Citation: Liu Yuan, Duan Zenghui, Li Jun, Chang Chunran. Gas-Phase Mechanism Study of Methane Nonoxidative Conversion by ReaxFF Method[J]. Acta Physico-Chimica Sinica, ;2021, 37(11): 201101. doi: 10.3866/PKU.WHXB202011012 shu

Gas-Phase Mechanism Study of Methane Nonoxidative Conversion by ReaxFF Method

  • Corresponding author: Chang Chunran, changcr@mail.xjtu.edu.cn
  • Received Date: 3 November 2020
    Revised Date: 25 November 2020
    Accepted Date: 26 November 2020
    Available Online: 3 December 2020

    Fund Project: the China Postdoctoral Science Foundation 2018M630139The project was supported by the National Natural Science Foundation of China (91645203, 22078257), the China Postdoctoral Science Foundation (2018T111034, 2018M630139), the Fundamental Research Funds for the Central Universities (xtr0218016, cxtd2017004), the Shaanxi Creative Talents Promotion Plan-Technological Innovation Team (2019TD-039), and the K. C. Wong Education Foundationthe National Natural Science Foundation of China 22078257the Fundamental Research Funds for the Central Universities xtr0218016the National Natural Science Foundation of China 91645203the Fundamental Research Funds for the Central Universities cxtd2017004the Shaanxi Creative Talents Promotion Plan-Technological Innovation Team 2019TD-039the China Postdoctoral Science Foundation 2018T111034

  • With the rapid consumption of petrochemical resources and massive exploitation of shale gas, the use of natural gas instead of petroleum to produce chemical raw materials has attracted significant attention. While converting methane to chemicals, it has long seemed impossible to avoid its oxidation into O-containing species, followed by de-oxygenation. A breakthrough in the nonoxidative conversion of methane was reported by Guo et al. (Science 2014, 344, 616), who found that Fe©SiO2 catalysts exhibited an outstanding performance in the conversion of methane to ethylene and aromatics. However, the reaction mechanism is still not clear owing to the complex experimental reaction conditions. One view of the reaction mechanism is that methane molecules are first activated on the Fe©SiC2 active center to form methyl radicals, which then desorb into the gas phase to form the ethylene and aromatics. In this study, ReaxFF methods are applied to five model systems to study the gas-phase reaction mechanism under near-experimental conditions. For the pure gas-phase methyl radical system, the main simulation product is ethane after 10 ns simulation, which is produced by the combination of methyl radicals. Although a small amount of ethylene produced by C2H6 dehydrogenation can be detected, it is difficult to explain the high selectivity for ethylene in the experiment. When the methyl radicals are mixed with hydrogen and methane molecules, ethane remains the main product, together with some methane produced by the collision of hydrogen with methyl radicals, while ethylene is still difficult to produce. With the addition of hydrogen radicals to the methane atmosphere, methane activation can be enhanced by hydrogen radical collisions, which produce some methyl radicals and hydrogen molecules, but the methyl radicals eventually combine with the hydrogen species to produce methane molecules again. If some hydrogen molecules and methyl radicals are added to the CH4/H∙ system, the activation of methane molecules by hydrogen radicals will be weakened. Hydrogen radicals are more likely to combine with themselves or with methyl radicals to form hydrogen and methane molecules, and the high selectivity for ethylene remains difficult to achieve. Thermal cracking of C10H12 at high temperature can produce hydrogen radicals and ethylene at the same time, which can partially explain the enhanced methane conversion and ethylene selectivity in the experiment of Hao et al. (ACS Catal. 2019, 9, 9045). Overall, the selective production of ethylene by nonoxidative conversion of methane over Fe©SiO2 catalyst appears hard to achieve via a gas-phase mechanism. The catalyst surface may play a key role in the entire process of methane transformation.
  • 加载中
    1. [1]

      Amos, R. D. Mol. Phys. 1979, 38, 33. doi: 10.1080/00268977900101511  doi: 10.1080/00268977900101511

    2. [2]

      Zhan, C. G.; Nichols, J. A.; Dixon, D. A. J. Phys. Chem. A 2003, 107, 4184. doi: 10.1021/jp0225774  doi: 10.1021/jp0225774

    3. [3]

      Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, 2007; pp. 19–145.

    4. [4]

      Lunsford, J. H. Catal. Today 2000, 63, 165. doi: 10.1016/S0920-5861(00)00456-9  doi: 10.1016/S0920-5861(00)00456-9

    5. [5]

      Schwarz, H. Angew. Chem. Int. Ed. 2011, 50, 10096. doi: 10.1002/anie.201006424  doi: 10.1002/anie.201006424

    6. [6]

      Tang, P.; Zhu, Q. J.; Wu, Z. X.; Ma, D. Energy Environ. Sci. 2014, 7, 2580. doi: 10.1039/c4ee00604f  doi: 10.1039/c4ee00604f

    7. [7]

      Weaver, J. F.; Hakanoglu, C.; Antony, A.; Asthagiri, A. Chem. Soc. Rev. 2014, 43, 7536. doi: 10.1039/c3cs60420a  doi: 10.1039/c3cs60420a

    8. [8]

      Spivey, J. J.; Hutchings, G. Chem. Soc. Rev. 2014, 43, 792. doi: 10.1039/c3cs60259a  doi: 10.1039/c3cs60259a

    9. [9]

      Horn, R.; Schlogl, R. Catal. Lett. 2015, 145, 23. doi: 10.1007/s10562-014-1417-z  doi: 10.1007/s10562-014-1417-z

    10. [10]

      Zhao, Z. J.; Chiu, C. C.; Gong, J. L. Chem. Sci. 2015, 6, 4403. doi: 10.1039/c5sc01227a  doi: 10.1039/c5sc01227a

    11. [11]

      Olivos-Suarez, A. I.; Szecsenyi, A.; Hensen, E. J. M.; Ruiz-Martinez, J.; Pidko, E. A.; Gascon, J. ACS Catal. 2016, 6, 2965. doi: 10.1021/acscatal.6b00428  doi: 10.1021/acscatal.6b00428

    12. [12]

      Schwach, P.; Pan, X. L.; Bao, X. H. Chem. Rev. 2017, 117, 8497. doi: 10.1021/acs.chemrev.6b00715  doi: 10.1021/acs.chemrev.6b00715

    13. [13]

      Vernon, P. D. F.; Green, M. L. H.; Cheetham, A. K.; Ashcroft, A. T. Catal. Today 1992, 13, 417. doi: 10.1016/0920-5861(92)80167-L  doi: 10.1016/0920-5861(92)80167-L

    14. [14]

      York, A. P. E.; Xiao, T. C.; Green, M. L. H. Top. Catal. 2003, 22, 345. doi: 10.1023/A:1023552709642  doi: 10.1023/A:1023552709642

    15. [15]

      Jones, G.; Jakobsen, J. G.; Shim, S. S.; Kleis, J.; Andersson, M. P.; Rossmeisl, J.; Abild-Pedersen, F.; Bligaard, T.; Helveg, S.; Hinnemann, B.; et al. J. Catal. 2008, 259, 147. doi: 10.1016/j.jcat.2008.08.003  doi: 10.1016/j.jcat.2008.08.003

    16. [16]

      Li, D. L.; Nakagawa, Y.; Tomishige, K. Appl. Catal. A 2011, 408, 1. doi: 10.1016/j.apcata.2011.09.018  doi: 10.1016/j.apcata.2011.09.018

    17. [17]

      Pakhare, D.; Spivey, J. Chem. Soc. Rev. 2014, 43, 7813. doi: 10.1039/c3cs60395d  doi: 10.1039/c3cs60395d

    18. [18]

      Keller, G. E.; Bhasin, M. M. J. Catal. 1982, 73, 9. doi: 10.1016/0021-9517(82)90075-6  doi: 10.1016/0021-9517(82)90075-6

    19. [19]

      Ito, T.; Wang, J. X.; Lin, C. H.; Lunsford, J. H. J. Am. Chem. Soc. 1985, 107, 5062. doi: 10.1021/ja00304a008  doi: 10.1021/ja00304a008

    20. [20]

      Hutchings, G. J.; Scurrell, M. S.; Woodhouse, J. R. Chem. Soc. Rev. 1989, 18, 251. doi: 10.1039/cs9891800251  doi: 10.1039/cs9891800251

    21. [21]

      Lunsford, J. H. Angew. Chem. Int. Ed. 1995, 34, 970. doi: 10.1002/anie.199509701  doi: 10.1002/anie.199509701

    22. [22]

      Groothaert, M. H.; Smeets, P. J.; Sels, B. F.; Jacobs, P. A.; Schoonheydt, R. A. J. Am. Chem. Soc. 2005, 127, 1394. doi: 10.1021/ja047158u  doi: 10.1021/ja047158u

    23. [23]

      Palkovits, R.; Antonietti, M.; Kuhn, P.; Thomas, A.; Schuth, F. Angew. Chem. Int. Ed. 2009, 48, 6909. doi: 10.1002/anie.200902009  doi: 10.1002/anie.200902009

    24. [24]

      Kwapien, K.; Paier, J.; Sauer, J.; Geske, M.; Zavyalova, U.; Horn, R.; Schwach, P.; Trunschke, A.; Schlogl, R. Angew. Chem. Int. Ed. 2014, 53, 8774. doi: 10.1002/anie.201310632  doi: 10.1002/anie.201310632

    25. [25]

      Grundner, S.; Markovits, M. A. C.; Li, G.; Tromp, M.; Pidko, E. A.; Hensen, E. J. M.; Jentys, A.; Sanchez-Sanchez, M.; Lercher, J. A. Nat. Commun. 2015, 6, 7546. doi: 10.1038/ncomms8546  doi: 10.1038/ncomms8546

    26. [26]

      Ikuno, T.; Zheng, J.; Vjunov, A.; Sanchez-Sanchez, M.; Ortuno, M. A.; Pahls, D. R.; Fulton, J. L.; Camaioni, D. M.; Li, Z. Y.; Ray, D.; et al. J. Am. Chem. Soc. 2017, 139, 10294. doi: 10.1021/jacs.7b02936  doi: 10.1021/jacs.7b02936

    27. [27]

      Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; van Bokhoven, J. A. Science 2017, 356, 523. doi: 10.1126/science.aam9035  doi: 10.1126/science.aam9035

    28. [28]

      Wang, P. W.; Zhao, G. F.; Wang, Y.; Lu, Y. Sci. Adv. 2017, 3, e1603180. doi: 10.1126/sciadv.1603180  doi: 10.1126/sciadv.1603180

    29. [29]

      Xie, J. J.; Jin, R. X.; Li, A.; Bi, Y. P.; Ruan, Q. S.; Deng, Y. C.; Zhang, Y. J.; Yao, S. Y.; Sankar, G.; Ma, D.; et al. Nat. Catal. 2018, 1, 889. doi: 10.1038/s41929-018-0170-x  doi: 10.1038/s41929-018-0170-x

    30. [30]

      Wang, L. S.; Tao, L. X.; Xie, M. S.; Xu, G. F.; Huang, J. S.; Xu, Y. D. Catal. Lett. 1993, 21, 35. doi: 10.1007/BF00767368  doi: 10.1007/BF00767368

    31. [31]

      Weckhuysen, B. M.; Wang, D. J.; Rosynek, M. P.; Lunsford, J. H. Angew. Chem. Int. Ed. 1997, 36, 2374. doi: 10.1002/anie.199723741  doi: 10.1002/anie.199723741

    32. [32]

      Zhang, C. L.; Li, S. A.; Yuan, Y.; Zhang, W. X.; Wu, T. H.; Lin, L. W. Catal. Lett. 1998, 56, 207. doi: 10.1023/A:1019046104593  doi: 10.1023/A:1019046104593

    33. [33]

      Weckhuysen, B. M.; Wang, D. J.; Rosynek, M. P.; Lunsford, J. H. J. Catal. 1998, 175, 338. doi: 10.1006/jcat.1998.2010  doi: 10.1006/jcat.1998.2010

    34. [34]

      Xu, Y. D.; Lin, L. W. Appl. Catal. A 1999, 188, 53. doi: 10.1016/S0926-860x(99)00210-0  doi: 10.1016/S0926-860x(99)00210-0

    35. [35]

      Liu, S. T.; Wang, L.; Ohnishi, R.; Ichikawa, M. J. Catal. 1999, 181, 175. doi: 10.1006/jcat.1998.2310  doi: 10.1006/jcat.1998.2310

    36. [36]

      Ma, D.; Shu, Y. Y.; Han, X. W.; Liu, X. M.; Xu, Y. D.; Bao, X. H. J. Phys. Chem. B 2001, 105, 1786. doi: 10.1021/jp002011k  doi: 10.1021/jp002011k

    37. [37]

      Su, L. L.; Ma, D.; Liu, X. M.; Xu, Y. D.; Bao, X. H. Chin. J. Catal. 2002, 23, 41. doi: 10.3321/j.issn:0253-9837.2002.01.010  doi: 10.3321/j.issn:0253-9837.2002.01.010

    38. [38]

      Xu, Y. D.; Bao, X. H.; Lin, L. W. J. Catal. 2003, 216, 386. doi: 10.1016/S0021-9517(02)00124-0  doi: 10.1016/S0021-9517(02)00124-0

    39. [39]

      Su, L. L.; Liu, L.; Zhuang, J. Q.; Wang, H. X.; Li, Y. G.; Shen, W. J.; Xu, Y. D.; Bao, X. H. Catal. Lett. 2003, 91, 155. doi: 10.1023/B:CATL.0000007149.48132.5a  doi: 10.1023/B:CATL.0000007149.48132.5a

    40. [40]

      Ismagilov, Z. R.; Matus, E. V.; Tsikoza, L. T. Energy Environ. Sci. 2008, 1, 526. doi: 10.1039/b810981h  doi: 10.1039/b810981h

    41. [41]

      Gao, J.; Zheng, Y. T.; Jehng, J. M.; Tang, Y. D.; Wachs, I. E.; Podkolzin, S. G. Science 2015, 348, 686. doi: 10.1126/science.aaa7048  doi: 10.1126/science.aaa7048

    42. [42]

      Sun, C. Y.; Fang, G. Z.; Guo, X. G.; Hu, Y. L.; Ma, S. Q.; Yang, T. H.; Han, J.; Ma, H.; Tan, D. L.; Bao, X. H. J. Energy Chem. 2015, 24, 257. doi: 10.1016/S2095-4956(15)60309-6  doi: 10.1016/S2095-4956(15)60309-6

    43. [43]

      Tan, P. L. J. Catal. 2016, 338, 21. doi: 10.1016/j.jcat.2016.01.027  doi: 10.1016/j.jcat.2016.01.027

    44. [44]

      Lai, Y.; Veser, G. Catal. Sci. Technol. 2016, 6, 5440. doi: 10.1039/c5cy02258d  doi: 10.1039/c5cy02258d

    45. [45]

      Sun, K. D.; Ginosar, D. M.; He, T.; Zhang, Y. L.; Fan, M. H.; Chen, R. P. Ind. Eng. Chem. Res. 2018, 57, 1768. doi: 10.1021/acs.iecr.7b04707  doi: 10.1021/acs.iecr.7b04707

    46. [46]

      Chen, Q.; Jiang, L. X.; Li, H. F.; Chen, J. J.; Zhao, Y. X.; He, S. G. Acta Phys. -Chim. Sin. 2019, 35, 1014.  doi: 10.3866/PKU.WHXB201811039

    47. [47]

      Wang, D.; Ding, X. L.; Liao, H. L.; Dai, J. Y. Acta Phys. -Chim. Sin. 2019, 35, 1005.  doi: 10.3866/PKU.WHXB201809006

    48. [48]

      Guo, X. G.; Fang, G. Z.; Li, G.; Ma, H.; Fan, H. J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. H.; Wei, M. M.; et al. Science 2014, 344, 616. doi: 10.1126/science.1253150  doi: 10.1126/science.1253150

    49. [49]

      Hao, J. Q.; Schwach, P.; Fang, G. Z.; Guo, X. G.; Zhang, H. L.; Shen, H.; Huang, X.; Eggart, D.; Pan, X. L.; Bao, X. H. ACS Catal. 2019, 9, 9045. doi: 10.1021/acscatal.9b01771  doi: 10.1021/acscatal.9b01771

    50. [50]

      Kim, S. K.; Kim, H. W.; Han, S. J.; Lee, S. W.; Shin, J.; Kim, Y. T. Commun. Chem. 2020, 3, 58. doi: 10.1038/s42004-020-0306-1  doi: 10.1038/s42004-020-0306-1

    51. [51]

      Liu, Y.; Liu, J. C.; Li, T. H.; Duan, Z. H.; Zhang, T. Y.; Yan, M.; Li, W. L.; Xiao, H.; Wang, Y. G.; Chang, C. R.; et al. Angew. Chem. Int. Ed. 2020, 59, 18586. doi: 10.1002/anie.202003908  doi: 10.1002/anie.202003908

    52. [52]

      van Duin, A. C. T.; Goddard, W. A.; Islam, M. M.; van Schoot, H.; Trnka, T.; Yakovlev, A. L. ReaxFF, 2017, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com

    53. [53]

      Martyna, G. J.; Klein, M. L.; Tuckerman, M. J. Chem. Phys. 1992, 97, 2635. doi: 10.1063/1.463940  doi: 10.1063/1.463940

    54. [54]

      Chenoweth, K.; van Duin, A. C. T.; Goddard, W. A. J. Phys. Chem. A 2008, 112, 1040. doi: 10.1021/jp709896w  doi: 10.1021/jp709896w

    55. [55]

      Dontgen, M.; Przybylski-Freund, M. D.; Kroger, L. C.; Kopp, W. A.; Ismail, A. E.; Leonhard, K. J. Chem. Theory Comput. 2015, 11, 2517. doi: 10.1021/acs.jctc.5b00201  doi: 10.1021/acs.jctc.5b00201

    56. [56]

      Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. doi: 10.1007/s00214-007-0401-8  doi: 10.1007/s00214-007-0401-8

    57. [57]

      Dunning, T. H. J. Chem. Phys. 1989, 90, 1007. doi: 10.1063/1.456153  doi: 10.1063/1.456153

    58. [58]

      Purvis, G. D.; Bartlett, R. J. J. Chem. Phys. 1982, 76, 1910. doi: 10.1063/1.443164  doi: 10.1063/1.443164

    59. [59]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, 2013.

  • 加载中
    1. [1]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    2. [2]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    3. [3]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    4. [4]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    5. [5]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    6. [6]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    7. [7]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    8. [8]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    9. [9]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    10. [10]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    11. [11]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    12. [12]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    13. [13]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    14. [14]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    15. [15]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    16. [16]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    17. [17]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    18. [18]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    19. [19]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    20. [20]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

Metrics
  • PDF Downloads(48)
  • Abstract views(1656)
  • HTML views(438)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return