Citation: Zeyao Zhang, Yixi Yao, Yan Li. Modulating the Diameter of Bulk Single-Walled Carbon Nanotubes Grown by FeCo/MgO Catalyst[J]. Acta Physico-Chimica Sinica, ;2022, 38(8): 210105. doi: 10.3866/PKU.WHXB202101055 shu

Modulating the Diameter of Bulk Single-Walled Carbon Nanotubes Grown by FeCo/MgO Catalyst

  • Corresponding author: Yan Li, yanli@pku.edu.cn
  • Received Date: 28 January 2021
    Revised Date: 2 March 2021
    Accepted Date: 2 March 2021
    Available Online: 4 March 2021

    Fund Project: the Shenzhen Basic Research Project JCYJ20170817113121505the Shenzhen KQTD Project KQTD20180411143400981the National Science and Technology Major Project of the Ministry of Science and Technology of China 2016YFA0201904the National Natural Science Foundation of China 21631002the Beijing National Laboratory for Molecular Sciences BNLMS-CXTD-202001

  • The diameter-controlled growth of single-walled carbon nanotubes (SWNTs) is one of the key issues of SWNT synthesis and application. To guarantee that SWNTs grow with desired diameters, it is necessary to control catalyst size and modulate growth conditions. SWNTs with diameters of 0.9–1.2 nm are highly desirable for near-infrared fluorescence bioimaging and serving as effective single-photon sources for the development of quantum devices. Herein, we used an FeCo/MgO catalyst to grow bulk SWNTs with diameters in the range and studied the influence of catalysts and chemical vapor deposition (CVD) growth conditions on the diameter of SWNTs. The preparation of catalyst precursors is a key step in obtaining catalyst nanoparticles of small size. In the impregnation process, we used three different types of metal salts, namely, sulfates, acetates, and nitrates, to prepare the catalysts. The metal sulfates, which exhibit the weakest hydrolysis ability, were found to grow SWNTs with the smallest diameters. Lowering the immersion pH, which suppresses the hydrolysis of metal ions, was also favorable for growing smaller SWNTs. Moreover, the addition of complexing agent molecules such as ethylenediaminetetraacetic acid during the impregnation process, which inhibits the hydrolysis of metal ions as well, further confined the diameter distribution of the resultant SWNTs. During the solution drying process, metal salts hydrolyze into metal hydroxides and oxides. Under mild hydrolysis conditions, the produced hydroxide and oxide particles are smaller and more likely to be uniformly distributed on the surface of the supports. Therefore, it is more favorable to produce catalysts with controlled sizes under mild hydrolysis conditions, which are preferred for diameter control of the resultant SWNTs. In the CVD growth process, we used either ethanol or methane as the carbon source and found that, under our experimental conditions, the SWNTs grown from ethanol had smaller diameters than those from methane. The hydrogen content in the CVD process also affects diameter distribution of SWNTs. As the carbon-to-hydrogen ratio decreased, SWNTs with larger diameters disappeared, and the number of SWNTs with smaller diameters increased. During the CVD process, the carbon-to-hydrogen ratio determines the carbon feeding rate to the catalysts. At a low carbon feeding rate, catalysts of large sizes are underfed and unable to grow SWNTs, whereas smaller catalysts are in a favorable condition for growth. Therefore, the average diameter of the SWNTs decreased as the carbon-to-hydrogen ratio decreased.
  • 加载中
    1. [1]

      De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Science 2013, 339, 535. doi: 10.1126/science.1222453  doi: 10.1126/science.1222453

    2. [2]

      Hong, G.; Diao, S.; Antaris, A. L.; Dai, H. Chem. Rev. 2015, 115, 10816. doi: 10.1021/acs.chemrev.5b00008  doi: 10.1021/acs.chemrev.5b00008

    3. [3]

      Zhang, R.; Zhang, Y.; Wei, F. Chem. Soc. Rev. 2017, 46, 3661. doi: 10.1039/C7CS00104E  doi: 10.1039/C7CS00104E

    4. [4]

      He, X.; Htoon, H.; Doorn, S. K.; Pernice, W. H. P.; Pyatkov, F.; Krupke, R.; Jeantet, A.; Chassagneux, Y.; Voisin, C. Nat. Mater. 2018, 17, 663. doi: 10.1038/s41563-018-0109-2  doi: 10.1038/s41563-018-0109-2

    5. [5]

      Rao, R.; Pint, C. L.; Islam, A. E.; Weatherup, R. S.; Hofmann, S.; Meshot, E. R.; Wu, F.; Zhou, C.; Dee, N.; Amama, P. B.; et al. ACS Nano 2018, 12, 11756. doi: 10.1021/acsnano.8b06511  doi: 10.1021/acsnano.8b06511

    6. [6]

      Zhang, S., Zhang, N., Zhang, J. Acta Phys. -Chim. Sin. 2020, 36, 54.  doi: 10.3866/PKU.WHXB201907021

    7. [7]

      Welsher, K.; Sherlock, S. P.; Dai, H. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 8943. doi: 10.1073/pnas.1014501108  doi: 10.1073/pnas.1014501108

    8. [8]

      Li, M.; Liu, X.; Zhao, X.; Yang, F.; Wang, X.; Li, Y. Top. Curr. Chem. 2017, 375, 29. doi: 10.1007/s41061-017-0116-9  doi: 10.1007/s41061-017-0116-9

    9. [9]

      He, M.; Zhang, S.; Wu, Q.; Xue, H.; Xin, B.; Wang, D.; Zhang, J. Adv. Mater. 2019, 31, 1800805. doi: 10.1002/adma.201800805  doi: 10.1002/adma.201800805

    10. [10]

      Yang, F.; Wang, M.; Zhang, D.; Yang, J.; Zheng, M.; Li, Y. Chem. Rev. 2020, 120, 2693. doi: 10.1021/acs.chemrev.9b00835  doi: 10.1021/acs.chemrev.9b00835

    11. [11]

      Zhang, Z.; Yao, Y.; Li, Y. Sci. China Chem. 2020, 50, 1188.  doi: 10.1360/SSC-2020-0115

    12. [12]

      Peng, F.; Luo, D.; Sun, H.; Wang, J.; Yang, F.; Li, R.; Yang, J.; Li, Y. Chin. Sci. Bull. 2013, 58, 433. doi: 10.1007/s11434-012-5588-y  doi: 10.1007/s11434-012-5588-y

    13. [13]

      He, M.; Jiang, H.; Liu, B.; Fedotov, P. V.; Chernov, A. I.; Obraztsova, E. D.; Cavalca, F.; Wagner, J. B.; Hansen, T. W.; Anoshkin, I. V.; et al. Sci. Rep. 2013, 3, 1460. doi: 10.1038/srep01460  doi: 10.1038/srep01460

    14. [14]

      He, M.; Jiang, H.; Kauppi, I.; Fedotov, P. V.; Chernov, A. I.; Obraztsova, E. D.; Cavalca, F.; Wagner, J. B.; Hansen, T. W.; Sainio, J.; et al. J. Mater. Chem. A 2014, 2, 5883. doi: 10.1039/C3TA15325H  doi: 10.1039/C3TA15325H

    15. [15]

      Maruyama, S.; Kojima, R.; Miyauchi, Y.; Chiashi, S.; Kohno, M. Chem. Phys. Lett. 2002, 360, 229. doi: 10.1016/S0009-2614(02)00838-2  doi: 10.1016/S0009-2614(02)00838-2

    16. [16]

      Miyauchi, Y.; Chiashi, S.; Murakami, Y.; Hayashida, Y.; Maruyama, S. Chem. Phys. Lett. 2004, 387, 198. doi: 10.1016/j.cplett.2004.01.116  doi: 10.1016/j.cplett.2004.01.116

    17. [17]

      Lim, S.; Ciuparu, D.; Pak, C.; Dobek, F.; Chen, Y.; Harding, D.; Pfefferle, L.; Haller, G. J. Phys. Chem. B 2003, 107, 11048. doi: 10.1021/jp0304778  doi: 10.1021/jp0304778

    18. [18]

      Chen, Y.; Ciuparu, D.; Lim, S.; Yang, Y.; Haller, G. L.; Pfefferle, L. J. Catal. 2004, 226, 351. doi: 10.1016/j.jcat.2004.04.022  doi: 10.1016/j.jcat.2004.04.022

    19. [19]

      Wang, B.; Poa, C. H. P.; Wei, L.; Li, L.-J.; Yang, Y.; Chen, Y. J. Am. Chem. Soc. 2007, 129, 9014. doi: 10.1021/ja070808k  doi: 10.1021/ja070808k

    20. [20]

      He, M.; Magnin, Y.; Jiang, H.; Amara, H.; Kauppinen, E. I.; Loiseau, A.; Bichara, C. Nanoscale 2018, 10, 6744. doi: 10.1039/c7nr09539b  doi: 10.1039/c7nr09539b

    21. [21]

      Lu, C.; Liu, J. J Phys Chem B 2006, 110, 20254. doi: 10.1021/jp0632283  doi: 10.1021/jp0632283

    22. [22]

      Wang, B.; Wei, L.; Yao, L.; Li, L.-J.; Yang, Y.; Chen, Y. J. Phys. Chem. C 2007, 111, 14612. doi: 10.1021/jp0762525  doi: 10.1021/jp0762525

    23. [23]

      Zhang, G.; Mann, D.; Zhang, L.; Javey, A.; Li, Y.; Yenilmez, E.; Wang, Q.; McVittie, J. P.; Nishi, Y.; Gibbons, J.; et al. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 16141. doi: 10.1073/pnas.0507064102  doi: 10.1073/pnas.0507064102

    24. [24]

      Zhang, G.; Qi, P.; Wang, X.; Lu, Y.; Mann, D.; Li, X.; Dai, H. J. Am. Chem. Soc. 2006, 128, 6026. doi: 10.1021/ja061324b  doi: 10.1021/ja061324b

    25. [25]

      Hardeman, D.; Esconjauregui, S.; Cartwright, R.; Bhardwaj, S.; D'Arsié, L.; Oakes, D.; Clark, J.; Cepek, C.; Ducati, C.; Robertson, J. J. Appl. Phys. 2015, 117, 044308. doi: 10.1063/1.4906846  doi: 10.1063/1.4906846

    26. [26]

      Chen, Y.; Wang, B.; Li, L.-J.; Yang, Y.; Ciuparu, D.; Lim, S.; Haller, G. L.; Pfefferle, L. D. Carbon 2007, 45, 2217. doi: 10.1016/j.carbon.2007.06.022  doi: 10.1016/j.carbon.2007.06.022

    27. [27]

      Araujo, P. T.; Maciel, I. O.; Pesce, P. B. C.; Pimenta, M. A.; Doorn, S. K.; Qian, H.; Hartschuh, A.; Steiner, M.; Grigorian, L.; Hata, K.; et al. Phys. Rev. B 2008, 77, 241403. doi: 10.1103/PhysRevB.77.241403  doi: 10.1103/PhysRevB.77.241403

    28. [28]

      Zhang, D.; Yang, J.; Li, Y. Small 2013, 9, 1284. doi: 10.1002/smll.201202986  doi: 10.1002/smll.201202986

    29. [29]

      Ding, L.; Zhou, W.; Chu, H.; Jin, Z.; Zhang, Y.; Li, Y. Chem. Mater. 2006, 18, 4109. doi: 10.1021/cm061122e  doi: 10.1021/cm061122e

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    3. [3]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    4. [4]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    5. [5]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    9. [9]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    10. [10]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    11. [11]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    12. [12]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    13. [13]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    14. [14]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    15. [15]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    16. [16]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(13)
  • Abstract views(681)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return