Citation: Zheng Tangfei, Jiang Jinxia, Wang Jian, Hu Sufang, Ding Wei, Wei Zidong. Regulation of Electrocatalysts Based on Confinement-Induced Properties[J]. Acta Physico-Chimica Sinica, ;2021, 37(11): 201102. doi: 10.3866/PKU.WHXB202011027 shu

Regulation of Electrocatalysts Based on Confinement-Induced Properties

  • Corresponding author: Ding Wei, dingwei128@cqu.edu.cn Wei Zidong, zdwei@cqu.edu.cn
  • Received Date: 6 November 2020
    Revised Date: 29 November 2020
    Accepted Date: 30 November 2020
    Available Online: 7 December 2020

    Fund Project: the National Natural Science Foundation of China 21776024the National Natural Science Foundation of China 22022502the Outstanding Youth Fund Project of Chongqing Natural Science Foundation cstc2020jcy jjqX0013the Program for the Top Young Innovative Talents of Chongqing 02200011130003The project was supported by the National Natural Science Foundation of China (22022502, 21776024), the Outstanding Youth Fund Project of Chongqing Natural Science Foundation (cstc2020jcy jjqX0013) and the Program for the Top Young Innovative Talents of Chongqing (02200011130003)

  • The development of highly efficient and low-cost electrocatalysts is important for both hydrogen- and carbon-based energy technologies. The electronic structure and coordination features, particularly the coordination environment and the amount of low-coordination atoms, of the catalyst are key factors that determine their catalytic activity and stability in a particular reaction. The regulation and rational design of catalytic materials at the molecular and atomic levels are crucial to achieving precise chemical synthesis at the atomic scale. Recently, significant efforts have been made to engineer coordination features and electronic structures by reducing the particle size, tuning the composition of the edges, and exposing specific planes of crystals. Among these representative strategies, the methods based on the confinement effect are most effective for achieving precise chemical synthesis with atomic precision at the molecular and atomic levels. Under molecular or atomic scale confinement, the physicochemical properties are largely altered, and the chemical reactions as well as the catalytic process are completely changed. The unique spatial and dimensional properties of the confinement regulate the molecular structure, atomic arrangement, electron transfer, and other properties of matter in space. It not only adjusts the coordination environments to control the formation mechanism of active centers, but also influences the structural and electronic properties of electrocatalysts. Therefore, the adsorption of catalytic intermediates is altered, and consequently, the catalytic activity and selectivity are changed. In a confined reaction, usually in suitable nano-reactors, the physicochemical properties of reaction products, such as the state of matter, solubility, dielectric constant, and molecular orbital, are finely modulated. Thus, the catalysts produced by confinement significantly differ from those produced in an open system. For example, atomic-layered metals with low coordination can be produced in a two-dimensional confined space. The nitrogen configurations of nitrogen-doped graphene can also be regulated in two-dimensional or three-dimensional confined systems. Herein, the confinement-induced methods, specifically the method used for atomic regulation, are reviewed, such as the control of molecular configuration, the modification of the coordination structure, and the alteration of charge transfer. Applications in the field of fuel cells and material energy conversion are also reviewed. In the next stage, it is important to conduct in-depth investigations of the constructed confinement environment by selecting different substrates for the regulation and rational design of confined catalytic materials. The investigation of the derived properties of the catalyst after release from the confinement is crucial for the development of uncommon catalytic properties.
  • 加载中
    1. [1]

      Yang, X. D.; Chen, C.; Zhou, Z. Y.; Sun, S. G. Acta Phys. -Chim. Sin. 2019, 35, 472.  doi: 10.3866/PKU.WHXB201806131

    2. [2]

      Li, M. G.; Xia, Z. H.; Huang, Y. R.; Tao, L.; Chao, Y. G.; Yin, K.; Yang, W. X.; Yang, W. W.; Yu, Y. S.; Guo, S. J. Acta Phys. -Chim. Sin. 2020, 36, 1912049.  doi: 10.3866/PKU.WHXB201912049

    3. [3]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi:10.1126/science.1212741  doi: 10.1126/science.1212741

    4. [4]

      Xue, S.; Deng, W.; Yang, F.; Yang, J.; Amiinu, I. S.; He, D.; Tang, H.; Mu, S. ACS Catal. 2018, 8, 75. doi:10.1021/acscatal.8b00366  doi: 10.1021/acscatal.8b00366

    5. [5]

      Devrim, Y.; Pehlivanoğlu, K. Phys. Status Solidi A 2015, 12, 1256. doi: 10.1002/pssc.201510091  doi: 10.1002/pssc.201510091

    6. [6]

      Nelson, D. B.; Nehrir, M. H.; Wang, C. Renew Energy 2006, 31, 1641. doi: 10.1016/j.renene.2005.08.031  doi: 10.1016/j.renene.2005.08.031

    7. [7]

      Zhang, H.; Chang, X.; Chen, J. G.; Goddard, W. A.; Xu, B.; Cheng, M. J.; Lu, Q. Nat. Commun. 2019, 10, 3340. doi: 10.1038/s41467-019-11292-9  doi: 10.1038/s41467-019-11292-9

    8. [8]

      Chu, W.; Zheng, Q.; Prezhdo, O. V.; Zhao, J. J. Am. Chem. Soc. 2020, 142, 3214. doi: 10.1021/jacs.9b13280  doi: 10.1021/jacs.9b13280

    9. [9]

      Yao, Y.; Wang, H.; Yuan, X. Z.; Li, H.; Shao, M. ACS Energy Lett. 2019, 4, 1336. doi: 10.1021/acsenergylett.9b00699  doi: 10.1021/acsenergylett.9b00699

    10. [10]

      Liu, Y.; Li, Q.; Guo, X.; Kong, X.; Ke, J.; Chi, M.; Li, Q.; Geng, Z.; Zeng, J. Adv. Mater. 2020, 32, e1907690. doi: 10.1002/adma.201907690  doi: 10.1002/adma.201907690

    11. [11]

      Li, X.; Xie, J.; Rao, H.; Wang, C.; Tang, J. Angew. Chem. Int. Ed. 2020, 59, 19702. doi: 10.1002/anie.202007557  doi: 10.1002/anie.202007557

    12. [12]

      Zhong, R. L.; Sakaki, S. J. Am. Chem. Soc. 2020, 142, 16732. doi: 10.1021/jacs.0c07239  doi: 10.1021/jacs.0c07239

    13. [13]

      Zhao, T.; Hu, Y.; Gong, M.; Lin, R.; Deng, S.; Lu, Y.; Liu, X.; Chen, Y.; Shen, T.; Hu, Y.; et al. Nano Energy 2020, 74, 104877. doi: 10.1016/j.nanoen.2020.104877  doi: 10.1016/j.nanoen.2020.104877

    14. [14]

      Li, J.; Ghoshal, S.; Bates, M. K.; Miller, T. E.; Davies, V.; Stavitski, E.; Attenkofer, K.; Mukerjee, S.; Ma, Z. F.; Jia, Q.; et al. Angew. Chem. Int. Ed. 2017, 56, 15594. doi: 10.1002/anie.201708484  doi: 10.1002/anie.201708484

    15. [15]

      Zhong, L.; Li, S. ACS Catal. 2020, 10, 4313. doi: 10.1021/acscatal.0c00815  doi: 10.1021/acscatal.0c00815

    16. [16]

      Liu, Z.; Zhao, Z.; Peng, B.; Duan, X.; Huang, Y. J. Am. Chem. Soc. 2020, 142, 17812. doi: 10.1021/jacs.0c07696  doi: 10.1021/jacs.0c07696

    17. [17]

      McLoughlin, E. A.; Armstrong, K. C.; Waymouth, R. M. ACS Catal. 2020, 10, 11654. doi: 10.1021/acscatal.0c03240  doi: 10.1021/acscatal.0c03240

    18. [18]

      Zhang. J.; Liu, X.; Xing, A.; Liu, J. ACS Appl. Energy Mater. 2018, 1, 2758. doi: 10.1021/acsaem.8b00420  doi: 10.1021/acsaem.8b00420

    19. [19]

      Xiao, Y. Q.; Feng, C.; Fu, J.; Wang, F. Z.; Li, C. L.; Kunzelmann, V. F.; Jiang, C. M.; Nakabayashi, M.; Shibata, N.; Sharp, I. D.; et al. Nat. Catal. 2020, 3, 932. doi: 10.1038/s41929-020-00522-9  doi: 10.1038/s41929-020-00522-9

    20. [20]

      Yang, J. Wang, Z.; Jiang, J.; Chen, W.; Liao, F.; Ge, X.; Zhou, X.; Chen, M.; Li, R.; Xue, Z.; et al. Nano Energy 2020, 76, 105059. doi: 10.1016/j.nanoen.2020.105059  doi: 10.1016/j.nanoen.2020.105059

    21. [21]

      Zhou, S.; Yang, X.; Xu, X.; Dou, S. X.; Du, Y.; Zhao, J. J. Am. Chem. Soc. 2020, 142, 308. doi: 10.1021/jacs.9b10588  doi: 10.1021/jacs.9b10588

    22. [22]

      Wu, Y.; Cai, J.; Xie, Y. Adv. Mater. 2020, 32, e1904346. doi: 10.1002/adma.201904346  doi: 10.1002/adma.201904346

    23. [23]

      Lien, H. T.; Chang, S.; Chen, P.; Wong, D.; Chang, Y.; Lu, Y.; Dong, C.; Wang, C.; Chen, K.; Chen, L. Nat. Commun. 2020, 11, 4233. doi: 10.1038/s41467-020-17975-y  doi: 10.1038/s41467-020-17975-y

    24. [24]

      Garner, M.; Li, H.; Chen, Y.; Su, T.; Shangguan, Z.; Paley, D. W.; Liu, T.; Ng, F.; Li, H.; Xiao, S.; et al. Nature 2018, 558, 415. doi: 10.1038/s41586-018-0197-9  doi: 10.1038/s41586-018-0197-9

    25. [25]

      Eric G; D.; Jean-Marie A.; Amand A. L. J. Catal. 1988, 110, 58. doi: 10.1016/0021-9517(88)90297-7  doi: 10.1016/0021-9517(88)90297-7

    26. [26]

      Jeong, H. M.; Kwon, Y.; Won, J. H.; Lum, Y.; Cheng, M. J.; Kim, K. H.; Head Gordon, M.; Kang, J. K. Adv. Energy Mater. 2020, 10, 1903423. doi: 10.1002/aenm.201903423  doi: 10.1002/aenm.201903423

    27. [27]

      Yang, W.; Wang, H.; Liu, R.; Wang, J.; Zhang, C.; Li, C.; Zhong, D.; Lu, T. Angew. Chem. Int. Ed. 2020, doi: 10.1002/anie.202011068  doi: 10.1002/anie.202011068

    28. [28]

      Li, T.; Zhong, W.; Jing, C.; Li, X.; Zhang, T.; Jiang, C.; Chen, W. Environ. Sci. Technol. 2020, 54, 8658. doi: 10.1021/acs.est.9b07473  doi: 10.1021/acs.est.9b07473

    29. [29]

      Jiang, L.; Liu, K.; Hung, S.; Zhou, L.; Qin, R.; Zhang, Q.; Liu, P.; Gu, L.; Chen, H.; Fu, G.; Zheng, N. Nat. Nanotechnol. 2020, 15, 848. doi: 10.1038/s41565-020-0746-x  doi: 10.1038/s41565-020-0746-x

    30. [30]

      Pan, X.; Fan, L.; Chen, W.; Ding, J.; Luo, Y.; Bao, X. Nat. Mater. 2007, 6, 507. doi: 10.1038/nmat1916  doi: 10.1038/nmat1916

    31. [31]

      Pan, X.; Bao, X. Acc. Chem. Res. 2011, 44, 553. doi: 10.1021/ar100160t  doi: 10.1021/ar100160t

    32. [32]

      Deng, D.; Yu, L.; Chen, X.; Wang, G.; Jin, L.; Pan, X.; Deng, J.; Sun, G.; Bao, X. Angew. Chem. Int. Ed. 2013, 52, 371. doi: 10.1002/anie.201204958  doi: 10.1002/anie.201204958

    33. [33]

      Guan, J.; Pan, X.; Liu, X.; Bao, X. J. Phys. Chem. C. 2009, 113, 21687. doi: 10.1021/jp906092c  doi: 10.1021/jp906092c

    34. [34]

      Jiao, F.; Li, J.; Pan, X.; Xiao, J.; Li, H.; Ma, H.; Wei, M.; Pan, Y.; Zhou, Z.; Bao, X.; et al. Science 2016, 351, 1065. doi: 10.1126/science.aaf1835  doi: 10.1126/science.aaf1835

    35. [35]

      Bao, X. H. Chin. Sci. Bull. 2018, 63, 1266.  doi: 10.1360/N972018-00441

    36. [36]

      Bao, X. H. Sci. China Chem. 2012, 42, 355.  doi: 10.1360/032012-130

    37. [37]

      Fu, Q.; Li, W.; Yao, Y.; Liu, H.; Su, H.; Ma, D.; Gu, X. K.; Chen, L.; Wang, Z.; Zhang, H. Science 2010, 328, 1141. doi: 10.1126/science.1188267  doi: 10.1126/science.1188267

    38. [38]

      Klein J.; Kumacheva, E. Science 1995, 269, 816. doi: 10.1126/science.269.5225.816  doi: 10.1126/science.269.5225.816

    39. [39]

      Heuberger, M. Science 2001, 292, 905. doi: 10.1126/science.1058573  doi: 10.1126/science.1058573

    40. [40]

      Gersappe, D.; Zhu, S.; Liu, Y.; Rafailovich, M. H.; Sokolov, J.; Winesett, D. A.; Ade, H. Nature 1999, 400, 49. doi: 10.1038/21854  doi: 10.1038/21854

    41. [41]

      Fumagalli, L.; Esfandiar, A.; Fabregas, R.; Hu, S.; Ares, P.; Janardanan, A.; Watanabe, K.; Gomila, G.; Novoselov, K. S.; Geim, A. K.; et al. Science 2018, 360, 1339. doi: 10.1126/science.aat4191  doi: 10.1126/science.aat4191

    42. [42]

      Corma, A.; García, H.; Sastre, G.; Viruela, P. M. J. Phys. Chem. B 1997, 101, 4575. doi: 10.1021/jp9622593  doi: 10.1021/jp9622593

    43. [43]

      Wang, L.; Zhu, Y.; Wang, J.; Liu, F.; Huang, J.; Meng, X.; Basset, J. M.; Han, Y.; Xiao, F. S. Nat. Commun. 2015, 6, 6957. doi: 10.1038/ncomms7957  doi: 10.1038/ncomms7957

    44. [44]

      Mostafa Moujahid, E.; Besse, J. P.; Leroux, F. J. Mater. Chem. 2002, 12, 3324. doi: 10.1039/B205837P  doi: 10.1039/B205837P

    45. [45]

      Yuan, K.; Zhuang, X.; Fu, H.; Brunklaus, G.; Forster, M.; Chen, Y.; Feng, X.; Scherf, U. Angew. Chem. Int. Ed. 2016, 55, 6858. doi: 10.1002/anie.201600850  doi: 10.1002/anie.201600850

    46. [46]

      Xu, S.; Ren, Z.; Liu, X.; Liang, X.; Wang, K.; Chen, J. Energy Stor. Mater. 2018, 15, 291. doi: 10.1016/j.ensm.2018.05.015  doi: 10.1016/j.ensm.2018.05.015

    47. [47]

      Ding, W.; Wei, Z.; Chen, S.; Qi, X.; Yang, T.; Hu, J.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Angew. Chem. Int. Ed. 2013, 52, 11755. doi: 10.1002/anie.201303924  doi: 10.1002/anie.201303924

    48. [48]

      Li, W.; Ding, W.; Wu, G.; Liao, J.; Yao, N.; Qi, X.; Li, L.; Chen, S.; Wei, Z. Chem. Eng. Sci. 2015, 135, 45. doi: 10.1016/j.ces.2015.07.008  doi: 10.1016/j.ces.2015.07.008

    49. [49]

      Wang, H.; Yang, N.; Li, W.; Ding, W.; Chen, K.; Li, J.; Li, L.; Wang, J.; Jiang, J.; Wei, Z.; et al. ACS Energy Lett. 2018, 3, 1345. doi: 10.1021/acsenergylett.8b00522  doi: 10.1021/acsenergylett.8b00522

    50. [50]

      Zhu, H.; Xiao, C.; Cheng, H.; Grote, F.; Zhang, X.; Yao, T.; Li, Z.; Wei, S.; Lei, Y.; Xie, Y.; et al. Nat. Commun. 2014, 5, 3960. doi: 10.1038/ncomms4960  doi: 10.1038/ncomms4960

    51. [51]

      Li, Y.; Wang, Y.; Lu, J.; Yang, B.; San, X.; Wu, Z. Nano Energy 2020, 78, 105185. doi: 10.1016/j.nanoen.2020.105185  doi: 10.1016/j.nanoen.2020.105185

    52. [52]

      Zeng, Z.; Su, Y.; Quan, X.; Choi, W.; Zhang, G.; Liu, N.; Kim, B.; Chen, S.; Yu, H.; Zhang, S. Nano Energy 2020, 69, 104409. doi: 10.1016/j.nanoen.2019.104409  doi: 10.1016/j.nanoen.2019.104409

    53. [53]

      Jiang, J.; Ding, W.; Li, W.; Wei, Z. Chem 2019, 6, 431. doi: 10.1016/j.chempr.2019.11.003  doi: 10.1016/j.chempr.2019.11.003

    54. [54]

      Ding, W.; Li, L.; Xiong, K.; Wang, Y.; Li, W.; Nie, Y.; Chen, S.; Qi, X.; Wei, Z. J. Am. Chem. Soc. 2015, 137, 5414. doi: 10.1021/jacs.5b00292  doi: 10.1021/jacs.5b00292

    55. [55]

      Li, W.; Ding, W.; Jiang, J.; He, Q.; Tao, S.; Wang, W.; Li, J.; Wei, Z. J. Mater. Chem. A 2018, 6, 878. doi: 10.1039/C7TA09435C  doi: 10.1039/C7TA09435C

    56. [56]

      Li, J.; Chen, S.; Li, W.; Wu, R.; Ibraheem, S.; Li, J.; Ding, W.; Li, L.; Wei, Z. J. Mater. Chem. A 2018, 6, 15504. doi: 10.1039/C8TA05419C  doi: 10.1039/C8TA05419C

    57. [57]

      Li, X.; Guan, B. Y.; Gao, S.; Lou, X. W. Energy Environ. Sci. 2019, 12, 648. doi: 10.1039/C8EE02779J  doi: 10.1039/C8EE02779J

    58. [58]

      Najam, T.; Shah, S. S. A.; Ding, W.; Jiang, J.; Jia, L.; Yao, W.; Li, L.; Wei, Z. Angew. Chem. Int. Ed. 2018, 57, 15101. doi: 10.1002/anie.201808383  doi: 10.1002/anie.201808383

    59. [59]

      Wu, G.; Wang, J.; Ding, W.; Nie, Y.; Li, L.; Qi, X.; Chen, S.; Wei, Z. Angew. Chem. Int. Ed. 2016, 55, 1340. doi: 10.1002/anie.201508809  doi: 10.1002/anie.201508809

    60. [60]

      Zhou, Y.; Xie, Z.; Jiang, J.; Wang, J.; Song, X.; He, Q.; Ding, W.; Wei, Z. Nat. Catal. 2020, 3, 454. doi: 10.1038/s41929-020-0446-9  doi: 10.1038/s41929-020-0446-9

    61. [61]

      Jiang, J.; Tao, S.; He, Q.; Wang, J.; Zhou, Y.; Xie, Z.; Ding, W.; Wei, Z. J. Mater. Chem. A 2020, 20, 10168. doi: 10.1039/D0TA02528C  doi: 10.1039/D0TA02528C

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    4. [4]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    8. [8]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    9. [9]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    10. [10]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(26)
  • Abstract views(1530)
  • HTML views(347)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return