [92]

      Fang, B.; Peng, L.; Xu, Z.; Gao, C. ACS Nano 2015. 9, 5214. doi: 10.1021/acsnano.5b00616  doi: 10.1021/acsnano.5b00616

    93. [93]

      Jang, J. S.; Yu, H.; Choi, S. J.; Koo, W. T.; Lee, J.; Kim, D. H.; Kim, I. D. ACS Appl. Mater. Inter. 2019, 11, 10208. doi: 10.1021/acsami.8b22015  doi: 10.1021/acsami.8b22015

    94. [94]

      Fang, B.; Xiao, Y.; Xu, Z.; Chang, D.; Wang, B.; Gao, W.; Gao, C. Mater. Horiz. 2019, 6, 1207. doi: 10.1039/c8mh01647j  doi: 10.1039/c8mh01647j

    95. [95]

      Peng, Y.; Lin, D.; Gooding, J. J.; Xue, Y.; Dai, L. Carbon 2018, 136, 329. doi: 10.1016/j.carbon.2018.05.004  doi: 10.1016/j.carbon.2018.05.004

    96. [96]

      Choi, S. J.; Yu, H.; Jang, J. S.; Kim, M. H.; Kim, S. J.; Jeong, H. S.; Kim, I. D. Small 2018, 14, e1703934. doi: 10.1002/smll.201703934.  doi: 10.1002/smll.201703934

    97. [97]

      Shi, Q.; Li, J.; Hou, C.; Shao, Y.; Zhang, Q.; Li, Y.; Wang, H. Chem. Commun. 2017, 53, 11118. doi: 10.1039/c7cc03408c  doi: 10.1039/c7cc03408c

    98. [98]

      Hua, C.; Shang, Y.; Li, X.; Hu, X.; Wang, Y.; Wang, X.; Cao, A. Nanoscale 2016, 8, 10659. doi: 10.1039/c6nr02111e  doi: 10.1039/c6nr02111e

    99. [99]

      Cheng, H.; Hu, Y.; Zhao, F.; Dong, Z.; Wang, Y.; Chen, N.; Qu, L. Adv. Mater. 2014, 26, 2909. doi: 10.1002/adma.201305708  doi: 10.1002/adma.201305708

    100. [100]

      Cheng, H. H.; Liu, J.;; Zhao, Y.; Hu, C. G.; Zhang, Z. P.; Chen, N.; Jiang, L.; Qu, L. Angew. Chem. Int. Ed. 2013, 125, 10676. doi: 10.1002/anie.201304358  doi: 10.1002/anie.201304358

    101. [101]

      Cheng, H.; Liu, J.; Zhao, Y.; Hu, C.; Zhang, Z.; Chen, N.; Qu, L. Angew. Chem. Int. Ed. 2013, 52, 10482. doi: 10.1002/anie.201304358  doi: 10.1002/anie.201304358

    102. [102]

      Liang, Y.; Zhao, F.; Cheng, Z.; Zhou, Q.; Shao, H.; Jiang, L.; Qu, L. Nano Energy 2017, 32, 329. doi: 10.1016/j.nanoen.2016.12.062  doi: 10.1016/j.nanoen.2016.12.062

    103. [103]

      Shao, Y.; Wang, H.; Zhang, Q.; Li, Y. J. Mater. Chem. C 2013, 1, 1245. doi: 10.1039/c2tc00235c  doi: 10.1039/c2tc00235c

    104. [104]

      Shao, Y.; El-Kady, M. F.; Wang, L. J.; Zhang, Q.; Li, Y.; Wang, H. Mousavi, M. F.; Kaner, R. B.; Chem. Soc. Rev. 2015, 44, 3639. doi: 10.1039/c4cs00316k  doi: 10.1039/c4cs00316k

    105. [105]

      Shao, Y.; Li, J.; Li, Y.; Wang, H.; Zhang, Q.; Kaner, R. B. Mater. Horiz. 2017, 4, 1145. doi: 10.1039/c7mh00441a  doi: 10.1039/c7mh00441a

    106. [106]

      Shao, Y.; Wang, H.; Zhang, Q.; Li, Y. NPG Asia Mater. 2014, 6, 119. doi: 10.1038/am.2014.59  doi: 10.1038/am.2014.59

    107. [107]

      Huang, G.; Hou, C.; Shao, Y.; Zhu, B.; Jia, B.; Wang, H.; Zhang, Q.; Li, Y. Nano Energy 2015, 12, 26. doi: 10.1016/j.nanoen.2014.11.056  doi: 10.1016/j.nanoen.2014.11.056

    108. [108]

      El-Kady, M. F.; Shao, Y.; Kaner, R. B. Nat. Rev. Mater. 2016, 1, 16033. doi: 10.1038/natrevmats.2016.33  doi: 10.1038/natrevmats.2016.33

    109. [109]

      Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Gao, C. Nat. Commun. 2014, 5, 3754. doi: 10.1038/ncomms4754  doi: 10.1038/ncomms4754

    110. [110]

      Cai, S.; Huang, T.; Chen, H.; Salman, M.; Gopalsamy, K.; Gao, C. J. Mater. Chem. A 2017, 5, 22489. doi: 10.1039/c7ta07937k  doi: 10.1039/c7ta07937k

    111. [111]

      Hoshide, T.; Zheng, Y.; Hou, J.; Wang, Z.; Li, Q.; Zhao, Z.; Geng, F. Nano Lett. 2017, 17, 3543. doi: 10.1021/acs.nanolett.7b00623  doi: 10.1021/acs.nanolett.7b00623

    112. [112]

      Chong, W. G.; Huang, J.-Q.; Xu, Z.-L.; Qin, X.; Wang, X.; Kim, J.-K. Adv. Funct. Mater. 2017, 27, 1604815. doi: 10.1002/adfm.201604815  doi: 10.1002/adfm.201604815

    113. [113]

      Cao, J.; Zhang, Y. Y.; Men, C. L.; Sun, Y. Y.; Wang, Z. N.; Zhang, X. T.; Li, Q. W. ACS Nano 2014, 8, 4325. doi: 10.1021/nn4059488  doi: 10.1021/nn4059488

    114. [114]

      Zhao, S. Y.; Li, G.; Tong, C. J.; Chen, W. J.; Wang, P. X.; Dai, J. K.; Fu, X. F.; Xu, Z.; Liu, X. J.; Liang, Z. F.; et al. Nat. Commun. 2020, 11, 1788. doi: 10.1038/s41467-020-15570-9  doi: 10.1038/s41467-020-15570-9

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    3. [3]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    4. [4]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    6. [6]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    7. [7]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    12. [12]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    13. [13]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    14. [14]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    15. [15]

      Wen Shi Zhangwen Wei Mei Pan Chengyong Su . Explorations on the Course Construction of Structural Chemistry Practice and Application Targeting the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 96-100. doi: 10.12461/PKU.DXHX202409036

    16. [16]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    17. [17]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    18. [18]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    19. [19]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    20. [20]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

Metrics
  • PDF Downloads(80)
  • Abstract views(1391)
  • HTML views(315)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return