Citation: Zhang Sidong, Liu Yuan, Qi Muyao, Cao Anmin. Localized Surface Doping for Improved Stability of High Energy Cathode Materials[J]. Acta Physico-Chimica Sinica, ;2021, 37(11): 201100. doi: 10.3866/PKU.WHXB202011007 shu

Localized Surface Doping for Improved Stability of High Energy Cathode Materials

  • Corresponding author: Cao Anmin, anmin_cao@iccas.ac.cn
  • Received Date: 2 November 2020
    Revised Date: 26 November 2020
    Accepted Date: 27 November 2020
    Available Online: 3 December 2020

    Fund Project: the National Natural Science Foundation of China 21931012the Beijing National Laboratory for Molecular Sciences BNLMS-CXXM-202010the Key Research Program of Frontier Sciences, CAS ZDBS-LY-SLH020the Innovation Team for R&D and industrialization of High Energy Density Si-based Power Batteries 2018607219003the National Natural Science Foundation of China 22025507The project was supported by the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-SLH020), the Beijing National Laboratory for Molecular Sciences (BNLMS-CXXM-202010), the National Natural Science Foundation of China (22025507, 21931012) and the Innovation Team for R&D and industrialization of High Energy Density Si-based Power Batteries (2018607219003)

  • Lithium ion batteries (LIBs) have broad applications in a wide variety of a fields pertaining to energy storage devices. In line with the increasing demand in emerging areas such as long-range electric vehicles and smart grids, there is a continuous effort to achieve high energy by maximizing the reversible capacity of electrode materials, particularly cathode materials. However, in recent years, with the continuous enhancement of battery energy density, safety issues have increasingly attracted the attention of researchers, becoming a non-negligible factor in determining whether the electric vehicle industry has a foothold. The key issue in the development of battery systems with high specific energies is the intrinsic instability of the cathode, with the accompanying question of safety. The failure mechanism and stability of high-specific-capacity cathode materials for the next generation of LIBs, including nickel-rich cathodes, high-voltage spinel cathodes, and lithium-rich layered cathodes, have attracted extensive research attention. Systematic studies related to the intrinsic physical and chemical properties of different cathodes are crucial to elucidate the instability mechanisms of positive active materials. Factors that these studies must address include the stability under extended electrochemical cycles with respect to dissolution of metal ions in LiPF6-based electrolytes due to HF corrosion of the electrode; cation mixing due to the similarity in radius between Li+ and Ni2+; oxygen evolution when the cathode is charged to a high voltage; the origin of cracks generated during repeated charge/discharge processes arising from the anisotropy of the cell parameters; and electrolyte decomposition when traces of water are present. Regulating the surface nanostructure and bulk crystal lattice of electrode materials is an effective way to meet the demand for cathode materials with high energy density and outstanding stability. Surface modification treatment of positive active materials can slow side reactions and the loss of active material, thereby extending the life of the cathode material and improving the safety of the battery. This review is targeted at the failure mechanisms related to the electrochemical cycle, and a synthetic strategy to ameliorate the properties of cathode surface locations, with the electrochemical performance optimized by accurate surface control. From the perspective of the main stability and safety issues of high-energy cathode materials during the electrochemical cycle, a detailed discussion is presented on the current understanding of the mechanism of performance failure. It is crucial to seek out favorable strategies in response to the failures. Considering the surface structure of the cathode in relation to the stability issue, a newly developed protocol, known as surface-localized doping, which can exist in different states to modify the surface properties of high-energy cathodes, is discussed as a means of ensuring significantly improved stability and safety. Finally, we envision the future challenges and possible research directions related to the stability control of next-generation high-energy cathode materials.
  • 加载中
    1. [1]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    2. [2]

      Song, M. K.; Park, S.; Alamgir, F. M.; Cho, J.; Liu, M. Mater. Sci. Eng. R: Rep. 2011, 72, 203. doi:10.1016/j.mser.2011.06.001  doi: 10.1016/j.mser.2011.06.001

    3. [3]

      Zhang, S. C.; Shen, Z. Y.; Lu, Y. Y. Acta Phys. -Chim. Sin. 2021, 37, 2008065.  doi: 10.3866/PKU.WHXB202008065

    4. [4]

      Lyu, Y.; Wu, X.; Wang, K.; Feng, Z.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R.; Xu, L.; Zhou, J.; et al. Adv. Energy Mater. 2020, 2000982. doi: 10.1002/aenm.202000982  doi: 10.1002/aenm.202000982

    5. [5]

      Xue, Y. J. Modern Power Syst. Clean Energy 2015, 3, 297. doi: 10.1007/s40565-015-0111-5  doi: 10.1007/s40565-015-0111-5

    6. [6]

      Huang, Y. Chin. Sci. Bull. 2019, 64, 3811.  doi: 10.1360/TB-2019-0656

    7. [7]

      Wang, L.; Wu, Z.; Zou, J.; Gao, P.; Niu, X.; Li, H.; Chen, L. Joule 2019, 3, 2086. doi: 10.1016/j.joule.2019.07.011  doi: 10.1016/j.joule.2019.07.011

    8. [8]

      Li, M.; Pei, C.; Xiong, F.; Tan, S.; Yin, Y.; Tang, H.; Huang, D.; An, Q.; Mai, L. Electrochim. Acta 2019, 320, 134556. doi: 10.1016/j.electacta.2019.134556  doi: 10.1016/j.electacta.2019.134556

    9. [9]

      Li, M.; Lu, J.; Chen, Z.; Amine, K. Adv. Mater. 2018, 30, 1800561. doi: 10.1002/adma.201800561  doi: 10.1002/adma.201800561

    10. [10]

      Huang, Y.; Dong, Y.; Li, S.; Lee, J.; Wang, C.; Zhu, Z.; Xue, W.; Li, Y.; Li, J. Adv. Energy Mater. 2020, 2000997. doi: 10.1002/aenm.202000997  doi: 10.1002/aenm.202000997

    11. [11]

      Deng, Y. P.; Wu, Z. G.; Liang, R.; Jiang, Y.; Luo, D.; Yu, A.; Chen, Z. Adv. Funct. Mater. 2019, 29, 1808522. doi: 10.1002/adfm.201808522  doi: 10.1002/adfm.201808522

    12. [12]

      Zhang, M.; Garcia-Araez, N.; Hector, A. L. J. Mater. Chem. A 2018, 6, 14483. doi: 10.1039/c8ta04063j  doi: 10.1039/c8ta04063j

    13. [13]

      Zhang, J. B.; Hua, W. B.; Zheng, Z.; Liu, W. Y.; Guo, X. D.; Zhong, B. H. Acta Phys. -Chim. Sin. 2015, 31, 905.  doi: 10.3866/PKU.WHXB201503091

    14. [14]

      Xiong, F.; Zhang, W. X.; Yang, Z. H.; Chen, F.; Wang, T. Z.; Chen, Z. X. Energy Storage Science and Technology 2018, 7, 607.  doi: 10.12028/j.issn.2095-4239.2018.0060

    15. [15]

      Wu, F.; Li, Q.; Chen, L.; Wang, Z. R.; Chen, G.; Bao, L. Y.; Lu, Y.; Chen, S.; Su, Y. F. Acta Phys. -Chim. Sin. 2021, 37, 2007017.  doi: 10.3866/PKU.WHXB202007017

    16. [16]

      Noh, H. J.; Youn, S.; Yoon, C. S.; Sun, Y. K. J. Power Sources 2013, 233, 121. doi: 10.1016/j.jpowsour.2013.01.063  doi: 10.1016/j.jpowsour.2013.01.063

    17. [17]

      de Biasi, L.; Kondrakov, A. O.; Geßwein, H.; Brezesinski, T.; Hartmann, P.; Janek, J. J. Phys. Chem. C 2017, 121, 26163. doi: 10.1021/acs.jpcc.7b06363  doi: 10.1021/acs.jpcc.7b06363

    18. [18]

      Dixit, M.; Markovsky, B.; Schipper, F.; Aurbach, D.; Major, D. T. J. Phys. Chem. C 2017, 121, 22628. doi: 10.1021/acs.jpcc.7b06122  doi: 10.1021/acs.jpcc.7b06122

    19. [19]

      Liu, K.; Liu, Y.; Lin, D.; Pei, A.; Cui, Y. Sci. Adv. 2018, 4, eaas9820. doi: 10.1126/sciadv.aas9820  doi: 10.1126/sciadv.aas9820

    20. [20]

      Xiong, X.; Wang, Z.; Yue, P.; Guo, H.; Wu, F.; Wang, J.; Li, X. J. Power Sources. 2013, 222, 318. doi: 10.1016/j.jpowsour.2012.08.029  doi: 10.1016/j.jpowsour.2012.08.029

    21. [21]

      Zou, L.; He, Y.; Liu, Z.; Jia, H.; Zhu, J.; Zheng, J.; Wang, G.; Li, X.; Xiao, J.; Liu, J.; et al. Nat. Commun. 2020, 11, 3204. doi: 10.1038/s41467-020-17050-6  doi: 10.1038/s41467-020-17050-6

    22. [22]

      Liu, W.; Oh, P.; Liu, X.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Angew. Chem. Int. Ed. 2015, 54, 4440. doi: 10.1002/anie.201409262  doi: 10.1002/anie.201409262

    23. [23]

      Kim, Y. Phys. Chem. Chem. Phys. 2013, 15, 6400. doi: 10.1039/C3CP50567G  doi: 10.1039/C3CP50567G

    24. [24]

      Bie, X.; Liu, L.; Ehrenberg, H.; Wei, Y.; Nikolowski, K.; Wang, C.; Ueda, Y.; Chen, H.; Chen, G.; Du, F. RSC Adv. 2012, 2, 9986. doi: 10.1039/c2ra21670a  doi: 10.1039/c2ra21670a

    25. [25]

      Kang, K.; Ceder, G. Phys. Rev. B 2006, 74, 094105. doi: 10.1103/PhysRevB.74.094105  doi: 10.1103/PhysRevB.74.094105

    26. [26]

      Zhang, B.; Li, L.; Zheng, J. J. Alloys Compd. 2012, 520, 190. doi: 10.1016/j.jallcom.2012.01.004  doi: 10.1016/j.jallcom.2012.01.004

    27. [27]

      Huang, Z.; Gao, J.; He, X.; Li, J.; Jiang, C. J. Power Sources 2012, 202, 284. doi: 10.1016/j.jpowsour.2011.10.143  doi: 10.1016/j.jpowsour.2011.10.143

    28. [28]

      Pouillerie, C.; Croguennec, L.; Biensan, P.; Willmann, P.; Delmas, C J. Electrochem Soc. 2000, 147, 2061. doi: 10.1149/1.1393486  doi: 10.1149/1.1393486

    29. [29]

      Chowdari, B. V. R.; Subba Rao, G. V.; Chow, S. Y. Solid State Ionics 2001, 140, 55. doi: 10.1016/S0167-2738(01)00686-5  doi: 10.1016/S0167-2738(01)00686-5

    30. [30]

      Cho, Y.; Oh, P.; Cho, J. Nano Lett. 2013, 13, 1145. doi: 10.1021/nl304558t  doi: 10.1021/nl304558t

    31. [31]

      Strmcnik, D.; Castelli, I. E.; Connell, J. G.; Haering, D.; Zorko, M.; Martins, P.; Lopes, P. P.; Genorio, B.; Østergaard, T.; Gasteiger, H. A.; et al. Nat. Catal. 2018, 1, 255. doi: 10.1038/s41929-018-0047-z  doi: 10.1038/s41929-018-0047-z

    32. [32]

      Solchenbach, S.; Metzger, M.; Egawa, M.; Beyer, H.; Gasteiger, H. A. J. Electrochem Soc. 2018, 165, A3022. doi: 10.1149/2.0481813jes  doi: 10.1149/2.0481813jes

    33. [33]

      Solchenbach, S.; Hong, G.; Freiberg, A.; Jung, R.; Gasteiger, H. J. Electrochem. Soc. 2018, 165, A3304. doi: 10.1149/2.0511814jes  doi: 10.1149/2.0511814jes

    34. [34]

      Heiskanen, S. K.; Laszczynski, N.; Lucht, B. L. J. Electrochem. Soc. 2020, 167, 100519. doi: 10.1149/1945-7111/ab981c  doi: 10.1149/1945-7111/ab981c

    35. [35]

      Yoon, W. S.; Chung, K. Y.; McBreen, J.; Yang, X. Q. Electrochem. Commun. 2006, 8, 1257. doi: 10.1016/j.elecom.2006.06.005  doi: 10.1016/j.elecom.2006.06.005

    36. [36]

      Yan, P.; Zheng, J.; Gu, M.; Xiao, J.; Zhang, J. G.; Wang, C. M. Nat. Commun. 2017, 8, 14101. doi: 10.1038/ncomms14101  doi: 10.1038/ncomms14101

    37. [37]

      Robert, R.; Novák, P. J. Electrochem. Soc. 2015, 162, A1823. doi: 10.1149/2.0721509jes  doi: 10.1149/2.0721509jes

    38. [38]

      Xu, Z.; Rahman, M. M.; Mu, L.; Liu, Y.; Lin, F. J. Mater. Chem. A 2018, 6, 21859. doi: 10.1039/c8ta06875e  doi: 10.1039/c8ta06875e

    39. [39]

      Zhao, S.; Yan, K.; Zhang, J.; Sun, B.; Wang, G. Angew. Chem. Int. Ed. 2020, doi: 10.1002/anie.202000262  doi: 10.1002/anie.202000262

    40. [40]

      Gu, M.; Belharouak, I.; Genc, A.; Wang, Z.; Wang, D.; Amine, K.; Gao, F.; Zhou, G.; Thevuthasan, S.; Baer, D. R.; et al. Nano Lett. 2012, 12, 5186. doi: 10.1021/nl302249v  doi: 10.1021/nl302249v

    41. [41]

      Gu, M.; Belharouak, I.; Zheng, J.; Wu, H.; Xiao, J.; Genc, A.; Amine, K.; Thevuthasan, S.; Baer, D. R.; Zhang, J. G.; et al. ACS Nano 2013, 7, 760. doi: 10.1021/nn305065u  doi: 10.1021/nn305065u

    42. [42]

      Lin, F.; Markus, I. M.; Nordlund, D.; Weng, T. C.; Asta, M. D.; Xin, H. L.; Doeff, M. M. Nat. Commun. 2014, 5, 3529. doi: 10.1038/ncomms4529  doi: 10.1038/ncomms4529

    43. [43]

      Gu, L.; Xiao, D.; Hu, Y. S.; Li, H.; Ikuhara, Y. Adv. Mater. 2015, 27. 2134. doi: 10.1002/adma.201404620  doi: 10.1002/adma.201404620

    44. [44]

      Xulai, Y.; Junlong, X.; Xu, L.; Tao, W.; Wen, P.; Jia, X. Phys. Chem. Chem. Phys. 2014, 16, 24373. doi: 10.1039/C4CP03173C  doi: 10.1039/C4CP03173C

    45. [45]

      Xiong, L. L.; Xu, Y. L.; Zhang, C.; Tao, T. Acta Phys. -Chim. Sin. 2012, 28, 1177.  doi: 10.3866/PKU.WHXB201203092

    46. [46]

      Guan, P.; Zhou, L.; Yu, Z.; Sun, Y.; Liu, Y.; Wu, F.; Jiang, Y.; Chu, D. J. Energy Chem. 2020, 43, 220. doi: 10.1016/j.jechem.2019.08.022  doi: 10.1016/j.jechem.2019.08.022

    47. [47]

      Liu, Y.; Lin, X. J.; Sun, Y. G.; Xu, Y. S.; Chang, B. B.; Liu, C. T.; Cao, A. M.; Wan, L. J. Small 2019, 15, 1901019. doi: 10.1002/smll.201901019  doi: 10.1002/smll.201901019

    48. [48]

      Thackeray, M. M.; Johnson, C. S.; Kim, J. S.; Lauzze, K. C.; Vaughey, J. T.; Dietz, N.; Abraham, D.; Hackney, S. A.; Zeltner, W.; Anderson, M. A. Electrochem. Commun. 2003, 5, 752. doi: 10.1016/S1388-2481(03)00179-6  doi: 10.1016/S1388-2481(03)00179-6

    49. [49]

      Piao, J. Y.; Duan, S. Y.; Lin, X. J.; Tao, X. S.; Xu, Y. S.; Cao, A. M.; Wan, L. J. Chem. Commun. 2018, 54, 5326. doi: 10.1039/C8CC01878B  doi: 10.1039/C8CC01878B

    50. [50]

      Lu, J.; Zhan, C.; Wu, T.; Wen, J.; Lei, Y.; Kropf, A. J.; Wu, H.; Miller, D. J.; Elam, J. W.; Sun, Y. K.; et al. Nat. Commun. 2014, 5, 5693. doi: 10.1038/ncomms6693  doi: 10.1038/ncomms6693

    51. [51]

      Ulu Okudur, F.; D'Haen, J.; Vranken, T.; De Sloovere, D.; Verheijen, M.; Karakulina, O. M.; Abakumov, A. M.; Hadermann, J.; Van Bael, M. K.; Hardy, A. RSC Adv. 2018, 8, 7287. doi: 10.1039/C7RA12932G  doi: 10.1039/C7RA12932G

    52. [52]

      Piao, J. Y.; Sun, Y. G.; Duan, S. Y.; Cao, A. M.; Wang, X. L.; Xiao, R. J.; Yu, X. Q.; Gong, Y.; Gu, L.; Li, Y.; et al. Chem 2018, 4, 1685. doi: 10.1016/j.chempr.2018.04.020  doi: 10.1016/j.chempr.2018.04.020

    53. [53]

      Cho, W.; Lim, Y. J.; Lee, S. M.; Kim, J. H.; Song, J. H.; Yu, J. S.; Kim, Y. J.; Park, M. S. ACS Appl. Mater. Interfaces 2018, 10, 38915. doi: 10.1021/acsami.8b13766  doi: 10.1021/acsami.8b13766

    54. [54]

      Aurbach, D.; Srur-Lavia, O.; Ghantya, C.; Dixit, M.; Haik, O.; Taliankerb, M.; Grinblata, Y.; Leifer, N.; Lavi, R.; Major, D.; et al. J. Electrochem. Soc. 2015, 162, A1014. doi: 10.1149/2.0681506jes  doi: 10.1149/2.0681506jes

    55. [55]

      Chen, M.; Zhao, E.; Chen, D.; Wu, M.; Han, S.; Huang, Q.; Yang, L.; Xiao, X.; Hu, Z. Inorg. Chem. 2017, 56, 8355. doi: 10.1021/acs.inorgchem.7b01035  doi: 10.1021/acs.inorgchem.7b01035

    56. [56]

      Chen, T.; Li, X.; Wang, H.; Yan, X.; Wang, L.; Deng, B.; Ge, W.; Qu, M. J. Power Sources. 2018, 374, 1. doi: 10.1016/j.jpowsour.2017.11.020  doi: 10.1016/j.jpowsour.2017.11.020

    57. [57]

      Kong, D.; Hu, J.; Chen, Z.; Song, K.; Li, C.; Weng, M.; Li, M.; Wang, R.; Liu, T.; Liu, J.; et al. Adv. Energy Mater. 2019, 9, 1901756. doi: 10.1002/aenm.201901756  doi: 10.1002/aenm.201901756

    58. [58]

      Kim, U. H.; Myung, S. T.; Yoon, C. S.; Sun, Y. K. ACS Energy Lett. 2017, 2, 1848. doi: 10.1021/acsenergylett.7b00613  doi: 10.1021/acsenergylett.7b00613

    59. [59]

      Wu, F.; Liu, N.; Chen, L.; Su, Y.; Tan, G.; Bao, L.; Zhang, Q.; Lu, Y.; Wang, J.; Chen, S.; et al. Nano Energy 2019, 59, 50. doi: 10.1016/j.nanoen.2019.02.027  doi: 10.1016/j.nanoen.2019.02.027

    60. [60]

      Zhang, Y.; Li, H.; Liu, J.; Zhang, J.; Cheng, F.; Chen, J. J. Mater. Chem. A 2019, 7, 20958. doi: 10.1039/C9TA02803J  doi: 10.1039/C9TA02803J

    61. [61]

      Zou, L.; Li, J.; Liu, Z.; Wang, G.; Manthiram, A.; Wang, C. Nat. Commun. 2019, 10, 3447. doi: 10.1038/s41467-019-11299-2  doi: 10.1038/s41467-019-11299-2

    62. [62]

      Weigel, T.; Schipper, F.; Erickson, E. M.; Susai, F. A.; Markovsky, B.; Aurbach, D. ACS Energy Lett. 2019, 4, 508. doi: 10.1021/acsenergylett.8b02302  doi: 10.1021/acsenergylett.8b02302

    63. [63]

      Liu, S.; Liu, Z.; Shen, X.; Li, W.; Gao, Y.; Banis, M. N.; Li, M.; Chen, K.; Zhu, L.; Yu, R.; et al. Adv. Energy Mater. 2018, 8, 1802105. doi: 10.1002/aenm.201802105  doi: 10.1002/aenm.201802105

    64. [64]

      He, L.; Xu, J. M.; Wang, Y. J.; Zhang, C. J. Acta Phys. -Chim. Sin. 2017, 33, 1605.  doi: 10.3866/PKU.WHXB201704145

    65. [65]

      Zhang, X.; Cao, S.; Yu, R.; Li, C.; Huang, Y.; Wang, Y.; Wang, X.; Gairong, C. ACS Appl. Energy Mater. 2019, 2, 1563. doi: 10.1021/acsaem.8b02178  doi: 10.1021/acsaem.8b02178

    66. [66]

      Zhang, W.; Sun, X.; Tang, Y.; Xia, H.; Zeng, Y.; Qiao, L.; Zhu, Z.; Lv, Z.; Zhang, Y.; Ge, X.; et al. J. Am. Chem. Soc. 2019, 141, 14038. doi: 10.1021/jacs.9b05531  doi: 10.1021/jacs.9b05531

    67. [67]

      Piao, J. Y.; Gu, L.; Wei, Z.; Ma, J.; Wu, J.; Yang, W.; Gong, Y.; Sun, Y. G.; Duan, S. Y.; Tao, X. S.; et al. J. Am. Chem. Soc. 2019, 141, 4900. doi: 10.1021/jacs.8b13438  doi: 10.1021/jacs.8b13438

    68. [68]

      Liang, G.; Wu, Z.; Didier, C.; Zhang, W.; Cuan, J.; Li, B.; Ko, K. Y.; Hung, P. Y.; Lu, C. Z.; Chen, Y.; et al. Angew. Chem. Int. Ed. 2020, 59, 10594. doi: 10.1002/anie.202001454  doi: 10.1002/anie.202001454

    69. [69]

      Qiu, B.; Zhang, M.; Wu, L.; Wang, J.; Xia, Y.; Qian, D.; Liu, H.; Hy, S.; Chen, Y.; An, K.; et al. Nat. Commun. 2016, 7, 12108. doi: 10.1038/ncomms12108  doi: 10.1038/ncomms12108

    70. [70]

      Schipper, F.; Bouzaglo, H.; Dixit, M.; Erickson, E. M.; Weigel, T.; Talianker, M.; Grinblat, J.; Burstein, L.; Schmidt, M.; Lampert, J.; et. al. Adv. Energy Mater. 2018, 8, 1701682. doi: 10.1002/aenm.201701682  doi: 10.1002/aenm.201701682

    71. [71]

      Oh, P.; Ko, M.; Myeong, S.; Kim, Y.; Cho, J. Adv. Energy Mater. 2014, 4, 1400631. doi: 10.1002/aenm.201400631  doi: 10.1002/aenm.201400631

  • 加载中
    1. [1]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    5. [5]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    16. [16]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    19. [19]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    20. [20]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

Metrics
  • PDF Downloads(19)
  • Abstract views(1461)
  • HTML views(379)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return