Citation: Jian Wang, Bo Yin, Tian Gao, Xingyi Wang, Wang Li, Xingxing Hong, Zhuqing Wang, Haiyong He. Reduced Graphene Oxide Modified Few-Layer Exfoliated Graphite to Enhance the Stability of the Negative Electrode of a Graphite-Based Potassium Ion Battery[J]. Acta Physico-Chimica Sinica, ;2022, 38(2): 201208. doi: 10.3866/PKU.WHXB202012088 shu

Reduced Graphene Oxide Modified Few-Layer Exfoliated Graphite to Enhance the Stability of the Negative Electrode of a Graphite-Based Potassium Ion Battery

  • Corresponding author: Zhuqing Wang, wangzhq@aqnu.edu.cn Haiyong He, hehaiyong@nimte.ac.cn
  • Received Date: 31 December 2020
    Revised Date: 22 January 2021
    Accepted Date: 26 January 2021
    Available Online: 1 February 2021

    Fund Project: the National Natural Science Foundation of China 51872304Ningbo S & T Innovation 2025 Major Special Program 2018B10024

  • The intercalation of potassium in graphite provides high energy density owing to the low potential of 0.24 V vs. K/K+, thereby making it a promising anode material for potassium ion batteries. However, the high volume expansion (60%) of graphite after potassium intercalation induces significant stress and electrode pulverization. Additionally, the sluggish kinetics of potassium insertion undermine the rate capability of electrodes. Using few-layer exfoliated graphite (EG) as a negative electrode material effectively relieves expansion-induced stress. Unfortunately, the close stacking of ultra-thin two-dimensional EG impedes ion transport. Furthermore, EG with smooth surfaces lacks active sites to adsorb K+, which is unfavorable for intercalation reactions. To address these problems, in this study, we designed an rGO/EG/rGO sandwich that coats EG with reduced graphene oxide (rGO). This complex material has two main advantages: (1) its 3D network can effectively prevent EG from stacking and buffer the volumetric variation of EG to improve the cyclic stability of the electrode, and (2) the loose structure and rich functional groups of rGO can also enhance the kinetic of potassium intercalation. Through hydrothermal reduction, GO was coated onto the EG surface and cross-linked to form a 3D network, by which EG stacking could be effectively mitigated. The rGO : EG ratio was precisely controlled by modulating the amount of reactant GO and EG. Transmission electron microscopy and scanning electron microscopy images showed that the rGO was uniformly coated on the EG surface to form a sandwich structure. X-ray diffraction patterns and Raman spectra demonstrated that rGO was physically adsorbed on the EG surface without notable chemical interactions. The EG structure was retained to ensure that its characteristic electrochemical properties were unaffected. Cyclic voltammetry and galvanostatic cycling tests were performed on the complex material with various rGO : EG ratios, exhibiting that rGO : EG = 1 : 1 (w/w) was optimal with a specific capacity of 443 mAh·g-1 at 50 mA·g-1. Even when operated at a high current density of 800 mA·g-1, a specific capacity of 190 mAh·g-1 was achieved, retaining 42.9% of the low-rate capacity, far exceeding those of pristine EG (14.2%) and rGO (27.2%). These results demonstrate that the rGO coating indeed enhanced the kinetics of potassium intercalation and efficiently improved the capacity and rate capability compared to pristine EG. We hope this work sheds light on novel approaches to improving potassium intercalation mechanisms in graphite.
  • 加载中
    1. [1]

      Pei, Z.; Fan, G.; Qin, X. Energy Storage Sci. Technol. 2020, 9 (5), 1562.  doi: 10.19799/j.cnki.2095-4239.2020.0252

    2. [2]

      Liu, S. J.; Zhang, C.; Sun, Y. D.; Chen, Q.; He, L. F.; Zhang, K.; Zhang, J.; Liu, B.; Chen, L. F. Coord. Chem. Rev. 2020, 413, 213266. doi: 10.1016/j.ccr.2020.213266  doi: 10.1016/j.ccr.2020.213266

    3. [3]

      Fedotov, S. S.; Khasanova, N. R.; Samarin, A. S.; Drozhzhin, O. A.; Batuk, D.; Karakulina, O. M.; Hadermann, J.; Abakumov, A. M.; Antipov, E. V. Chem. Mater. 2016, 28, 411. doi: 10.1021/acs.chemmater.5b04065  doi: 10.1021/acs.chemmater.5b04065

    4. [4]

      Eftekhari, A.; Jian, Z.; Ji, X. ACS Appl. Mater. Interfaces 2017, 9, 4404. doi: 10.1021/acsami.6b07989  doi: 10.1021/acsami.6b07989

    5. [5]

      Liu, Y. C.; Huang, B.; Shao, Y. J.; Shen, M. Y.; Du, L.; Liao, S. J. Prog. Chem. 2019, 31 (9), 1329.  doi: 10.7536/PC190212

    6. [6]

      Huang, H.; Wang, J.; Yang, X.; Hu, R.; Liu, J.; Zhang, L.; Zhu, M. Angew. Chem. Int. Ed. 2020, 59 (34), 14504. doi: 10.1002/anie.202004193  doi: 10.1002/anie.202004193

    7. [7]

      Wang, S.; Xiong, P.; Guo, X.; Zhang, J.; Gao, X.; Zhang, F.; Tang, X.; Notten, P. H. L.; Wang, G. Adv. Funct. Mater. 2020, 30 (27), 2001588. doi: 10.1002/adfm.202001588  doi: 10.1002/adfm.202001588

    8. [8]

      Zhao, R.; Di, H.; Hui, X.; Zhao, D.; Wang, R.; Wang, C.; Yin, L. Energy Environ. Sci. 2020, 13 (1), 246. doi: 10.1039/c9ee03250a  doi: 10.1039/c9ee03250a

    9. [9]

      Qi, S. H.; Deng, J. W.; Zhang, W. C.; Feng, Y. Z.; Ma, J. M. Rare Met. 2020, 39 (9), 970. doi: 10.1007/s12598-020-01454-w  doi: 10.1007/s12598-020-01454-w

    10. [10]

      Wei, C.; Tao, Y.; Fei, H.; An, Y.; Tian, Y.; Feng, J.; Qian, Y. Energy Storage Mater. 2020, 30, 206. doi: 10.1016/j.ensm.2020.05.018  doi: 10.1016/j.ensm.2020.05.018

    11. [11]

      Wang, W.; Ji, B.; Yao, W.; Zhang, X.; Zheng, Y.; Zhou, X.; Kidkhunthod, P.; He, H.; Tang, Y. Sci. China Mater. 2020, 64, 1047. doi: 10.1007/s40843-020-1512-0  doi: 10.1007/s40843-020-1512-0

    12. [12]

      Zhang, H.; Luo, C.; He, H.; Wu, H. H.; Zhang, L.; Zhang, Q.; Wang, H.; Wang, M. S. Nanoscale Horiz. 2020, 5 (5), 895. doi: 10.1039/d0nh00018c  doi: 10.1039/d0nh00018c

    13. [13]

      Zhang, Z.; Jia, B.; Liu, L.; Zhao, Y.; Wu, H.; Qin, M.; Han, K.; Wang, W. A.; Xi, K.; Zhang, L.; et al. ACS Nano 2019, 13 (10), 11363. doi: 10.1021/acsnano.9b04728  doi: 10.1021/acsnano.9b04728

    14. [14]

      Ji, B.; Yao, W.; Zheng, Y.; Kidkhunthod, P.; Zhou, X.; Tunmee, S.; Sattayaporn, S.; Nat. Commun. 2020, 11 (1), 1225. doi: 10.1038/s41467-020-15044-y  doi: 10.1038/s41467-020-15044-y

    15. [15]

      Yu, A.; Pan, Q.; Zhang, M.; Xie, D.; Tang, Y. Adv. Funct. Mater. 2020, 30 (24), 2001440. doi: 10.1002/adfm.202001440  doi: 10.1002/adfm.202001440

    16. [16]

      Kim, C.; Yang, K. S.; Kojima, M.; Yoshida, K.; Kim, Y. J.; Kim, Y. A.; Endo, M. Adv. Funct. Mater. 2006, 16 (18), 2393. doi: 10.1002/adfm.200500911  doi: 10.1002/adfm.200500911

    17. [17]

      Chen, J.; Cheng, Y.; Zhang, Q.; Luo, C.; Li, H. Y.; Wu, Y.; Zhang, H.; Wang, X.; Liu, H.; He, X.; et al. Adv. Funct Mater. 2021, 31 (1), 2007158. doi: 10.1002/adfm.202007158  doi: 10.1002/adfm.202007158

    18. [18]

      Gabaudan, V.; Monconduit, L.; Stievano, L.; Berthelot, R. Front. Energy Res. 2019, 7, 46. doi: 10.3389/fenrg.2019.00046  doi: 10.3389/fenrg.2019.00046

    19. [19]

      Zhang, C.; Zhao, H.; Lei, Y. Energy Environ. Mater. 2020, 3 (2), 105. doi: 10.1002/eem2.12059  doi: 10.1002/eem2.12059

    20. [20]

      Wu, Y.; Zhao, H.; Wu, Z.; Yue, L.; Liang, J.; Liu, Q.; Luo, Y.; Gao, S.; Lu, S.; Chen, G.; et al. Energy Storage Mater. 2021, 34, 483. doi: 10.1016/j.ensm.2020.10.015  doi: 10.1016/j.ensm.2020.10.015

    21. [21]

      Jian, Z.; Luo, W.; Ji, X. J. Am. Chem. Soc. 2015, 137 (36), 11566. doi: 10.1021/jacs.5b06809  doi: 10.1021/jacs.5b06809

    22. [22]

      Qin, L.; Xiao, N.; Zheng, J.; Lei, Y.; Zhai, D.; Wu, Y. Adv. Energy Mater. 2019, 9 (44), 1902618. doi: 10.1002/aenm.201902618  doi: 10.1002/aenm.201902618

    23. [23]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306 (5696), 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    24. [24]

      Liu, X. T.; Zhang, J. C.; Chen, H.; Liu, Z. F. Acta Phys. -Chim. Sin. 2021, 37, 2012047.  doi: 10.3866/PKU.WHXB202012047
       

    25. [25]

      Chung, D. D. L. J. Mater. Sci. 2016, 51 (1), 544. doi: 10.1007/s10853-015-9284-6  doi: 10.1007/s10853-015-9284-6

    26. [26]

      Doughty, D. H.; Butler, P. C.; Akhil, A. A.; Clark, N. H.; Boyes, J. D. Electrochem. Soc. Interface 2010, 19 (3), 49. doi: 10.1149/2.f05103if  doi: 10.1149/2.f05103if

    27. [27]

      Hong, W.; Zhang, Y.; Yang, L.; Tian, Y.; Ge, P.; Hu, J.; Wei, W.; Zou, G.; Hou, H.; Ji, X. Nano Energy 2019, 65, 104038. doi: 10.1016/j.nanoen.2019.104038  doi: 10.1016/j.nanoen.2019.104038

    28. [28]

      Yang, W.; Zhou, J.; Wang, S.; Zhang, W.; Wang, Z.; Lv, F.; Wang, K.; Sun, Q.; Guo, S. Energy Environ. Sci. 2019, 12 (5), 1605. doi: 10.1039/c9ee00536f  doi: 10.1039/c9ee00536f

    29. [29]

      Chou, S. L.; Wang, J. Z.; Choucair, M.; Liu, H. K.; Stride, J. A.; Dou, S. X. Electrochem. Commun. 2010, 12 (2), 303. doi: 10.1016/j.elecom.2009.12.024  doi: 10.1016/j.elecom.2009.12.024

    30. [30]

      Zhou, X.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Chem. Commun. 2012, 48 (16), 2198. doi: 10.1039/c2cc17061b  doi: 10.1039/c2cc17061b

    31. [31]

      Zhang, E.; Jia, X.; Wang, B.; Wang, J.; Yu, X.; Lu, B. Adv. Sci. 2020, 7 (15), 2000470. doi: 10.1002/advs.202000470  doi: 10.1002/advs.202000470

    32. [32]

      Wang, Y.; Gao, X.; Li, L.; Wang, M.; Shui, J.; Xu, M. Nano Energy 2020, 67, 104248. doi: 10.1016/j.nanoen.2019.104248  doi: 10.1016/j.nanoen.2019.104248

    33. [33]

      Nawar, A. M.; Yahia, I. S.; Al-Kotb, M. S. J. Mater. Sci. -Mater. Electron. 2020, 31 (15), 12127. doi: 10.1007/s10854-020-03759-z  doi: 10.1007/s10854-020-03759-z

    34. [34]

      Jian, Z.; Hwang, S.; Li, Z.; Hernandez, A. S.; Wang, X.; Xing, Z.; Su, D.; Ji, X. Adv. Funct. Mater. 2017, 27 (26), 1700324. doi: 10.1002/adfm.201700324  doi: 10.1002/adfm.201700324

    35. [35]

      Tang, Z. Y.; Xue, J. J.; Liu, C. Y.; Zhuang, X. G. Acta Phys. -Chim. Sin. 2001, 17 (5), 38.  doi: 10.3866/PKU.WHXB20010501
       

    36. [36]

      Wan, J.; Chen, Q. Q.; Li, W.; Pan, L. H.; Zhao, Z. H.; Yu, D. D.; Tang, Z. H.; He, H. Y. Electrochim. Acta 2020, 345, 136238. doi: 10.1016/j.electacta.2020.136238  doi: 10.1016/j.electacta.2020.136238

    37. [37]

      Chen, L. F.; Hou, C. C.; Zou, L.; Kitta, M.; Xu, Q. Sci. Bull. 2021, 66 (2), 170. doi: 10.1016/j.scib.2020.06.022  doi: 10.1016/j.scib.2020.06.022

    38. [38]

      Chen, D. M. Chin. Phys. Soc. 2010, 59 (9), 6399. doi: 10.7498/aps.59.6399  doi: 10.7498/aps.59.6399

    39. [39]

      Zhang, K. L; Li, W.; Cai, W. L.; Chen, L. F.; Wang, D.; Chen, Y. H.; Pan, H. L.; Wang, L. B.; Qian, Y. T. Inorg. Chem. Front. 2019, 6 (4), 955. doi: 10.1039/c9qi00052f  doi: 10.1039/c9qi00052f

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    6. [6]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    9. [9]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    10. [10]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    13. [13]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    14. [14]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(43)
  • Abstract views(1580)
  • HTML views(250)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return