Citation: Ruoning Li, Xue Zhang, Na Xue, Jie Li, Tianhao Wu, Zhen Xu, Yifan Wang, Na Li, Hao Tang, Shimin Hou, Yongfeng Wang. Hierarchical Self-Assembly of Ag-Coordinated Motifs on Ag(111)[J]. Acta Physico-Chimica Sinica, ;2022, 38(8): 201106. doi: 10.3866/PKU.WHXB202011060 shu

Hierarchical Self-Assembly of Ag-Coordinated Motifs on Ag(111)

  • Corresponding author: Shimin Hou, smhou@pku.edu.cn Yongfeng Wang, yongfengwang@pku.edu.cn
  • Received Date: 23 November 2020
    Revised Date: 30 November 2020
    Accepted Date: 1 December 2020
    Available Online: 14 December 2020

    Fund Project: the Ministry of Science and Technology of China 2018YFA0306003the Ministry of Science and Technology of China 2017YFA0205003the National Natural Science Foundation of China 21972002the National Natural Science Foundation of China 21902003the National Natural Science Foundation of China 22002109

  • Metal-organic nanostructures on surfaces have attracted considerable attention owing to their structural stability and potential applications. In metal-organic nanostructures, metal atoms are derived from the externally deposited metals or native surface atoms. Externally deposited metals are of rich diversity and depend on the targeted nanostructures. However, native surface atoms are restricted to single-crystalline metal surfaces of gold, silver, and copper, which are usually used in surface science. Metal-organic nanostructures mostly consist of Au- or Cu-coordinated motifs, while only a few consist of surface Ag atoms. Further investigation into the molecule-metal interactions is beneficial for the accurately controlled fabrication of the desired nanostructure. As for the building blocks, organic molecules coordinate with native surface atoms by M―C, M―N, and M―O bonds. The reactions of terminal alkynes or Ullmann couplings could realize the formation of C―M―C linkages. Cu and Au atoms could coordinate with molecules with terminal cyano or pyridyl groups to form N―M―N bonds. In addition, surface Ag adatoms could coordinate with phthalocyanine through Ag―N bonds. However, a comprehensive study of M―O coordination bonds is still lacking. Thus, we used hydroxyl-terminated molecules to coordinate with Ag adatoms to form metal-organic coordination nanostructures and study the O―Ag linkages. In this case, we successfully built and investigated a series of ordered structures by depositing 4, 4'-dihydroxy-1, 1': 3', 1''-terphenyl (H3PH) molecules on the Ag(111) surface by scanning tunneling microscopy. At room temperature, a close-packed ordered structure was formed by H3PH molecules through cyclic hydrogen bonds, and the repeat unit of such nanostructures contained eight H3PH molecules. Upon increasing the annealing temperature, the formation of O―Ag bond led to a change in the self-assembly pattern. When the annealing temperature was increased to 330 K, a new ordered nanostructure occurred due to the combination of O―Ag coordination and hydrogen bonds. Upon further increasing the annealing temperature to 420 K, a honeycomb structure and coexisting two-fold coordination chains appeared, which only consisted of O―Ag―O linkages. Density functional theory calculations were carried out to analyze the metal-molecule reaction pathways and energy barriers of the O―Ag―O bonds. The energy barrier of the O―Ag bond is 1.41 eV, which is less than that of the O―Ag―O linkage calculated to be 1.85 eV. The low energy barrier of the O―Ag bond and large coordination energy of the O―Ag―O linkage can be attributed to the formation of the hierarchical metal-organic nanostructure. The results obtained herein provide an effective approach for designing and building two-dimensional hierarchical structures with organic small molecules and metal adatoms on single-crystalline metal surfaces.
  • 加载中
    1. [1]

      Barth, J. V.; Costantini, G.; Kern, K. Nature 2005, 437, 671. doi: 10.1038/nature04166  doi: 10.1038/nature04166

    2. [2]

      Bartels, L. Nat. Chem. 2010, 2, 87. doi: 10.1038/nchem.517  doi: 10.1038/nchem.517

    3. [3]

      Liu, J.; Lin, T.; Shi, Z.; Xia, F.; Dong, L.; Liu, P. N.; Lin, N. J. Am. Chem. Soc. 2011, 133, 18760. doi: 10.1021/ja2056193  doi: 10.1021/ja2056193

    4. [4]

      Dong, L.; Gao, Z. A.; Lin, N. Prog. Surf. Sci. 2016, 91, 101. doi: 10.1016/j.progsurf.2016.08.001  doi: 10.1016/j.progsurf.2016.08.001

    5. [5]

      Wang, H.; Zhang, X.; Jiang, Z.; Wang, Y.; Hou, S. Phys. Rev. B 2018, 97, 115451. doi: 10.1103/PhysRevB.97.115451  doi: 10.1103/PhysRevB.97.115451

    6. [6]

      Li, W.; Jin, J.; Liu, X.; Wang, L. Langmuir 2018, 34, 8092. doi: 10.1021/acs.langmuir.8b01263  doi: 10.1021/acs.langmuir.8b01263

    7. [7]

      Müller, K.; Moreno-López, J. C.; Gottardi, S.; Meinhardt, U.; Yildirim, H.; Kara, A.; Kivala, M.; Stöhr, M. Chem. Eur. J. 2016, 22, 581. doi: 10.1002/chem.201503205  doi: 10.1002/chem.201503205

    8. [8]

      Klyatskaya, S.; Klappenberger, F.; Schlickum, U.; Kühne, D.; Marschall, M.; Reichert, J.; Decker, R.; Krenner, W.; Zoppellaro, G.; H. Brune.; et al. Adv. Funct. Mater. 2011, 21, 1230. doi: 10.1002/adfm.201001437  doi: 10.1002/adfm.201001437

    9. [9]

      Li, N.; Zhang, X.; Gu, G.; Wang, H.; Nieckarz, D.; Szabelski, P.; He, Y.; Wang, Y.; Lü, J.; Tang, H.; et al. Chin. Chem. Lett. 2015, 26, 1198. doi: 10.1016/j.cclet.2015.08.006  doi: 10.1016/j.cclet.2015.08.006

    10. [10]

      Li, C.; Zhang, X.; Li, N.; Wang, Y.; Yang, J.; Gu, G.; Zhang, Y.; Hou, S.; Peng, L.; Wu, K.; et al. J. Am. Chem. Soc. 2017, 139, 13749. doi: 10.1021/jacs.7b05720  doi: 10.1021/jacs.7b05720

    11. [11]

      Bebensee, F.; Svane, K.; Bombis, C.; Masini, F.; Klyatskaya, S.; Besenbacher, F.; Ruben, M.; Hammer, B.; Linderoth, T. R. Angew. Chem. Int. Ed. 2014, 53, 12955. doi: 10.1002/anie.201406528  doi: 10.1002/anie.201406528

    12. [12]

      Liu, J.; Chen, Q.; Wu, K. Chin. Chem. Lett. 2017, 28, 1631. doi: 10.1016/j.cclet.2017.04.022  doi: 10.1016/j.cclet.2017.04.022

    13. [13]

      Sun, Q.; Cai, L.; Ma, H.; Yuan, C.; Xu, W. ACS Nano 2016, 10, 7023. doi: 10.1021/acsnano.6b03048  doi: 10.1021/acsnano.6b03048

    14. [14]

      Xue, Q.; Zhang, Y.; Li, R.; Li, C.; Li, N.; Yuan, C.; Hou, S.; Wang, Y. Chin. Chem. Lett. 2019, 30, 2355. doi: 10.1016/j.cclet.2019.09.027  doi: 10.1016/j.cclet.2019.09.027

    15. [15]

      Wang, M.; Tan, S.; Cui, X.; Wang, B. Acta Phys. -Chim. Sin. 2019, 35, 1412  doi: 10.3866/PKU.WHXB201905054

    16. [16]

      Wang, W.; Zhang, J.; Li, Z.; Shao, X. Acta Phys. -Chim. Sin. 2020, 36, 1911035  doi: 10.3866/PKU.WHXB201911035

    17. [17]

      Huang, Z.; Dai, Y.; Wen, X.; Liu, D.; Lin, Y.; Xu, Z.; Pei, J.; Wu, K. Acta Phys. -Chim. Sin. 2020, 36, 1907043  doi: 10.3866/PKU.WHXB201907043

    18. [18]

      Zhang, X.; Li, N.; Wang, H.; Yuan, C.; Gu, G.; Zhang, Y.; Nieckarz, D.; Szabelski, P.; Hou, S.; Teo, B. K.; et al. ACS Nano 2017, 11, 8511. doi: 10.1021/acsnano.7b04559  doi: 10.1021/acsnano.7b04559

    19. [19]

      Yang, Z.; Gebhardt, J.; Schaub, T. A.; Sander, T.; Schönamsgruber, J.; Soni, H.; Görling, A.; Kivala, M.; Maier, S. Nanoscale 2018, 10, 3769. doi: 10.1039/c7nr08238j  doi: 10.1039/c7nr08238j

    20. [20]

      Liu, J.; Chen, Q.; Xiao, L.; Shang, J.; Zhou, X.; Zhang, Y.; Wang, Y.; Shao, X.; Li, J.; Chen, W.; et al. ACS Nano 2015, 9, 6305. doi: 10.1021/acsnano.5b01803  doi: 10.1021/acsnano.5b01803

    21. [21]

      Fan, Q.; Wang, C.; Han, Y.; Zhu, J.; Hieringer, W.; Kuttner, J.; Hilt, G.; Gottfried, J. M. Angew. Chem. Int. Ed. 2013, 52, 4668. doi: 10.1002/anie.201300610  doi: 10.1002/anie.201300610

    22. [22]

      Eichhorn, J.; Strunskus, T.; Rastgoo-Lahrood, A.; Samanta, D.; Schmittel, M.; Lackinger, M. Chem. Commun. 2014, 50, 7680. doi: 10.1039/c4cc02757d  doi: 10.1039/c4cc02757d

    23. [23]

      Sirtl, T.; Schlögl, S.; Rastgoo-Lahrood, A.; Jelic, J.; Neogi, S.; Schmittel, M.; Heckl, W. M.; Reuter, K.; Lackinger, M. J. Am. Chem. Soc. 2013, 135, 691. doi: 10.1021/ja306834a  doi: 10.1021/ja306834a

    24. [24]

      Björk, J.; Matena, M.; Dyer, M. S.; Enache, M.; Lobo-Checa, J.; Gade, L. H.; Jung, T. A.; Stöhr, M.; Persson, M. Phys. Chem. Chem. Phys. 2010, 12, 8815. doi: 10.1039/c003660a  doi: 10.1039/c003660a

    25. [25]

      Pham, T. A.; Song, F.; Alberti, M. N.; Nguyen, M. -T.; Trapp, N.; Thilgen, C.; Diederich, F.; Stöhr, M. Chem. Commun. 2015, 51, 14473. doi: 10.1039/c5cc04940g  doi: 10.1039/c5cc04940g

    26. [26]

      Smykalla, L.; Shukrynau, P.; Zahn, D. R. T.; Hietschold, M. J. Phys. Chem. C 2015, 119, 17228. doi: 10.1021/acs.jpcc.5b04977  doi: 10.1021/acs.jpcc.5b04977

    27. [27]

      Shang, J.; Wang, Y.; Chen, M.; Dai, J.; Zhou, X.; Kuttner, J.; Hilt, G.; Shao, X.; Gottfried, J. M.; Wu, K. Nat. Chem. 2015, 7, 389. doi: 10.1038/NCHEM.2211  doi: 10.1038/NCHEM.2211

    28. [28]

      Zhang, X.; Li, N.; Gu, G.; Wang, H.; Nieckarz, D.; Szabelski, P.; He, Y.; Wang, Y.; Xie, C.; Shen, Z.; et al. ACS Nano 2015, 9, 11909. doi: 10.1021/acsnano.5b04427  doi: 10.1021/acsnano.5b04427

    29. [29]

      Zhang, X.; Li, N.; Liu, L.; Gu, G.; Li, C.; Tang, H.; Peng, L.; Hou, S.; Wang, Y. Chem. Commun. 2016, 52, 10578. doi: 10.1039/c6cc04879j  doi: 10.1039/c6cc04879j

    30. [30]

      Horcas, I.; Fernández, R.; Gómez-Rodriguez, J. M.; Colchero, J.; Gómez-Herrero, J.; Baro, A. M. Rev. Sci. Instrum. 2007, 78, 013705. doi: 10.1063/1.2432410  doi: 10.1063/1.2432410

    31. [31]

      Henkelman, G.; Jónsson, H. J. Chem. Phys. 2000, 113, 9978. doi: 10.1063/1.1323224  doi: 10.1063/1.1323224

    32. [32]

      Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558. doi: 10.1103/PhysRevB.47.558  doi: 10.1103/PhysRevB.47.558

    33. [33]

      Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169  doi: 10.1103/PhysRevB.54.11169

    34. [34]

      Blöchl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953  doi: 10.1103/PhysRevB.50.17953

    35. [35]

      Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758  doi: 10.1103/PhysRevB.59.1758

    36. [36]

      Klimeš, J.; Bowler, D. R.; Michaelides, A. J. Phys. : Cond. Matter 2010, 22, 022201. doi: 10.1088/0953-8984/22/2/022201  doi: 10.1088/0953-8984/22/2/022201

    37. [37]

      Lee, K.; Murray, E. D.; Kong, L.; Lundqvist, B. I.; Langreth, D. C. Phys. Rev. B 2010, 82, 081101. doi: 10.1103/PhysRevB.82.081101  doi: 10.1103/PhysRevB.82.081101

    38. [38]

      Klimeš, J.; Bowler, D. R.; Michaelides, A. Phys. Rev. B 2011, 83, 195131. doi: 10.1103/PhysRevB.83.195131  doi: 10.1103/PhysRevB.83.195131

    39. [39]

      Liu, L.; Xiao, W.; Mao, J.; Zhang, H.; Jiang, Y.; Zhou, H.; Yang, K.; Gao, H. Chin. Chem. Lett. 2018, 29, 183. doi: 10.1016/j.cclet.2017.06.012  doi: 10.1016/j.cclet.2017.06.012

  • 加载中
    1. [1]

      Yutong Xiong Ting Meng Wendi Luo Bin Tu Shuai Wang Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511

    2. [2]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    3. [3]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    4. [4]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    5. [5]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    6. [6]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    7. [7]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    8. [8]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    9. [9]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

    10. [10]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    11. [11]

      Junjie DuanDan ChenLong ChenShuying LiTing ChenDong Wang . 2D hexagonal tessellations sustained by Br···Br/H contacts: From regular to semiregular to k-uniform tilings. Chinese Chemical Letters, 2025, 36(3): 110445-. doi: 10.1016/j.cclet.2024.110445

    12. [12]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    13. [13]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    14. [14]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    15. [15]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    16. [16]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    17. [17]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    18. [18]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    19. [19]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    20. [20]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

Metrics
  • PDF Downloads(22)
  • Abstract views(775)
  • HTML views(138)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return