Citation: Yang Yi, Yan Chong, Huang Jiaqi. Research Progress of Solid Electrolyte Interphase in Lithium Batteries[J]. Acta Physico-Chimica Sinica, ;2021, 37(11): 201007. doi: 10.3866/PKU.WHXB202010076 shu

Research Progress of Solid Electrolyte Interphase in Lithium Batteries

  • Corresponding author: Huang Jiaqi, jqhuang@bit.edu.cn
  • Received Date: 30 October 2020
    Revised Date: 15 November 2020
    Accepted Date: 16 November 2020
    Available Online: 19 November 2020

    Fund Project: the Beijing Natural Science Foundation L182021the Beijing Natural Science Foundation JQ20004The project was supported by the Beijing Natural Science Foundation (JQ20004, L182021) and the National Key Research and Development Program of China (2016YFA0202500)the National Key Research and Development Program of China 2016YFA0202500

  • Since their commercialization in 1991, lithium-ion batteries (LIBs), one of the greatest inventions in history, have profoundly reshaped lifestyles owing to their high energy density, long lifespan, and reliable and safe operation. The ever-increasing use of portable electronics, electric vehicles, and large-scale energy storage has consistently promoted the development of LIBs with higher energy density, reliable and safe operation, faster charging, and lower cost. To meet these stringent requirements, researchers have developed advanced electrode materials and electrolytes, wherein the electrode materials play a key role in improving the energy density of the battery and electrolytes play an important role in enhancing the cycling stability of batteries. In addition, further improvements in the current LIBs and reviving lithium metal batteries have received intensive interest. The electrode/electrolyte interface is formed on the electrode surface during the initial charging/discharging stage, whose ionic conductivity and electronic insulation ensure rapid transport of lithium ions and isolating the unsolicited side reactions caused by electrons, respectively. In a working battery, the stability or properties of the interface play a crucial role in maintaining the integrity of the electrode structure, thereby stabilizing the cycling performance and prolonging the service lifespan to meet the sustainable energy demand for the public. Generally, the interface formed on the anode and cathode is called the solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI) respectively, and SEI and CEI are collectively known as the electrode electrolyte interphase. Research on SEI has made remarkable progress; however, the structure, component, and accurate regulation strategy of SEI are still at the initial stage due to the stability and complexity of SEI and the limited research methods at the nanoscale. To improve the performance and lifespan of working batteries, the formation, evolution, and modification of the interface should be paid particular attention. Herein, the latest researches focused on the SEI are reviewed, including the formation mechanism, which discusses two key factors affecting the formation of the electrode/electrolyte film, i.e., the ion characteristic adsorption on the electrode surface and the solvated coordinate structure, evolution, and description that contains the interface layer structure, wherein the mosaic model and the layered structure are the two mainstream views of the SEI structure, and the chemical composition of SEI as well as the possible conduction mechanism of lithium ions, including desolvation and subsequent diffusion across the polycrystalline SEI. The regulation strategies of the interface layer are discussed in detail, and the future prospects of SEI are presented.
  • 加载中
    1. [1]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    2. [2]

      Yoshino, A. Angew. Chem. Int. Ed. 2012, 51, 5798. doi: 10.1002/anie.201105006  doi: 10.1002/anie.201105006

    3. [3]

      Li, M.; Lu, J.; Chen, Z.; Amine, K. Adv. Mater. 2018, 30, 1800561. doi: 10.1002/adma.201800561  doi: 10.1002/adma.201800561

    4. [4]

      Winter, M.; Barnett, B.; Xu, K. Chem. Rev. 2018, 118, 11433. doi: 10.1021/acs.chemrev.8b00422  doi: 10.1021/acs.chemrev.8b00422

    5. [5]

      Yan, C.; Xu, R.; Xiao, Y.; Ding, J. F.; Xu, L.; Li, B. Q.; Huang, J. Q. Adv. Funct. Mater. 2020, 30, 1909887. doi: 10.1002/adfm.201909887  doi: 10.1002/adfm.201909887

    6. [6]

      Gao, X.; Zhou, Y. N.; Han, D.; Zhou, J.; Zhou, D.; Tang, W.; Goodenough, J. B. Joule 2020, 4, 1864. doi: 10.1016/j.joule.2020.06.016  doi: 10.1016/j.joule.2020.06.016

    7. [7]

      Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A.; et al. Nat. Energy 2019, 4, 180. doi: 10.1038/s41560-019-0338-x  doi: 10.1038/s41560-019-0338-x

    8. [8]

      Dunn, J. B.; Gaines, L.; Kelly, J. C.; James, C.; Gallagher, K. G. Energy Environ. Sci. 2015, 8, 158. doi: 10.1039/c4ee03029j  doi: 10.1039/c4ee03029j

    9. [9]

      Yao, Y. X.; Chen, X.; Yan, C.; Zhang, X.; Cai, W, L.; Huang, J, Q.; Zhang, Q. Angew. Chem. Int. Ed. 2020, doi: 10.1002/anie.202011482

    10. [10]

      Deng, J.; Bae, C.; Denlinger, A.; Miller, T. Joule 2020, 4, 511. doi: 10.1016/j.joule.2020.01.013  doi: 10.1016/j.joule.2020.01.013

    11. [11]

      Zeng, X.; Li, M.; EI-Hady, D. A.; Alshitari, W.; AI-Bogami, A. S.; Lu, J.; Amine, K. Adv. Energy Mater. 2019, 9, 1900161. doi: 10.1002/aenm.201900161  doi: 10.1002/aenm.201900161

    12. [12]

      Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Nat. Energy 2018, 3, 267. doi: 10.1038/s41560-018-0107-2  doi: 10.1038/s41560-018-0107-2

    13. [13]

      Zhu, G. L.; Zhao, C. Z.; Huang, J. Q.; He, C.; Zhang, J.; Chen, S.; Xu, L.; Yuan, H.; Zhang, Q. Small 2019, 15, 1805389. doi: 10.1002/smll.201805389  doi: 10.1002/smll.201805389

    14. [14]

      Zhao, Q.; Stalin, S.; Zhao, C. Z.; Archer, L.A. Nat. Rev. Mater. 2020, 5, 229. doi: 10.1038/s41578-019-0165-5  doi: 10.1038/s41578-019-0165-5

    15. [15]

      Li, M.; Wang, C.; Chen, Z.; Xu, K.; Lu, J. Chem. Rev. 2020, 120, 6783. doi: 10.1021/acs.chemrev.9b00531  doi: 10.1021/acs.chemrev.9b00531

    16. [16]

      Peled, E. J. Electrochem. Soc. 1979, 126, 2047. doi: 10.1149/1.2128859  doi: 10.1149/1.2128859

    17. [17]

      Cheng, X. B.; Yan, C.; Zhang, X. Q.; Liu, H.; Zhang, Q. ACS Energy Lett. 2018, 3, 1564. doi: 10.1021/acsenergylett.8b00526  doi: 10.1021/acsenergylett.8b00526

    18. [18]

      Winter, M.; Appel, W. K.; Evers, B.; Hodal, T.; Möller, K. C.; Schneider, I.; Wachtler, M.; Wagner, M. R.; Wrodnigg, G. H.; Besenhard, J. O. Electroact. Mater. 2001, 53. doi: 10.1007/978-3-7091-6211-8_6

    19. [19]

      Xu, K. Chem. Rev. 2014, 114, 11503. doi: 10.1021/cr500003w  doi: 10.1021/cr500003w

    20. [20]

      Xu, K. Chem. Rev. 2004, 104, 4303. doi: 10.1021/cr030203g  doi: 10.1021/cr030203g

    21. [21]

      An, S. J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D. L. Carbon 2016, 105, 52. doi: 10.1016/j.carbon.2016.04.008  doi: 10.1016/j.carbon.2016.04.008

    22. [22]

      Liu, T.; Lin, L.; Bi, X.; Tian, L.; Yang, K.; Liu, J.; Li, M.; Chen, Z.; Lu, J.; Amine, K. Nat. Nanotechnol. 2019, 14, 50. doi: 10.1038/s41565-018-0284-y  doi: 10.1038/s41565-018-0284-y

    23. [23]

      Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587. doi: 10.1021/cm901452z  doi: 10.1021/cm901452z

    24. [24]

      Peljo, P.; Girault, H. H. Energy Environ. Sci. 2018, 11, 230. doi: 10.1039/C8EE01286E  doi: 10.1039/C8EE01286E

    25. [25]

      Yan, C.; Li, H. R.; Chen, X.; Zhang, X. Q.; Cheng, X. B.; Xu, R.; Huang, J. Q.; Zhang, Q. J. Am. Chem. Soc. 2019, 141, 9422. doi: 10.1021/jacs.9b05029  doi: 10.1021/jacs.9b05029

    26. [26]

      Liu, J.; Chisti, M. M.; Zeng, X. Anal. Chem. 2017, 89, 4013. doi: 10.1021/acs.analchem.6b04570  doi: 10.1021/acs.analchem.6b04570

    27. [27]

      Borodin, O.; Ren, X.; Vatamanu, J.; Wald Cresce, A.; Knap, J.; Xu, K. Acc. Chem. Res. 2017, 50, 2886. doi: 10.1021/acs.accounts.7b00486  doi: 10.1021/acs.accounts.7b00486

    28. [28]

      Liu, Z. F. Acta Phys. -Chim. Sin. 2019, 35, 1293.  doi: 10.3866/PKU.WHXB201906040

    29. [29]

      Groß, A.; Sakong, S. Curr. Opin. Electrochem. 2019, 14, 1. doi: 10.1016/j.coelec.2018.09.005  doi: 10.1016/j.coelec.2018.09.005

    30. [30]

      Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38, 2520. doi: 10.1039/B813846J  doi: 10.1039/B813846J

    31. [31]

      Wang, G.; Brown, W.; Kvetny, M. Curr. Opin. Electrochem. 2019, 13, 112. doi: 10.1016/j.coelec.2018.11.022  doi: 10.1016/j.coelec.2018.11.022

    32. [32]

      Magnussen, O. M.; Gross, A. J. Am. Chem. Soc. 2019, 141, 4777. doi: 10.1016/j.coelec.2018.11.022  doi: 10.1016/j.coelec.2018.11.022

    33. [33]

      Wang, F.; Borodin, O.; Ding, M. S.; Gobet, M.; Vatamanu, J.; Fan, X.; Gao, T.; Eidson, N.; Liang, Y.; Sun, W. Joule 2018, 2, 927. doi: 10.1016/j.joule.2018.02.011  doi: 10.1016/j.joule.2018.02.011

    34. [34]

      Yang, C.; Chen, J.; Qing, T.; Fan, X.; Sun, W.; von Cresce, A.; Ding, M. S.; Borodin, O.; Vatamanu, J.; Schroeder, M. A. Joule 2017, 1, 122. doi: 10.1016/j.joule.2017.08.009  doi: 10.1016/j.joule.2017.08.009

    35. [35]

      Huang, J.; Li, Z.; Ge, H.; Zhang. J. Electrochem. Soc. 2015, 162, A7037. doi: 10.1149/2.0081513jes  doi: 10.1149/2.0081513jes

    36. [36]

      Herzog, G.; Moujahid, W.; Strutwolf, J.; Arrigan, D. W. Analyst 2009, 134, 1608. doi: 10.1039/B905441N  doi: 10.1039/B905441N

    37. [37]

      Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y. NPJ Comput. Mater. 2018, 4, 15. doi: 10.1038/s41524-018-0064-0  doi: 10.1038/s41524-018-0064-0

    38. [38]

      von Cresce, A.; Xu, K. Electrochem. Solid State Lett. 2011, 14, A154. doi: 10.1149/1.3615828  doi: 10.1149/1.3615828

    39. [39]

      Xu, K.; von Wald Cresce, A. J. Mater. Res. 2012, 27, 2327. doi: 10.1557/jmr.2012.104  doi: 10.1557/jmr.2012.104

    40. [40]

      von Wald Cresce, A.; Gobet, M.; Borodin, O.; Peng, J.; Russell, S. M.; Wikner, E.; Fu, A.; Hu, L.; Lee, H. S.; Zhang, Z. J. Phys. Chem. C 2015, 119, 27255. doi: 10.1021/acs.jpcc.5b08895  doi: 10.1021/acs.jpcc.5b08895

    41. [41]

      Xu, K. J. Electrochem. Soc. 2007, 154, A162. doi: 10.1149/1.2536554  doi: 10.1149/1.2536554

    42. [42]

      Xu, K.; Lam, Y.; Zhang, S. S.; Jow, T. R.; Curtis, T. B. J. Phys. Chem. C 2007, 111, 7411. doi: 10.1021/jp068691u  doi: 10.1021/jp068691u

    43. [43]

      Schiele, A.; Breitung, B.; Hatsukade, T.; Berkes, B. B.; Hartmann, P.; Janek, J.; Brezesinski, T. ACS Energy Lett. 2017, 2, 2228. doi: 10.1021/acsenergylett.7b00619  doi: 10.1021/acsenergylett.7b00619

    44. [44]

      Yoon, T.; Chapman, N.; Seo, D. M.; Lucht, B. L. J. Electrochem. Soc. 2017, 164, A2082. doi: 10.1149/2.1421709jes  doi: 10.1149/2.1421709jes

    45. [45]

      Devic, T.; Lestriez, B.; Roué, L. ACS Energy Lett. 2019, 4, 550. doi: 10.1021/acsenergylett.8b02433  doi: 10.1021/acsenergylett.8b02433

    46. [46]

      Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 5301. doi: 10.1002/anie.201801513  doi: 10.1002/anie.201801513

    47. [47]

      Chen, X.; Shen, X.; Li, B.; Peng, H. J.; Cheng, X. B.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 734. doi: 10.1002/anie.201711552  doi: 10.1002/anie.201711552

    48. [48]

      Chen, X.; Zhang, X. Q.; Li, H. R.; Zhang, Q. Batteries Supercaps. 2019, 2, 128. doi: 10.1002/batt.201800118  doi: 10.1002/batt.201800118

    49. [49]

      Zhang, X. Q.; Chen, X.; Hou, L. P.; Li, B. Q.; Cheng, X. B.; Huang, J. Q.; Zhang, Q. ACS Energy Lett. 2019, 4, 411. doi: 10.1021/acsenergylett.8b02376  doi: 10.1021/acsenergylett.8b02376

    50. [50]

      Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6, 6362. doi: 10.1038/ncomms7362  doi: 10.1038/ncomms7362

    51. [51]

      Yan, C.; Zhang, X. Q.; Huang, J. Q.; Liu, Q.; Zhang, Q. Trends Chem. 2019, 1, 693. doi: 10.1016/j.trechm.2019.06.007  doi: 10.1016/j.trechm.2019.06.007

    52. [52]

      Li, B. Q.; Chen, X. R.; Chen, X.; Zhao, C. X.; Zhang, R.; Cheng, X. B.; Zhang, Q. Research. 2019, 2019, 4608940. doi: 10.34133/2019/4608940  doi: 10.34133/2019/4608940

    53. [53]

      Levin, E. E.; Vassiliev, S. Y.; Nikitina, V. A. Electrochim. Acta 2017, 228, 114. doi: 10.1016/j.electacta.2017.01.040  doi: 10.1016/j.electacta.2017.01.040

    54. [54]

      Shin, H.; Park, J.; Sastry, A. M.; Lu, W. J. Electrochem. Soc. 2015, 162, A1683. doi: 10.1149/2.0071509jes  doi: 10.1149/2.0071509jes

    55. [55]

      Liu, Y. M.; Nicolau, B. G.; Esbenshade, J. L.; Gewirth, A. A. Anal. Chem. 2016, 88, 7171. doi: 10.1021/acs.analchem.6b01292  doi: 10.1021/acs.analchem.6b01292

    56. [56]

      Li, J. D.; Dong, S. M.; Wang, C.; Hu, Z. L.; Zhang, Z. Y.; Zhang, H.; Cui, G. L. J. Mater. Chem. A 2018, 6, 11846. doi: 10.1039/C8TA02975J  doi: 10.1039/C8TA02975J

    57. [57]

      Tong, B.; Wang, J. W.; Liu, Z. J.; Ma, L. P.; Zhou, Z. B.; Peng, Z. Q. J. Power Sources 2018, 384, 80. doi: 10.1016/j.jpowsour.2018.02.076  doi: 10.1016/j.jpowsour.2018.02.076

    58. [58]

      Bassett, K. L.; Capraz, O. O.; Ozdogru, B.; Gewirth, A. A.; Sottos, N. R. J. Electrochem. Soc. 2019, 166, A2707. doi: 10.1149/2.1391912jes  doi: 10.1149/2.1391912jes

    59. [59]

      Liao, Y. H.; Li, G. J.; Xu, N.; Chen, T. T.; Wang, X. S.; Li, W. S. Solid State Ion. 2019, 329, 31. doi: 10.1016/j.ssi.2018.11.013  doi: 10.1016/j.ssi.2018.11.013

    60. [60]

      Liao, B.; Li, H. Y.; Xu, M. Q.; Xing, L. D.; Liao, Y. H.; Ren, X. B.; Fan, W. Z.; Yu, L.; Xu, K.; Li, W. S. Adv. Energy Mater. 2018, 8, 1800802. doi: 10.1002/aenm.201800802  doi: 10.1002/aenm.201800802

    61. [61]

      Xu, K.; Lam, Y.; Zhang, S. S.; Jow, T. R.; Curtis, T. B. J. Phys. Chem. C 2007, 111, 7411. doi: 10.1021/jp068691u  doi: 10.1021/jp068691u

    62. [62]

      Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 5301. doi: 10.1002/anie.201801513  doi: 10.1002/anie.201801513

    63. [63]

      Abe, T.; Fukuda, H.; Iriyama, Y.; Ogumi, Z. J. Electrochem. Soc. 2004, 151, A1120. doi: 10.1149/1.1763141  doi: 10.1149/1.1763141

    64. [64]

      Abe, T.; Ohtsuka, M.; Sagane, F.; Iriyama, Y.; Ogumi, Z. J. Electrochem. Soc. 2004, 151, A950. doi: 10.1149/1.1804813  doi: 10.1149/1.1804813

    65. [65]

      Yamada, Y.; Yaegashi, M.; Abe, T. Yamada, A. Chem. Commun. 2013, 49, 11194. doi: 10.1039/C3CC46665E  doi: 10.1039/C3CC46665E

    66. [66]

      Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. J. Am. Chem. Soc. 2014, 136, 5039. doi: 10.1021/ja412807w  doi: 10.1021/ja412807w

    67. [67]

      Yamada, Y.; Yamada, A. Chem. Lett. 2017, 46, 1056. doi: 10.1246/cl.170284  doi: 10.1246/cl.170284

    68. [68]

      Yamada, Y.; Wang, J. H.; Ko, S.; Watanabe, E.; Yamada, A. Nat. Energy 2019, 4, 269. doi: 10.1038/s41560-019-0336-z  doi: 10.1038/s41560-019-0336-z

    69. [69]

      Chen, S.; Zheng, J.; Mei, D.; Han, K. S.; Engelhard, M. H.; Zhao, W.; Xu, W.; Liu, J.; Zhang, J. G. Adv. Mater. 2018, 30, 1706102. doi: 10.1002/adma.201706102  doi: 10.1002/adma.201706102

    70. [70]

      Zeng, Z.; Murugesan, V.; Han, K. S.; Jiang, X.; Cao, Y.; Xiao, L.; Ai, X.; Yang, H.; Zhang, J. G.; Sushko, M. L.; Liu, J. Nat. Energy 2018, 3, 674. doi: 10.1038/s41560-018-0196-y  doi: 10.1038/s41560-018-0196-y

    71. [71]

      Zheng, J.; Chen, S.; Zhao, W.; Song, J.; Engelhard, M. H.; Zhang, J. G. ACS Energy Lett. 2018, 3, 315. doi: 10.1021/acsenergylett.7b01213  doi: 10.1021/acsenergylett.7b01213

    72. [72]

      Wang, L.; Menakath, A.; Han, F.; Wang, Y.; Zavalij, P. Y.; Gaskell, K. J.; Borodin, O.; Iuga, D.; Brown, S. P.; Wang, C.; et al. W. Nat. Chem. 2019, 11, 789. doi: 10.1038/s41557-019-0304-z  doi: 10.1038/s41557-019-0304-z

    73. [73]

      Verma, P.; Maire, P.; Novák, P. Electrochim. Acta 2010, 55, 6332. doi: 10.1016/j.electacta.2010.05.072  doi: 10.1016/j.electacta.2010.05.072

    74. [74]

      Heiskanen, S. K.; Kim, J.; Lucht, B. L. Joule 2019, 3, 2322. doi: 10.1016/j.joule.2019.08.018  doi: 10.1016/j.joule.2019.08.018

    75. [75]

      Gauthier, M.; Carney, T. J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H. H.; Fenning, D. P.; Lux, S. F.; Paschos, O.; Bauer, C.; et al. J. Phys. Chem. Lett. 2015, 6, 4653. doi: 10.1021/acs.jpclett.5b01727  doi: 10.1021/acs.jpclett.5b01727

    76. [76]

      Dey, A. N. Thin Solid Films 1977, 43, 131. doi: 10.1016/0040-6090(77)90383-2  doi: 10.1016/0040-6090(77)90383-2

    77. [77]

      Peled, E.; Golodnitsky, D.; Ardel, G. J. Electrochem. Soc. 1997, 144, L208. doi: 10.1149/1.1837858  doi: 10.1149/1.1837858

    78. [78]

      Aurbach, D. J. Power Sources 2000, 89, 206. doi: 10.1016/S0378-7753(00)00431-6  doi: 10.1016/S0378-7753(00)00431-6

    79. [79]

      Chen, D.; Mahmoud, M. A.; Wang, J. H.; Waller, G. H.; Zhao, B.; Qu, C.; El-Sayed, M. A.; Liu, M. Nano Lett. 2019, 19, 2037. doi: 10.1021/acs.nanolett.9b00179  doi: 10.1021/acs.nanolett.9b00179

    80. [80]

      Jurng, S.; Brown, Z. L.; Kim, J.; Lucht, B. L. Energy Environ. Sci. 2018, 11, 2600. doi: 10.1039/C8EE00364E  doi: 10.1039/C8EE00364E

    81. [81]

      Gauthier, M.; Carney, T. J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H. H.; Fenning, D. P.; Lux, S. F.; Paschos, O.; Bauer, C.; et al. J. Phys. Chem. Lett. 2015, 6, 4653. doi: 10.1021/acs.jpclett.5b01727  doi: 10.1021/acs.jpclett.5b01727

    82. [82]

      Zhou, Y.; Su, M.; Yu, X.; Zhang, Y.; Wang, J. G.; Ren, X.; Cao, R.; Xu, W.; Baer, D. R.; Du, Y.; et al. Nat. Nanotechnol. 2020, 15, 224. doi: 10.1038/s41565-019-0618-4  doi: 10.1038/s41565-019-0618-4

    83. [83]

      Hou, C.; Han, J.; Liu, P.; Yang, C.; Huang, G.; Fujita, T.; Hirata, A.; Chen, M. Adv. Energy Mater. 2019, 9, 1902675. doi: 10.1002/aenm.201902675  doi: 10.1002/aenm.201902675

    84. [84]

      Huang, W.; Attia, P. M.; Wang, H.; Renfrew, S. E.; Jin, N.; Das, S.; Zhang, Z.; Boyle, D. T.; Li, Y.; Bazant, M. Z.; et al. Nano Lett. 2019, 19, 5140. doi: 10.1021/acs.nanolett.9b01515  doi: 10.1021/acs.nanolett.9b01515

    85. [85]

      Benning, S.; Chen, C.; Eichel, R. A.; Notten, P. H. L.; Hausen, F. ACS Appl. Energy Mater. 2019, 2, 6761. doi: 10.1021/acsaem.9b01222  doi: 10.1021/acsaem.9b01222

    86. [86]

      Yan, C.; Yuan, H.; Park, H. S.; Huang, J. Q. J. Energy Chem. 2020, 47, 217. doi: 10.1016/j.jechem.2019.09.034  doi: 10.1016/j.jechem.2019.09.034

    87. [87]

      Xu, K.; von Cresce, A.; Lee, U. Langmuir 2010, 26, 11538. doi: 10.1021/la1009994  doi: 10.1021/la1009994

    88. [88]

      Xu, K. J. Electrochem. Soc. 2007, 154, A162. doi: 10.1149/1.2536554  doi: 10.1149/1.2536554

    89. [89]

      Liu, Y.; Zhu, Y.; Cui,   Y. Nat. Energy 2019, 4, 540. doi: 10.1038/s41560-019-0405-3  doi: 10.1038/s41560-019-0405-3

    90. [90]

      Xu, K.; von Wald Cresce, A. J. Mater. Res. 2012, 27, 2327. doi: 10.1557/jmr.2012.104  doi: 10.1557/jmr.2012.104

    91. [91]

      Cheng, X. B.; Yan, C.; Zhang, X. Q.; Liu, H.; Zhang, Q. ACS Energy Lett. 2018, 3, 1564. doi: 10.1021/acsenergylett.8b00526  doi: 10.1021/acsenergylett.8b00526

    92. [92]

      Shi, S.; Lu, P.; Liu, Z.; Qi, Y.; Hector, L. G.; Li, H.; Harris, S. J. J. Am. Chem. Soc. 2012, 134, 15476. doi: 10.1021/ja305366r  doi: 10.1021/ja305366r

    93. [93]

      Aurbach, D.; Zinigrad, E.; Yaron, C.; Teller, H. Solid State Ion. 2002, 148, 405. doi: 10.1016/S0167-2738(02)00080-2  doi: 10.1016/S0167-2738(02)00080-2

    94. [94]

      Brown, Z. L.; Jurng, S.; Nguyen, C. C.; Lucht, B. L. ACS Appl. Energy Mater. 2018, 1, 3057. doi: 10.1021/acsaem.8b00705  doi: 10.1021/acsaem.8b00705

    95. [95]

      Pritzl, D.; Solchenbach, S.; Wetjen, M.; Gasteiger, H. J. Electrochem. Soc. 2017, 164, A2625. doi: 10.1149/2.1441712jes  doi: 10.1149/2.1441712jes

    96. [96]

      von Aspern, N.; Diddens, D.; Kobayashi, T.; Börner, M.; Kazakova, O. S.; Kozel, V.; Röschenthaler, G. V.; Smiatek, J.; Winter, M.; Laskovic, I. ACS Appl. Mater. Interfaces 2019, 11, 18, 16605. doi: 10.1021/acsami.9b03359  doi: 10.1021/acsami.9b03359

    97. [97]

      Xu, G.; Kushima, A.; Yuan, J.; Dou, H.; Xue, W.; Zhang, X.; Yan, X.; Li, J. Energy Environ. Sci. 2017, 10, 2544. doi: 10.1039/C7EE01898C  doi: 10.1039/C7EE01898C

    98. [98]

      Ma, J. L.; Meng, F. L.; Yu, Y.; Liu, D. P.; Yan, J. M.; Zhang, Y.; Zhang, X. B.; Jiang, Q. Nat. Chem. 2018, 11, 64. doi: 10.1038/s41557-018-0166-9  doi: 10.1038/s41557-018-0166-9

    99. [99]

      Hu, Z.; Zhao, L.; Jiang, T.; Liu, J.; Rashid, A.; Sun, P.; Wang, G.; Yan, C.; Zhang, L. Adv. Funct. Mater. 2019, 29, 1906548. doi: 10.1002/adfm.201906548  doi: 10.1002/adfm.201906548

    100. [100]

      Zheng, J.; Ji, G.; Fan, X.; Chen, J.; Li, Q.; Wang, H.; Yang, Y.; DeMella, K. C.; Raghavan, S. R.; Wang, C. Adv. Energy Mater. 2019, 9, 1803774. doi: 10.1002/aenm.201803774  doi: 10.1002/aenm.201803774

    101. [101]

      Heng, S.; Wang, Y.; Qu, Q.; Guo, R.; Shan, X.; Battaglia, V. S.; Liu, G.; Zheng, H. ACS Appl. Energy Mater. 2019, 2, 6404. doi: 10.1021/acsaem.9b00972  doi: 10.1021/acsaem.9b00972

    102. [102]

      Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; et al. J. Am. Chem. Soc. 2013, 135, 4450. doi: 10.1021/ja312241y  doi: 10.1021/ja312241y

    103. [103]

      Dollé, M.; Grugeon, B.; Dupont, L.; Tarascon, J. M. J. Power Sources 2001, 97–98, 104. doi: 10.1016/S0378-7753(01)00507-9

    104. [104]

      Ota, H; Sato, T.; Suzuki, H.; Usami, T. J. Power Sources 2001, 97–98, 107. doi: 10.1016/S0378-7753(01)00738-8

    105. [105]

      Liu, G.; Lu, W. J. Power Sources 2017, 164, A1826. doi: 10.1149/2.0381709jes  doi: 10.1149/2.0381709jes

    106. [106]

      Shen, X.; Zhang, R.; Chen, X.; Cheng, X.B.; Li, X. Y.; Zhang, Q. Adv. Energy Mater. 2020, 10, 1903645. doi: 10.1002/aenm.201903645  doi: 10.1002/aenm.201903645

    107. [107]

      Stetson, C.; Yin, Y.; Jiang, C.S.; DeCaluwe, S. C.; Al-Jassim, M.; Neale, N. R.; Ban, C.; Burrell, A. ACS Energy Lett. 2019, 4, 2770. doi: 10.1021/acsenergylett.9b02082  doi: 10.1021/acsenergylett.9b02082

    108. [108]

      Hou, L. P.; Zhang, X. Q.; Li, B. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2020. doi: 10.1002/anie.202002711

    109. [109]

      Yan, C.; Yao, Y. X.; Cai, W. L.; Xu, Lei.; Kaskel, S.; Park, H. S.; Huang, J. Q. J. Energy Chem. 2020, 49, 335. doi: 10.1016/j.jechem.2020.02.052  doi: 10.1016/j.jechem.2020.02.052

    110. [110]

      Shin, H.; Park, J.; Han, S.; Sastr, A M.; Lu, W. J. Power Sources 2015, 277, 169. doi: 10.1016/j.jpowsour.2014.11.120  doi: 10.1016/j.jpowsour.2014.11.120

    111. [111]

      Yu, C.; Chen, X.; Xiao, Z.; Chao, Lei.; Zhang, C.; Lin, X.; Shen, B.; Zhang, R.; Wei, F. Nano Lett. 2019, 19, 5124. doi: 10.1021/acs.nanolett.9b01492  doi: 10.1021/acs.nanolett.9b01492

    112. [112]

      Cao, X.; Ren, X.; Zou, L.; Engelhard, M. H.; Huang, W.; Wang, H.; Matthews, B. E.; Lee, H.; Niu, C.; Arey, B. W.; et al. Nat. Energy 2019, 4, 796. doi: 10.1038/s41560-019-0464-5  doi: 10.1038/s41560-019-0464-5

    113. [113]

      Zhang, W.; Shen, Z.; Li, S.; Fan, L.; Wang, X.; Chen, F.; Zang, X.; Wu, T.; Ma, F.; Lu, Y. Adv. Funct. Mater. 2020, 30, 2003800. doi: 10.1002/adfm.202003800  doi: 10.1002/adfm.202003800

    114. [114]

      Louli, A. J.; Ellis, L. D.; Dahn, J. R. Joule 2019, 3, 745. doi: 10.1016/j.joule.2018.12.009  doi: 10.1016/j.joule.2018.12.009

    115. [115]

      Cheng, X. B.; Yan, C.; Chen, X.; Guan, C.; Huang, J. Q.; Peng, H. J.; Zhang, Rui.; Yang, S. T.; Zhang, Q. Chem 2017, 2, 258. doi: 10.1016/j.chempr.2017.01.003  doi: 10.1016/j.chempr.2017.01.003

    116. [116]

      Yan, C.; Cheng, X. B.; Yao, Y. X.; Shen, X.; Li, B. Q.; Li, W. J.; Zhang, R.; Huang, J. Q.; Li, H.; Zhang, Q. Adv. Mater. 2018, 30, 1804461. doi: 10.1002/adma.201804461  doi: 10.1002/adma.201804461

    117. [117]

      An, S. J.; Li, J.; Daniel, C.; Wood, D. L. J. Electrochem. Soc. 2019, 166, A1121. doi: 10.1149/2.0591906jes  doi: 10.1149/2.0591906jes

    118. [118]

      Zheng, G.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; Cui, Y. Nat. Nanotechnol. 2014, 9, 618. doi: 10.1038/nnano.2014.152  doi: 10.1038/nnano.2014.152

    119. [119]

      Yan, C.; Cheng, X. B.; Tian, Y.; Chen, X.; Zhang, X. Q.; Li, W. J.; Huang, J. Q.; Zhang, Q. Adv. Mater. 2018, 30, 1707629.

  • 加载中
    1. [1]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    2. [2]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    3. [3]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    4. [4]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    7. [7]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    8. [8]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    9. [9]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    12. [12]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    13. [13]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    14. [14]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    15. [15]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    18. [18]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    19. [19]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(120)
  • Abstract views(3000)
  • HTML views(1120)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return