Gas-Phase Mechanism Study of Methane Nonoxidative Conversion by ReaxFF Method
- Corresponding author: Chang Chunran, changcr@mail.xjtu.edu.cn
Citation: Liu Yuan, Duan Zenghui, Li Jun, Chang Chunran. Gas-Phase Mechanism Study of Methane Nonoxidative Conversion by ReaxFF Method[J]. Acta Physico-Chimica Sinica, ;2021, 37(11): 201101. doi: 10.3866/PKU.WHXB202011012
Amos, R. D. Mol. Phys. 1979, 38, 33. doi: 10.1080/00268977900101511
doi: 10.1080/00268977900101511
Zhan, C. G.; Nichols, J. A.; Dixon, D. A. J. Phys. Chem. A 2003, 107, 4184. doi: 10.1021/jp0225774
doi: 10.1021/jp0225774
Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, 2007; pp. 19–145.
Lunsford, J. H. Catal. Today 2000, 63, 165. doi: 10.1016/S0920-5861(00)00456-9
doi: 10.1016/S0920-5861(00)00456-9
Schwarz, H. Angew. Chem. Int. Ed. 2011, 50, 10096. doi: 10.1002/anie.201006424
doi: 10.1002/anie.201006424
Tang, P.; Zhu, Q. J.; Wu, Z. X.; Ma, D. Energy Environ. Sci. 2014, 7, 2580. doi: 10.1039/c4ee00604f
doi: 10.1039/c4ee00604f
Weaver, J. F.; Hakanoglu, C.; Antony, A.; Asthagiri, A. Chem. Soc. Rev. 2014, 43, 7536. doi: 10.1039/c3cs60420a
doi: 10.1039/c3cs60420a
Spivey, J. J.; Hutchings, G. Chem. Soc. Rev. 2014, 43, 792. doi: 10.1039/c3cs60259a
doi: 10.1039/c3cs60259a
Horn, R.; Schlogl, R. Catal. Lett. 2015, 145, 23. doi: 10.1007/s10562-014-1417-z
doi: 10.1007/s10562-014-1417-z
Zhao, Z. J.; Chiu, C. C.; Gong, J. L. Chem. Sci. 2015, 6, 4403. doi: 10.1039/c5sc01227a
doi: 10.1039/c5sc01227a
Olivos-Suarez, A. I.; Szecsenyi, A.; Hensen, E. J. M.; Ruiz-Martinez, J.; Pidko, E. A.; Gascon, J. ACS Catal. 2016, 6, 2965. doi: 10.1021/acscatal.6b00428
doi: 10.1021/acscatal.6b00428
Schwach, P.; Pan, X. L.; Bao, X. H. Chem. Rev. 2017, 117, 8497. doi: 10.1021/acs.chemrev.6b00715
doi: 10.1021/acs.chemrev.6b00715
Vernon, P. D. F.; Green, M. L. H.; Cheetham, A. K.; Ashcroft, A. T. Catal. Today 1992, 13, 417. doi: 10.1016/0920-5861(92)80167-L
doi: 10.1016/0920-5861(92)80167-L
York, A. P. E.; Xiao, T. C.; Green, M. L. H. Top. Catal. 2003, 22, 345. doi: 10.1023/A:1023552709642
doi: 10.1023/A:1023552709642
Jones, G.; Jakobsen, J. G.; Shim, S. S.; Kleis, J.; Andersson, M. P.; Rossmeisl, J.; Abild-Pedersen, F.; Bligaard, T.; Helveg, S.; Hinnemann, B.; et al. J. Catal. 2008, 259, 147. doi: 10.1016/j.jcat.2008.08.003
doi: 10.1016/j.jcat.2008.08.003
Li, D. L.; Nakagawa, Y.; Tomishige, K. Appl. Catal. A 2011, 408, 1. doi: 10.1016/j.apcata.2011.09.018
doi: 10.1016/j.apcata.2011.09.018
Pakhare, D.; Spivey, J. Chem. Soc. Rev. 2014, 43, 7813. doi: 10.1039/c3cs60395d
doi: 10.1039/c3cs60395d
Keller, G. E.; Bhasin, M. M. J. Catal. 1982, 73, 9. doi: 10.1016/0021-9517(82)90075-6
doi: 10.1016/0021-9517(82)90075-6
Ito, T.; Wang, J. X.; Lin, C. H.; Lunsford, J. H. J. Am. Chem. Soc. 1985, 107, 5062. doi: 10.1021/ja00304a008
doi: 10.1021/ja00304a008
Hutchings, G. J.; Scurrell, M. S.; Woodhouse, J. R. Chem. Soc. Rev. 1989, 18, 251. doi: 10.1039/cs9891800251
doi: 10.1039/cs9891800251
Lunsford, J. H. Angew. Chem. Int. Ed. 1995, 34, 970. doi: 10.1002/anie.199509701
doi: 10.1002/anie.199509701
Groothaert, M. H.; Smeets, P. J.; Sels, B. F.; Jacobs, P. A.; Schoonheydt, R. A. J. Am. Chem. Soc. 2005, 127, 1394. doi: 10.1021/ja047158u
doi: 10.1021/ja047158u
Palkovits, R.; Antonietti, M.; Kuhn, P.; Thomas, A.; Schuth, F. Angew. Chem. Int. Ed. 2009, 48, 6909. doi: 10.1002/anie.200902009
doi: 10.1002/anie.200902009
Kwapien, K.; Paier, J.; Sauer, J.; Geske, M.; Zavyalova, U.; Horn, R.; Schwach, P.; Trunschke, A.; Schlogl, R. Angew. Chem. Int. Ed. 2014, 53, 8774. doi: 10.1002/anie.201310632
doi: 10.1002/anie.201310632
Grundner, S.; Markovits, M. A. C.; Li, G.; Tromp, M.; Pidko, E. A.; Hensen, E. J. M.; Jentys, A.; Sanchez-Sanchez, M.; Lercher, J. A. Nat. Commun. 2015, 6, 7546. doi: 10.1038/ncomms8546
doi: 10.1038/ncomms8546
Ikuno, T.; Zheng, J.; Vjunov, A.; Sanchez-Sanchez, M.; Ortuno, M. A.; Pahls, D. R.; Fulton, J. L.; Camaioni, D. M.; Li, Z. Y.; Ray, D.; et al. J. Am. Chem. Soc. 2017, 139, 10294. doi: 10.1021/jacs.7b02936
doi: 10.1021/jacs.7b02936
Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; van Bokhoven, J. A. Science 2017, 356, 523. doi: 10.1126/science.aam9035
doi: 10.1126/science.aam9035
Wang, P. W.; Zhao, G. F.; Wang, Y.; Lu, Y. Sci. Adv. 2017, 3, e1603180. doi: 10.1126/sciadv.1603180
doi: 10.1126/sciadv.1603180
Xie, J. J.; Jin, R. X.; Li, A.; Bi, Y. P.; Ruan, Q. S.; Deng, Y. C.; Zhang, Y. J.; Yao, S. Y.; Sankar, G.; Ma, D.; et al. Nat. Catal. 2018, 1, 889. doi: 10.1038/s41929-018-0170-x
doi: 10.1038/s41929-018-0170-x
Wang, L. S.; Tao, L. X.; Xie, M. S.; Xu, G. F.; Huang, J. S.; Xu, Y. D. Catal. Lett. 1993, 21, 35. doi: 10.1007/BF00767368
doi: 10.1007/BF00767368
Weckhuysen, B. M.; Wang, D. J.; Rosynek, M. P.; Lunsford, J. H. Angew. Chem. Int. Ed. 1997, 36, 2374. doi: 10.1002/anie.199723741
doi: 10.1002/anie.199723741
Zhang, C. L.; Li, S. A.; Yuan, Y.; Zhang, W. X.; Wu, T. H.; Lin, L. W. Catal. Lett. 1998, 56, 207. doi: 10.1023/A:1019046104593
doi: 10.1023/A:1019046104593
Weckhuysen, B. M.; Wang, D. J.; Rosynek, M. P.; Lunsford, J. H. J. Catal. 1998, 175, 338. doi: 10.1006/jcat.1998.2010
doi: 10.1006/jcat.1998.2010
Xu, Y. D.; Lin, L. W. Appl. Catal. A 1999, 188, 53. doi: 10.1016/S0926-860x(99)00210-0
doi: 10.1016/S0926-860x(99)00210-0
Liu, S. T.; Wang, L.; Ohnishi, R.; Ichikawa, M. J. Catal. 1999, 181, 175. doi: 10.1006/jcat.1998.2310
doi: 10.1006/jcat.1998.2310
Ma, D.; Shu, Y. Y.; Han, X. W.; Liu, X. M.; Xu, Y. D.; Bao, X. H. J. Phys. Chem. B 2001, 105, 1786. doi: 10.1021/jp002011k
doi: 10.1021/jp002011k
Su, L. L.; Ma, D.; Liu, X. M.; Xu, Y. D.; Bao, X. H. Chin. J. Catal. 2002, 23, 41. doi: 10.3321/j.issn:0253-9837.2002.01.010
doi: 10.3321/j.issn:0253-9837.2002.01.010
Xu, Y. D.; Bao, X. H.; Lin, L. W. J. Catal. 2003, 216, 386. doi: 10.1016/S0021-9517(02)00124-0
doi: 10.1016/S0021-9517(02)00124-0
Su, L. L.; Liu, L.; Zhuang, J. Q.; Wang, H. X.; Li, Y. G.; Shen, W. J.; Xu, Y. D.; Bao, X. H. Catal. Lett. 2003, 91, 155. doi: 10.1023/B:CATL.0000007149.48132.5a
doi: 10.1023/B:CATL.0000007149.48132.5a
Ismagilov, Z. R.; Matus, E. V.; Tsikoza, L. T. Energy Environ. Sci. 2008, 1, 526. doi: 10.1039/b810981h
doi: 10.1039/b810981h
Gao, J.; Zheng, Y. T.; Jehng, J. M.; Tang, Y. D.; Wachs, I. E.; Podkolzin, S. G. Science 2015, 348, 686. doi: 10.1126/science.aaa7048
doi: 10.1126/science.aaa7048
Sun, C. Y.; Fang, G. Z.; Guo, X. G.; Hu, Y. L.; Ma, S. Q.; Yang, T. H.; Han, J.; Ma, H.; Tan, D. L.; Bao, X. H. J. Energy Chem. 2015, 24, 257. doi: 10.1016/S2095-4956(15)60309-6
doi: 10.1016/S2095-4956(15)60309-6
Tan, P. L. J. Catal. 2016, 338, 21. doi: 10.1016/j.jcat.2016.01.027
doi: 10.1016/j.jcat.2016.01.027
Lai, Y.; Veser, G. Catal. Sci. Technol. 2016, 6, 5440. doi: 10.1039/c5cy02258d
doi: 10.1039/c5cy02258d
Sun, K. D.; Ginosar, D. M.; He, T.; Zhang, Y. L.; Fan, M. H.; Chen, R. P. Ind. Eng. Chem. Res. 2018, 57, 1768. doi: 10.1021/acs.iecr.7b04707
doi: 10.1021/acs.iecr.7b04707
Chen, Q.; Jiang, L. X.; Li, H. F.; Chen, J. J.; Zhao, Y. X.; He, S. G. Acta Phys. -Chim. Sin. 2019, 35, 1014.
doi: 10.3866/PKU.WHXB201811039
Wang, D.; Ding, X. L.; Liao, H. L.; Dai, J. Y. Acta Phys. -Chim. Sin. 2019, 35, 1005.
doi: 10.3866/PKU.WHXB201809006
Guo, X. G.; Fang, G. Z.; Li, G.; Ma, H.; Fan, H. J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. H.; Wei, M. M.; et al. Science 2014, 344, 616. doi: 10.1126/science.1253150
doi: 10.1126/science.1253150
Hao, J. Q.; Schwach, P.; Fang, G. Z.; Guo, X. G.; Zhang, H. L.; Shen, H.; Huang, X.; Eggart, D.; Pan, X. L.; Bao, X. H. ACS Catal. 2019, 9, 9045. doi: 10.1021/acscatal.9b01771
doi: 10.1021/acscatal.9b01771
Kim, S. K.; Kim, H. W.; Han, S. J.; Lee, S. W.; Shin, J.; Kim, Y. T. Commun. Chem. 2020, 3, 58. doi: 10.1038/s42004-020-0306-1
doi: 10.1038/s42004-020-0306-1
Liu, Y.; Liu, J. C.; Li, T. H.; Duan, Z. H.; Zhang, T. Y.; Yan, M.; Li, W. L.; Xiao, H.; Wang, Y. G.; Chang, C. R.; et al. Angew. Chem. Int. Ed. 2020, 59, 18586. doi: 10.1002/anie.202003908
doi: 10.1002/anie.202003908
van Duin, A. C. T.; Goddard, W. A.; Islam, M. M.; van Schoot, H.; Trnka, T.; Yakovlev, A. L. ReaxFF, 2017, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com
Martyna, G. J.; Klein, M. L.; Tuckerman, M. J. Chem. Phys. 1992, 97, 2635. doi: 10.1063/1.463940
doi: 10.1063/1.463940
Chenoweth, K.; van Duin, A. C. T.; Goddard, W. A. J. Phys. Chem. A 2008, 112, 1040. doi: 10.1021/jp709896w
doi: 10.1021/jp709896w
Dontgen, M.; Przybylski-Freund, M. D.; Kroger, L. C.; Kopp, W. A.; Ismail, A. E.; Leonhard, K. J. Chem. Theory Comput. 2015, 11, 2517. doi: 10.1021/acs.jctc.5b00201
doi: 10.1021/acs.jctc.5b00201
Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0401-8
doi: 10.1007/s00214-007-0401-8
Dunning, T. H. J. Chem. Phys. 1989, 90, 1007. doi: 10.1063/1.456153
doi: 10.1063/1.456153
Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910. doi: 10.1063/1.443164
doi: 10.1063/1.443164
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, 2013.
Yuanjiao Liu , Xiaoyang Zhao , Songyao Zhang , Yi Wang , Yutuo Zheng , Xinrui Miao , Wenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Shiyu Hou , Maolin Sun , Liming Cao , Chaoming Liang , Jiaxin Yang , Xinggui Zhou , Jinxing Ye , Ruihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761
Tao Ban , Xi-Yang Yu , Hai-Kuo Tian , Zheng-Qing Huang , Chun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Huimin Gao , Zhuochen Yu , Xuze Zhang , Xiangkun Yu , Jiyuan Xing , Youliang Zhu , Hu-Jun Qian , Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
Qijun Tang , Wenguang Tu , Yong Zhou , Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Junchuan Sun , Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330
Zixuan Guo , Xiaoshuai Han , Chunmei Zhang , Shuijian He , Kunming Liu , Jiapeng Hu , Weisen Yang , Shaoju Jian , Shaohua Jiang , Gaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007
Cunjun Li , Wencong Liu , Xianlei Chen , Liang Li , Shenyu Lan , Mingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652
Junhua Wang , Xin Lian , Xichuan Cao , Qiao Zhao , Baiyan Li , Xian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180
Yanling Yang , Zhenfa Ding , Huimin Wang , Jianhui Li , Yanping Zheng , Hongquan Guo , Li Zhang , Bing Yang , Qingqing Gu , Haifeng Xiong , Yifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350
Huipeng Zhao , Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246
Tao LIU , Yuting TIAN , Ke GAO , Xuwei HAN , Ru'nan MIN , Wenjing ZHAO , Xueyi SUN , Caixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107