Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction
- Corresponding author: Yingjie Ma, mayj@nanoctr.cn Linjie Zhi, zhilj@nanoctr.cn
Citation: Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction[J]. Acta Physico-Chimica Sinica, ;2022, 38(2): 201105. doi: 10.3866/PKU.WHXB202011050
Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. Chem. Soc. Rev. 2014, 45, 631. doi: 10.1002/chin.201417263
doi: 10.1002/chin.201417263
Bai, X. F.; Chen, W.; Wang, B. Y.; Feng, G. H.; Wei, W.; Jiao, Z.; Sun, Y. H. Acta Phys. -Chim. Sin. 2017, 33, 2388.
doi: 10.3866/PKU.WHXB201706131
Zheng, T.; Jiang, K.; Wang, H. Adv. Mater. 2018, 30, 1802066. doi: 10.1002/adma.201802066
doi: 10.1002/adma.201802066
Tran-Phu, T.; Daiyan, R.; Fusco, Z.; Ma, Z.; Amal, R.; Tricoli, A. Adv. Funct. Mater. 2020, 30, 1906478. doi: 10.1002/adfm.201906478
doi: 10.1002/adfm.201906478
Li, F.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z.; Li, Y.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y.; et al. Nature 2020, 577, 509. doi: 10.1038/s41586-019-1782-2
doi: 10.1038/s41586-019-1782-2
Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T.; et al. Nat. Catal. 2018, 1, 764. doi: 10.1038/s41929-018-0139-9
doi: 10.1038/s41929-018-0139-9
Tee, S. Y.; Win, K. Y.; Teo, W. S.; Koh, L. D.; Liu, S.; Teng, C. P.; Han, M. Y. Adv. Sci. 2017, 4, 1600337. doi: 10.1002/advs.201600337
doi: 10.1002/advs.201600337
Hoffert, M. I.; Caldeira, K.; Benford, G.; Criswell, D. R.; Green, C.; Herzog, H.; Jain, A. K.; Kheshgi, H. S.; Lackner, K. S.; Lewis, J. S.; et al. Science 2002, 298, 981. doi: 10.1126/science.1072357
doi: 10.1126/science.1072357
Zhang, Y. -J.; Sethuraman, V.; Michalsky, R.; Peterson, A. A. ACS Catal. 2014, 4, 3742. doi: 10.1021/cs5012298
doi: 10.1021/cs5012298
Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Chen, R.; Yang, S.; Jin, Z. Adv. Sci. 2018, 5, 1700275. doi: 10.1002/advs.201700275
doi: 10.1002/advs.201700275
Chang, X.; Wang, T.; Zhao, Z. J.; Yang, P.; Greeley, J.; Mu, R.; Zhang, G.; Gong, Z.; Luo, Z.; Chen, J.; et al. Angew. Chem. Int. Ed. 2018, 57, 15415. doi: 10.1002/anie.201805256
doi: 10.1002/anie.201805256
Zhu, W.; Michalsky, R.; Metin, O. N.; Lv, H.; Guo, S.; Wright, C. J.; Sun, X.; Peterson, A. A.; Sun, S. J. Am. Chem. Soc. 2013, 135, 16833. doi: 10.1021/ja409445p
doi: 10.1021/ja409445p
Liu, S. B.; Tao, H. B.; Zeng, L.; Liu, Q.; Xu, Z. H.; Liu, Q. X.; Luo, J. -L. J. Am. Chem. Soc. 2017, 139, 2160. doi: 10.1021/jacs.6b12103
doi: 10.1021/jacs.6b12103
Liu, S.; Xiao, J.; Lu, X. F.; Wang, J.; Wang, X.; Lou, X. W. Angew. Chem. Int. Ed. 2019, 58, 8499. doi: 10.1002/anie.201903613
doi: 10.1002/anie.201903613
García, J.; Jiménez, C.; Martínez, F.; Camarillo, R.; Rincón, J. J. Catal. 2018, 367, 72. doi: 10.1016/j.jcat.2018.08.017
doi: 10.1016/j.jcat.2018.08.017
Jin, H. D.; Xiong, L. K.; Zhang, X.; Lian, Y. B.; Chen, S.; Lu, Y. T.; Deng, Z.; Peng, Y. Acta Phys. -Chim. Sin. 2021, 37, 2006017.
doi: 10.3866/PKU.WHXB202006017
Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X.; Bell, D. C.; Nørskov, J. K.; Chan, K.; Wang, H. Nat. Catal. 2018, 1, 111. doi: 10.1038/s41929-017-0009-x
doi: 10.1038/s41929-017-0009-x
Lee, S.; Park, G.; Lee, J. ACS Catal. 2017, 7, 8594. doi: 10.1021/acscatal.7b02822
doi: 10.1021/acscatal.7b02822
Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. Joule 2018, 2, 825. doi: 10.1016/j.joule.2017.09.003
doi: 10.1016/j.joule.2017.09.003
Ye, R. P.; Ding, J.; Gong, W.; Argyle, M. D.; Yao, Y. G. Nat. Commun. 2019, 10, 5698. doi: 10.1038/s41467-019-13638-9
doi: 10.1038/s41467-019-13638-9
Zhou, W.; Cheng, K.; Kang, J. C.; Zhou, C.; Subramanian, V.; Zhang, Q. H.; Wang, Y. Chem. Soc. Rev. 2019, 48. doi: 10.1039/C8CS00502H
doi: 10.1039/C8CS00502H
Yang, X. -F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y. Acc. Chem. Res. 2013, 46, 1740. doi: 10.1021/ar300361m
doi: 10.1021/ar300361m
Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/nchem.1095
doi: 10.1038/nchem.1095
Ju, W.; Bagger, A.; Hao, G. -P.; Varela, A. S.; Sinev, I.; Bon, V.; Cuenya, B. R.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Nat. Commun. 2017, 8, 944. doi: 10.1038/s41467-017-01035-z
doi: 10.1038/s41467-017-01035-z
Jiao, L.; Yang, W. J.; Wan, G.; Zhang, R.; Zheng, X. S.; Zhou, H.; Yu, S. H.; Jiang, H. L. Angew. Chem. Int. Ed. 2020, 59, 2. doi: 10.1002/anie.202008787
doi: 10.1002/anie.202008787
Zhang, X.; Wu, Z.; Zhang, X.; Li, L.; Li, Y.; Xu, H.; Li, X.; Yu, X.; Zhang, Z.; Liang, Y.; et al. Nat. Commun. 2017, 8, 14675. doi: 10.1038/ncomms14675
doi: 10.1038/ncomms14675
Lin, L.; Li, H. B.; Yan, C. C.; Li, H. F.; Si, R.; Li, M. R.; Xiao, J. P.; Wang, G. X.; Bao, X. H. Adv. Mater. 2019, 31, 1903470. doi: 10.1002/adma.201903470
doi: 10.1002/adma.201903470
Gu, J.; Hsu, C. S.; Bai, L.; Chen, H. M.; Hu, X. Science 2019, 364, 1091. doi: 10.1126/science.aaw7515
doi: 10.1126/science.aaw7515
Zhang, H.; Li, J.; Xi, S.; Du, Y.; Wang, J. Angew. Chem. Int. Ed. 2019, 131, 42. doi: 10.1002/ange.201906079
doi: 10.1002/ange.201906079
Zhang, X.; Wang, Y.; Gu, M.; Wang, M.; Zhang, Z. S.; Pan, W. Y.; Jiang, Z.; Zheng, H. Z.; Lucero, M.; Wang, H. L.; et al. Nat. Energy 2020, 5, 684. doi: 10.1038/s41560-020-0667-9
doi: 10.1038/s41560-020-0667-9
Yang, H. B.; Hung, S. -F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. -Y.; Cai, W. Z.; Chen, R.; et al. Nat. Energy 2018, 3, 140. doi: 10.1038/s41560-017-0078-8
doi: 10.1038/s41560-017-0078-8
Yan, Y.; Gu, P.; Zheng, S. S.; Zheng, M. B.; Pang, H.; Xue, H. G. J. Mater. Chem. A 2016, 4, 19078. doi: 10.1 039/c6ta08331e
doi: 10.1039/c6ta08331e
Li, F.; Han, G. -F.; Noh, H. -J.; Kim, S. -J.; Lu, Y. L.; Jeong, H. Y.; Fu, Z. P.; Baek, J. -B. Energy Environ. Sci. 2018, 11, 2263. doi: 10.1039/C8EE01169A
doi: 10.1039/C8EE01169A
Miao, X.; Qu, D.; Yang, D.; Nie, B.; Zhao, Y.; Fan, H.; Su, Z. Adv. Mater. 2018, 30, 1704740. doi: 10.1002/adma.201704740
doi: 10.1002/adma.201704740
Zhao, Y.; Liang, J.; Wang, C.; Ma, J.; Wallace, G. G. Adv. Energy Mater. 2018, 8, 1702524.1. doi: 10.1002/aenm.201702524
doi: 10.1002/aenm.201702524
Wen, C. F.; Mao, F. X.; Liu, Y. W.; Zhang, X. Y.; Fu, H. Q.; Zheng, L. R.; Liu, P. F.; Yang, H. G. ACS Catal. 2020, 10, 1086. doi: 10.1021/acscatal.9b02978
doi: 10.1021/acscatal.9b02978
He, S.; Ji, D.; Zhang, J.; Novello, P.; Liu, J. J. Phys. Chem. B 2020, 3, 511. doi: 10.1021/acs.jpcb.9b09730
doi: 10.1021/acs.jpcb.9b09730
Lu, C.; Yang, J.; Wei, S.; Bi, S.; Xia, Y.; Chen, M.; Hou, Y.; Qiu, M.; Yuan, C.; Su, Y.; et al. Adv. Funct. Mater. 2019, 29, 1806884. doi: 10.1002/adfm.201806884
doi: 10.1002/adfm.201806884
Sa, Y. J.; Jung, H.; Shin, D.; Jeong, H. Y.; Ringe, S.; Kim, H.; Hwang, Y. J.; Joo, S. H. ACS Catal. 2020, 10, 10920. doi: 10.1021/acscatal.0c02325
doi: 10.1021/acscatal.0c02325
Gabardo, C. M.; Seifitokaldani, A.; Edwards, J. P.; Dinh, C. T.; Burdyny, T.; Kibria, M. G.; O'Brien, C. P.; Sargent, E. H.; Sinton, D. Energy Environ. Sci. 2018, 11, 2531. doi: 10.1039/C8EE01684D
doi: 10.1039/C8EE01684D
Gao, F. -Y.; Bao, R. -C.; Gao, M. -R.; Yu, S. -H. J. Mater. Chem. A 2020, 8, 15458. doi: 10.1039/D0TA03525D
doi: 10.1039/D0TA03525D
Seifitokaldani, A.; Gabardo, C. M.; Burdyny, T.; Dinh, C. T.; Edwards, J. P.; Kibria, M. G.; Bushuyev, O. S.; Kelley, S. O.; Sinton, D.; Sargent, E. H. J. Am. Chem. Soc. 2018, 140, 3833. doi: 10.1021/jacs.7b13542
doi: 10.1021/jacs.7b13542
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416