Regulation of Electrocatalysts Based on Confinement-Induced Properties
- Corresponding author: Ding Wei, dingwei128@cqu.edu.cn Wei Zidong, zdwei@cqu.edu.cn
Citation: Zheng Tangfei, Jiang Jinxia, Wang Jian, Hu Sufang, Ding Wei, Wei Zidong. Regulation of Electrocatalysts Based on Confinement-Induced Properties[J]. Acta Physico-Chimica Sinica, ;2021, 37(11): 201102. doi: 10.3866/PKU.WHXB202011027
Yang, X. D.; Chen, C.; Zhou, Z. Y.; Sun, S. G. Acta Phys. -Chim. Sin. 2019, 35, 472.
doi: 10.3866/PKU.WHXB201806131
Li, M. G.; Xia, Z. H.; Huang, Y. R.; Tao, L.; Chao, Y. G.; Yin, K.; Yang, W. X.; Yang, W. W.; Yu, Y. S.; Guo, S. J. Acta Phys. -Chim. Sin. 2020, 36, 1912049.
doi: 10.3866/PKU.WHXB201912049
Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi:10.1126/science.1212741
doi: 10.1126/science.1212741
Xue, S.; Deng, W.; Yang, F.; Yang, J.; Amiinu, I. S.; He, D.; Tang, H.; Mu, S. ACS Catal. 2018, 8, 75. doi:10.1021/acscatal.8b00366
doi: 10.1021/acscatal.8b00366
Devrim, Y.; Pehlivanoğlu, K. Phys. Status Solidi A 2015, 12, 1256. doi: 10.1002/pssc.201510091
doi: 10.1002/pssc.201510091
Nelson, D. B.; Nehrir, M. H.; Wang, C. Renew Energy 2006, 31, 1641. doi: 10.1016/j.renene.2005.08.031
doi: 10.1016/j.renene.2005.08.031
Zhang, H.; Chang, X.; Chen, J. G.; Goddard, W. A.; Xu, B.; Cheng, M. J.; Lu, Q. Nat. Commun. 2019, 10, 3340. doi: 10.1038/s41467-019-11292-9
doi: 10.1038/s41467-019-11292-9
Chu, W.; Zheng, Q.; Prezhdo, O. V.; Zhao, J. J. Am. Chem. Soc. 2020, 142, 3214. doi: 10.1021/jacs.9b13280
doi: 10.1021/jacs.9b13280
Yao, Y.; Wang, H.; Yuan, X. Z.; Li, H.; Shao, M. ACS Energy Lett. 2019, 4, 1336. doi: 10.1021/acsenergylett.9b00699
doi: 10.1021/acsenergylett.9b00699
Liu, Y.; Li, Q.; Guo, X.; Kong, X.; Ke, J.; Chi, M.; Li, Q.; Geng, Z.; Zeng, J. Adv. Mater. 2020, 32, e1907690. doi: 10.1002/adma.201907690
doi: 10.1002/adma.201907690
Li, X.; Xie, J.; Rao, H.; Wang, C.; Tang, J. Angew. Chem. Int. Ed. 2020, 59, 19702. doi: 10.1002/anie.202007557
doi: 10.1002/anie.202007557
Zhong, R. L.; Sakaki, S. J. Am. Chem. Soc. 2020, 142, 16732. doi: 10.1021/jacs.0c07239
doi: 10.1021/jacs.0c07239
Zhao, T.; Hu, Y.; Gong, M.; Lin, R.; Deng, S.; Lu, Y.; Liu, X.; Chen, Y.; Shen, T.; Hu, Y.; et al. Nano Energy 2020, 74, 104877. doi: 10.1016/j.nanoen.2020.104877
doi: 10.1016/j.nanoen.2020.104877
Li, J.; Ghoshal, S.; Bates, M. K.; Miller, T. E.; Davies, V.; Stavitski, E.; Attenkofer, K.; Mukerjee, S.; Ma, Z. F.; Jia, Q.; et al. Angew. Chem. Int. Ed. 2017, 56, 15594. doi: 10.1002/anie.201708484
doi: 10.1002/anie.201708484
Zhong, L.; Li, S. ACS Catal. 2020, 10, 4313. doi: 10.1021/acscatal.0c00815
doi: 10.1021/acscatal.0c00815
Liu, Z.; Zhao, Z.; Peng, B.; Duan, X.; Huang, Y. J. Am. Chem. Soc. 2020, 142, 17812. doi: 10.1021/jacs.0c07696
doi: 10.1021/jacs.0c07696
McLoughlin, E. A.; Armstrong, K. C.; Waymouth, R. M. ACS Catal. 2020, 10, 11654. doi: 10.1021/acscatal.0c03240
doi: 10.1021/acscatal.0c03240
Zhang. J.; Liu, X.; Xing, A.; Liu, J. ACS Appl. Energy Mater. 2018, 1, 2758. doi: 10.1021/acsaem.8b00420
doi: 10.1021/acsaem.8b00420
Xiao, Y. Q.; Feng, C.; Fu, J.; Wang, F. Z.; Li, C. L.; Kunzelmann, V. F.; Jiang, C. M.; Nakabayashi, M.; Shibata, N.; Sharp, I. D.; et al. Nat. Catal. 2020, 3, 932. doi: 10.1038/s41929-020-00522-9
doi: 10.1038/s41929-020-00522-9
Yang, J. Wang, Z.; Jiang, J.; Chen, W.; Liao, F.; Ge, X.; Zhou, X.; Chen, M.; Li, R.; Xue, Z.; et al. Nano Energy 2020, 76, 105059. doi: 10.1016/j.nanoen.2020.105059
doi: 10.1016/j.nanoen.2020.105059
Zhou, S.; Yang, X.; Xu, X.; Dou, S. X.; Du, Y.; Zhao, J. J. Am. Chem. Soc. 2020, 142, 308. doi: 10.1021/jacs.9b10588
doi: 10.1021/jacs.9b10588
Wu, Y.; Cai, J.; Xie, Y. Adv. Mater. 2020, 32, e1904346. doi: 10.1002/adma.201904346
doi: 10.1002/adma.201904346
Lien, H. T.; Chang, S.; Chen, P.; Wong, D.; Chang, Y.; Lu, Y.; Dong, C.; Wang, C.; Chen, K.; Chen, L. Nat. Commun. 2020, 11, 4233. doi: 10.1038/s41467-020-17975-y
doi: 10.1038/s41467-020-17975-y
Garner, M.; Li, H.; Chen, Y.; Su, T.; Shangguan, Z.; Paley, D. W.; Liu, T.; Ng, F.; Li, H.; Xiao, S.; et al. Nature 2018, 558, 415. doi: 10.1038/s41586-018-0197-9
doi: 10.1038/s41586-018-0197-9
Eric G; D.; Jean-Marie A.; Amand A. L. J. Catal. 1988, 110, 58. doi: 10.1016/0021-9517(88)90297-7
doi: 10.1016/0021-9517(88)90297-7
Jeong, H. M.; Kwon, Y.; Won, J. H.; Lum, Y.; Cheng, M. J.; Kim, K. H.; Head Gordon, M.; Kang, J. K. Adv. Energy Mater. 2020, 10, 1903423. doi: 10.1002/aenm.201903423
doi: 10.1002/aenm.201903423
Yang, W.; Wang, H.; Liu, R.; Wang, J.; Zhang, C.; Li, C.; Zhong, D.; Lu, T. Angew. Chem. Int. Ed. 2020, doi: 10.1002/anie.202011068
doi: 10.1002/anie.202011068
Li, T.; Zhong, W.; Jing, C.; Li, X.; Zhang, T.; Jiang, C.; Chen, W. Environ. Sci. Technol. 2020, 54, 8658. doi: 10.1021/acs.est.9b07473
doi: 10.1021/acs.est.9b07473
Jiang, L.; Liu, K.; Hung, S.; Zhou, L.; Qin, R.; Zhang, Q.; Liu, P.; Gu, L.; Chen, H.; Fu, G.; Zheng, N. Nat. Nanotechnol. 2020, 15, 848. doi: 10.1038/s41565-020-0746-x
doi: 10.1038/s41565-020-0746-x
Pan, X.; Fan, L.; Chen, W.; Ding, J.; Luo, Y.; Bao, X. Nat. Mater. 2007, 6, 507. doi: 10.1038/nmat1916
doi: 10.1038/nmat1916
Pan, X.; Bao, X. Acc. Chem. Res. 2011, 44, 553. doi: 10.1021/ar100160t
doi: 10.1021/ar100160t
Deng, D.; Yu, L.; Chen, X.; Wang, G.; Jin, L.; Pan, X.; Deng, J.; Sun, G.; Bao, X. Angew. Chem. Int. Ed. 2013, 52, 371. doi: 10.1002/anie.201204958
doi: 10.1002/anie.201204958
Guan, J.; Pan, X.; Liu, X.; Bao, X. J. Phys. Chem. C. 2009, 113, 21687. doi: 10.1021/jp906092c
doi: 10.1021/jp906092c
Jiao, F.; Li, J.; Pan, X.; Xiao, J.; Li, H.; Ma, H.; Wei, M.; Pan, Y.; Zhou, Z.; Bao, X.; et al. Science 2016, 351, 1065. doi: 10.1126/science.aaf1835
doi: 10.1126/science.aaf1835
Bao, X. H. Chin. Sci. Bull. 2018, 63, 1266.
doi: 10.1360/N972018-00441
Bao, X. H. Sci. China Chem. 2012, 42, 355.
doi: 10.1360/032012-130
Fu, Q.; Li, W.; Yao, Y.; Liu, H.; Su, H.; Ma, D.; Gu, X. K.; Chen, L.; Wang, Z.; Zhang, H. Science 2010, 328, 1141. doi: 10.1126/science.1188267
doi: 10.1126/science.1188267
Klein J.; Kumacheva, E. Science 1995, 269, 816. doi: 10.1126/science.269.5225.816
doi: 10.1126/science.269.5225.816
Heuberger, M. Science 2001, 292, 905. doi: 10.1126/science.1058573
doi: 10.1126/science.1058573
Gersappe, D.; Zhu, S.; Liu, Y.; Rafailovich, M. H.; Sokolov, J.; Winesett, D. A.; Ade, H. Nature 1999, 400, 49. doi: 10.1038/21854
doi: 10.1038/21854
Fumagalli, L.; Esfandiar, A.; Fabregas, R.; Hu, S.; Ares, P.; Janardanan, A.; Watanabe, K.; Gomila, G.; Novoselov, K. S.; Geim, A. K.; et al. Science 2018, 360, 1339. doi: 10.1126/science.aat4191
doi: 10.1126/science.aat4191
Corma, A.; García, H.; Sastre, G.; Viruela, P. M. J. Phys. Chem. B 1997, 101, 4575. doi: 10.1021/jp9622593
doi: 10.1021/jp9622593
Wang, L.; Zhu, Y.; Wang, J.; Liu, F.; Huang, J.; Meng, X.; Basset, J. M.; Han, Y.; Xiao, F. S. Nat. Commun. 2015, 6, 6957. doi: 10.1038/ncomms7957
doi: 10.1038/ncomms7957
Mostafa Moujahid, E.; Besse, J. P.; Leroux, F. J. Mater. Chem. 2002, 12, 3324. doi: 10.1039/B205837P
doi: 10.1039/B205837P
Yuan, K.; Zhuang, X.; Fu, H.; Brunklaus, G.; Forster, M.; Chen, Y.; Feng, X.; Scherf, U. Angew. Chem. Int. Ed. 2016, 55, 6858. doi: 10.1002/anie.201600850
doi: 10.1002/anie.201600850
Xu, S.; Ren, Z.; Liu, X.; Liang, X.; Wang, K.; Chen, J. Energy Stor. Mater. 2018, 15, 291. doi: 10.1016/j.ensm.2018.05.015
doi: 10.1016/j.ensm.2018.05.015
Ding, W.; Wei, Z.; Chen, S.; Qi, X.; Yang, T.; Hu, J.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Angew. Chem. Int. Ed. 2013, 52, 11755. doi: 10.1002/anie.201303924
doi: 10.1002/anie.201303924
Li, W.; Ding, W.; Wu, G.; Liao, J.; Yao, N.; Qi, X.; Li, L.; Chen, S.; Wei, Z. Chem. Eng. Sci. 2015, 135, 45. doi: 10.1016/j.ces.2015.07.008
doi: 10.1016/j.ces.2015.07.008
Wang, H.; Yang, N.; Li, W.; Ding, W.; Chen, K.; Li, J.; Li, L.; Wang, J.; Jiang, J.; Wei, Z.; et al. ACS Energy Lett. 2018, 3, 1345. doi: 10.1021/acsenergylett.8b00522
doi: 10.1021/acsenergylett.8b00522
Zhu, H.; Xiao, C.; Cheng, H.; Grote, F.; Zhang, X.; Yao, T.; Li, Z.; Wei, S.; Lei, Y.; Xie, Y.; et al. Nat. Commun. 2014, 5, 3960. doi: 10.1038/ncomms4960
doi: 10.1038/ncomms4960
Li, Y.; Wang, Y.; Lu, J.; Yang, B.; San, X.; Wu, Z. Nano Energy 2020, 78, 105185. doi: 10.1016/j.nanoen.2020.105185
doi: 10.1016/j.nanoen.2020.105185
Zeng, Z.; Su, Y.; Quan, X.; Choi, W.; Zhang, G.; Liu, N.; Kim, B.; Chen, S.; Yu, H.; Zhang, S. Nano Energy 2020, 69, 104409. doi: 10.1016/j.nanoen.2019.104409
doi: 10.1016/j.nanoen.2019.104409
Jiang, J.; Ding, W.; Li, W.; Wei, Z. Chem 2019, 6, 431. doi: 10.1016/j.chempr.2019.11.003
doi: 10.1016/j.chempr.2019.11.003
Ding, W.; Li, L.; Xiong, K.; Wang, Y.; Li, W.; Nie, Y.; Chen, S.; Qi, X.; Wei, Z. J. Am. Chem. Soc. 2015, 137, 5414. doi: 10.1021/jacs.5b00292
doi: 10.1021/jacs.5b00292
Li, W.; Ding, W.; Jiang, J.; He, Q.; Tao, S.; Wang, W.; Li, J.; Wei, Z. J. Mater. Chem. A 2018, 6, 878. doi: 10.1039/C7TA09435C
doi: 10.1039/C7TA09435C
Li, J.; Chen, S.; Li, W.; Wu, R.; Ibraheem, S.; Li, J.; Ding, W.; Li, L.; Wei, Z. J. Mater. Chem. A 2018, 6, 15504. doi: 10.1039/C8TA05419C
doi: 10.1039/C8TA05419C
Li, X.; Guan, B. Y.; Gao, S.; Lou, X. W. Energy Environ. Sci. 2019, 12, 648. doi: 10.1039/C8EE02779J
doi: 10.1039/C8EE02779J
Najam, T.; Shah, S. S. A.; Ding, W.; Jiang, J.; Jia, L.; Yao, W.; Li, L.; Wei, Z. Angew. Chem. Int. Ed. 2018, 57, 15101. doi: 10.1002/anie.201808383
doi: 10.1002/anie.201808383
Wu, G.; Wang, J.; Ding, W.; Nie, Y.; Li, L.; Qi, X.; Chen, S.; Wei, Z. Angew. Chem. Int. Ed. 2016, 55, 1340. doi: 10.1002/anie.201508809
doi: 10.1002/anie.201508809
Zhou, Y.; Xie, Z.; Jiang, J.; Wang, J.; Song, X.; He, Q.; Ding, W.; Wei, Z. Nat. Catal. 2020, 3, 454. doi: 10.1038/s41929-020-0446-9
doi: 10.1038/s41929-020-0446-9
Jiang, J.; Tao, S.; He, Q.; Wang, J.; Zhou, Y.; Xie, Z.; Ding, W.; Wei, Z. J. Mater. Chem. A 2020, 20, 10168. doi: 10.1039/D0TA02528C
doi: 10.1039/D0TA02528C
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
Ming Li , Zhaoyin Li , Mengzhu Liu , Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085
Quanguo Zhai , Peng Zhang , Wenyu Yuan , Ying Wang , Shu'ni Li , Mancheng Hu , Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028