Citation: Xiaoxiong Huang, Yingjie Ma, Linjie Zhi. Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction[J]. Acta Physico-Chimica Sinica, ;2022, 38(2): 201105. doi: 10.3866/PKU.WHXB202011050 shu

Ultrathin Nitrogenated Carbon Nanosheets with Single-Atom Nickel as an Efficient Catalyst for Electrochemical CO2 Reduction

  • Corresponding author: Yingjie Ma, mayj@nanoctr.cn Linjie Zhi, zhilj@nanoctr.cn
  • Received Date: 19 November 2020
    Revised Date: 12 December 2020
    Accepted Date: 13 December 2020
    Available Online: 18 December 2020

    Fund Project: the National Natural Science Foundation of China 51425302the National Natural Science Foundation of China 51302045the Beijing Natural Science Foundation 2182086

  • The gradual increase of CO2 concentration in the atmosphere is believed to have a profound impact on the global climate and environment. To address this issue, strategies toward effective CO2 conversion have been developed. As one of the most available strategies, the CO2 electrochemical reduction approach is particularly attractive because the required energy can be supplied from renewable sources such as solar energy. Electrochemical reduction of CO2 to chemical feedstocks offers a promising strategy for mitigating CO2 emissions from anthropogenic activities; however, a critical challenge for this approach is to develop effective electrocatalysts with ultrahigh activity and selectivity. Herein, we report the facile synthesis of a highly efficient and stable atomically isolated nickel catalyst supported by ultrathin nitrogenated carbon nanosheets (Ni-N-C) for CO2 reduction through pyrolysis of Ni-doped metal-organic frameworks (MOFs) and dicyandiamide (DCDA). MOFs are crystalline and assembled by metal-containing nodes and organic linkers, which have a large specific surface area, tunable pore size and porosity, and highly dispersed unsaturated metal centers. Thus, Ni-doped MOFs were chosen as the precursors to endow Ni-N-C with a porous carbon structure and nickel ions. The nitrogen in Ni-N-C came from DCDA, which acts as the active site to anchor nickel ions. Because of the porous structure and numerous nitrogen sites, the Ni content of Ni-N-C was as high as 7.77% (w). There were two types of nickel ion-containing structures, including Ni+-N-C and Ni2+-N-C. The structure transformation of the Ni+-N-C species from the initial Ni2+ (Ni-MOF) was achieved by pyrolysis, and the ratio of Ni+ and Ni2+ varied with the pyrolysis temperature. Compared to other Ni-N-C prepared at other temperatures, Ni-N-C-800 contained more Ni+-N-C species that possessed the optimum *CO binding energy and thus boosted the CO desorption and evolution rate, thereby exhibiting higher CO Faradaic efficiency (FE) up to 94.6% at -0.9 V (vs. the reversible hydrogen electrode, RHE) in 0.1 mol·L-1 KHCO3. In addition, it has been found that the rate of CO formation on the Ni-N-C-800 electrode relies on the electrolyte concentration. With the optimal electrolyte concentration, the Ni-N-C-800 electrode achieved a superior Faraday efficiency of > 90% for CO over a wide potential range of -0.77 to -1.07 V (vs. RHE) and displayed a CO FE as high as 97.9% with a current density of 12.6 mA·cm-2 at -0.77 V (vs. RHE) in 0.5 mol·L-1 KHCO3. After testing at -0.77 V for 12 h, the Ni-N-C-800 electrode maintained a CO FE of approximately 95%, indicating superior long-term stability. We believe that this study will contribute to the design and synthesis of highly catalytically active atomically dispersed monovalent metal sites for metal-N-C catalysts.
  • 加载中
    1. [1]

      Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. Chem. Soc. Rev. 2014, 45, 631. doi: 10.1002/chin.201417263  doi: 10.1002/chin.201417263

    2. [2]

      Bai, X. F.; Chen, W.; Wang, B. Y.; Feng, G. H.; Wei, W.; Jiao, Z.; Sun, Y. H. Acta Phys. -Chim. Sin. 2017, 33, 2388.  doi: 10.3866/PKU.WHXB201706131
       

    3. [3]

      Zheng, T.; Jiang, K.; Wang, H. Adv. Mater. 2018, 30, 1802066. doi: 10.1002/adma.201802066  doi: 10.1002/adma.201802066

    4. [4]

      Tran-Phu, T.; Daiyan, R.; Fusco, Z.; Ma, Z.; Amal, R.; Tricoli, A. Adv. Funct. Mater. 2020, 30, 1906478. doi: 10.1002/adfm.201906478  doi: 10.1002/adfm.201906478

    5. [5]

      Li, F.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z.; Li, Y.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y.; et al. Nature 2020, 577, 509. doi: 10.1038/s41586-019-1782-2  doi: 10.1038/s41586-019-1782-2

    6. [6]

      Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T.; et al. Nat. Catal. 2018, 1, 764. doi: 10.1038/s41929-018-0139-9  doi: 10.1038/s41929-018-0139-9

    7. [7]

      Tee, S. Y.; Win, K. Y.; Teo, W. S.; Koh, L. D.; Liu, S.; Teng, C. P.; Han, M. Y. Adv. Sci. 2017, 4, 1600337. doi: 10.1002/advs.201600337  doi: 10.1002/advs.201600337

    8. [8]

      Hoffert, M. I.; Caldeira, K.; Benford, G.; Criswell, D. R.; Green, C.; Herzog, H.; Jain, A. K.; Kheshgi, H. S.; Lackner, K. S.; Lewis, J. S.; et al. Science 2002, 298, 981. doi: 10.1126/science.1072357  doi: 10.1126/science.1072357

    9. [9]

      Zhang, Y. -J.; Sethuraman, V.; Michalsky, R.; Peterson, A. A. ACS Catal. 2014, 4, 3742. doi: 10.1021/cs5012298  doi: 10.1021/cs5012298

    10. [10]

      Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Chen, R.; Yang, S.; Jin, Z. Adv. Sci. 2018, 5, 1700275. doi: 10.1002/advs.201700275  doi: 10.1002/advs.201700275

    11. [11]

      Chang, X.; Wang, T.; Zhao, Z. J.; Yang, P.; Greeley, J.; Mu, R.; Zhang, G.; Gong, Z.; Luo, Z.; Chen, J.; et al. Angew. Chem. Int. Ed. 2018, 57, 15415. doi: 10.1002/anie.201805256  doi: 10.1002/anie.201805256

    12. [12]

      Zhu, W.; Michalsky, R.; Metin, O. N.; Lv, H.; Guo, S.; Wright, C. J.; Sun, X.; Peterson, A. A.; Sun, S. J. Am. Chem. Soc. 2013, 135, 16833. doi: 10.1021/ja409445p  doi: 10.1021/ja409445p

    13. [13]

      Liu, S. B.; Tao, H. B.; Zeng, L.; Liu, Q.; Xu, Z. H.; Liu, Q. X.; Luo, J. -L. J. Am. Chem. Soc. 2017, 139, 2160. doi: 10.1021/jacs.6b12103  doi: 10.1021/jacs.6b12103

    14. [14]

      Liu, S.; Xiao, J.; Lu, X. F.; Wang, J.; Wang, X.; Lou, X. W. Angew. Chem. Int. Ed. 2019, 58, 8499. doi: 10.1002/anie.201903613  doi: 10.1002/anie.201903613

    15. [15]

      García, J.; Jiménez, C.; Martínez, F.; Camarillo, R.; Rincón, J. J. Catal. 2018, 367, 72. doi: 10.1016/j.jcat.2018.08.017  doi: 10.1016/j.jcat.2018.08.017

    16. [16]

      Jin, H. D.; Xiong, L. K.; Zhang, X.; Lian, Y. B.; Chen, S.; Lu, Y. T.; Deng, Z.; Peng, Y. Acta Phys. -Chim. Sin. 2021, 37, 2006017.  doi: 10.3866/PKU.WHXB202006017
       

    17. [17]

      Jiang, K.; Sandberg, R. B.; Akey, A. J.; Liu, X.; Bell, D. C.; Nørskov, J. K.; Chan, K.; Wang, H. Nat. Catal. 2018, 1, 111. doi: 10.1038/s41929-017-0009-x  doi: 10.1038/s41929-017-0009-x

    18. [18]

      Lee, S.; Park, G.; Lee, J. ACS Catal. 2017, 7, 8594. doi: 10.1021/acscatal.7b02822  doi: 10.1021/acscatal.7b02822

    19. [19]

      Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. Joule 2018, 2, 825. doi: 10.1016/j.joule.2017.09.003  doi: 10.1016/j.joule.2017.09.003

    20. [20]

      Ye, R. P.; Ding, J.; Gong, W.; Argyle, M. D.; Yao, Y. G. Nat. Commun. 2019, 10, 5698. doi: 10.1038/s41467-019-13638-9  doi: 10.1038/s41467-019-13638-9

    21. [21]

      Zhou, W.; Cheng, K.; Kang, J. C.; Zhou, C.; Subramanian, V.; Zhang, Q. H.; Wang, Y. Chem. Soc. Rev. 2019, 48. doi: 10.1039/C8CS00502H  doi: 10.1039/C8CS00502H

    22. [22]

      Yang, X. -F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y. Acc. Chem. Res. 2013, 46, 1740. doi: 10.1021/ar300361m  doi: 10.1021/ar300361m

    23. [23]

      Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/nchem.1095  doi: 10.1038/nchem.1095

    24. [24]

      Ju, W.; Bagger, A.; Hao, G. -P.; Varela, A. S.; Sinev, I.; Bon, V.; Cuenya, B. R.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Nat. Commun. 2017, 8, 944. doi: 10.1038/s41467-017-01035-z  doi: 10.1038/s41467-017-01035-z

    25. [25]

      Jiao, L.; Yang, W. J.; Wan, G.; Zhang, R.; Zheng, X. S.; Zhou, H.; Yu, S. H.; Jiang, H. L. Angew. Chem. Int. Ed. 2020, 59, 2. doi: 10.1002/anie.202008787  doi: 10.1002/anie.202008787

    26. [26]

      Zhang, X.; Wu, Z.; Zhang, X.; Li, L.; Li, Y.; Xu, H.; Li, X.; Yu, X.; Zhang, Z.; Liang, Y.; et al. Nat. Commun. 2017, 8, 14675. doi: 10.1038/ncomms14675  doi: 10.1038/ncomms14675

    27. [27]

      Lin, L.; Li, H. B.; Yan, C. C.; Li, H. F.; Si, R.; Li, M. R.; Xiao, J. P.; Wang, G. X.; Bao, X. H. Adv. Mater. 2019, 31, 1903470. doi: 10.1002/adma.201903470  doi: 10.1002/adma.201903470

    28. [28]

      Gu, J.; Hsu, C. S.; Bai, L.; Chen, H. M.; Hu, X. Science 2019, 364, 1091. doi: 10.1126/science.aaw7515  doi: 10.1126/science.aaw7515

    29. [29]

      Zhang, H.; Li, J.; Xi, S.; Du, Y.; Wang, J. Angew. Chem. Int. Ed. 2019, 131, 42. doi: 10.1002/ange.201906079  doi: 10.1002/ange.201906079

    30. [30]

      Zhang, X.; Wang, Y.; Gu, M.; Wang, M.; Zhang, Z. S.; Pan, W. Y.; Jiang, Z.; Zheng, H. Z.; Lucero, M.; Wang, H. L.; et al. Nat. Energy 2020, 5, 684. doi: 10.1038/s41560-020-0667-9  doi: 10.1038/s41560-020-0667-9

    31. [31]

      Yang, H. B.; Hung, S. -F.; Liu, S.; Yuan, K. D.; Miao, S.; Zhang, L. P.; Huang, X.; Wang, H. -Y.; Cai, W. Z.; Chen, R.; et al. Nat. Energy 2018, 3, 140. doi: 10.1038/s41560-017-0078-8  doi: 10.1038/s41560-017-0078-8

    32. [32]

      Yan, Y.; Gu, P.; Zheng, S. S.; Zheng, M. B.; Pang, H.; Xue, H. G. J. Mater. Chem. A 2016, 4, 19078. doi: 10.1 039/c6ta08331e  doi: 10.1039/c6ta08331e

    33. [33]

      Li, F.; Han, G. -F.; Noh, H. -J.; Kim, S. -J.; Lu, Y. L.; Jeong, H. Y.; Fu, Z. P.; Baek, J. -B. Energy Environ. Sci. 2018, 11, 2263. doi: 10.1039/C8EE01169A  doi: 10.1039/C8EE01169A

    34. [34]

      Miao, X.; Qu, D.; Yang, D.; Nie, B.; Zhao, Y.; Fan, H.; Su, Z. Adv. Mater. 2018, 30, 1704740. doi: 10.1002/adma.201704740  doi: 10.1002/adma.201704740

    35. [35]

      Zhao, Y.; Liang, J.; Wang, C.; Ma, J.; Wallace, G. G. Adv. Energy Mater. 2018, 8, 1702524.1. doi: 10.1002/aenm.201702524  doi: 10.1002/aenm.201702524

    36. [36]

      Wen, C. F.; Mao, F. X.; Liu, Y. W.; Zhang, X. Y.; Fu, H. Q.; Zheng, L. R.; Liu, P. F.; Yang, H. G. ACS Catal. 2020, 10, 1086. doi: 10.1021/acscatal.9b02978  doi: 10.1021/acscatal.9b02978

    37. [37]

      He, S.; Ji, D.; Zhang, J.; Novello, P.; Liu, J. J. Phys. Chem. B 2020, 3, 511. doi: 10.1021/acs.jpcb.9b09730  doi: 10.1021/acs.jpcb.9b09730

    38. [38]

      Lu, C.; Yang, J.; Wei, S.; Bi, S.; Xia, Y.; Chen, M.; Hou, Y.; Qiu, M.; Yuan, C.; Su, Y.; et al. Adv. Funct. Mater. 2019, 29, 1806884. doi: 10.1002/adfm.201806884  doi: 10.1002/adfm.201806884

    39. [39]

      Sa, Y. J.; Jung, H.; Shin, D.; Jeong, H. Y.; Ringe, S.; Kim, H.; Hwang, Y. J.; Joo, S. H. ACS Catal. 2020, 10, 10920. doi: 10.1021/acscatal.0c02325  doi: 10.1021/acscatal.0c02325

    40. [40]

      Gabardo, C. M.; Seifitokaldani, A.; Edwards, J. P.; Dinh, C. T.; Burdyny, T.; Kibria, M. G.; O'Brien, C. P.; Sargent, E. H.; Sinton, D. Energy Environ. Sci. 2018, 11, 2531. doi: 10.1039/C8EE01684D  doi: 10.1039/C8EE01684D

    41. [41]

      Gao, F. -Y.; Bao, R. -C.; Gao, M. -R.; Yu, S. -H. J. Mater. Chem. A 2020, 8, 15458. doi: 10.1039/D0TA03525D  doi: 10.1039/D0TA03525D

    42. [42]

      Seifitokaldani, A.; Gabardo, C. M.; Burdyny, T.; Dinh, C. T.; Edwards, J. P.; Kibria, M. G.; Bushuyev, O. S.; Kelley, S. O.; Sinton, D.; Sargent, E. H. J. Am. Chem. Soc. 2018, 140, 3833. doi: 10.1021/jacs.7b13542  doi: 10.1021/jacs.7b13542

  • 加载中
    1. [1]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    2. [2]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    3. [3]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    4. [4]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    5. [5]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    6. [6]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    7. [7]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    8. [8]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    9. [9]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    10. [10]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    11. [11]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    12. [12]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    13. [13]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    14. [14]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    15. [15]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    16. [16]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    17. [17]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    20. [20]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

Metrics
  • PDF Downloads(40)
  • Abstract views(1102)
  • HTML views(173)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return