Research Progress of Solid Electrolyte Interphase in Lithium Batteries
- Corresponding author: Huang Jiaqi, jqhuang@bit.edu.cn
Citation: Yang Yi, Yan Chong, Huang Jiaqi. Research Progress of Solid Electrolyte Interphase in Lithium Batteries[J]. Acta Physico-Chimica Sinica, ;2021, 37(11): 201007. doi: 10.3866/PKU.WHXB202010076
Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115
doi: 10.1021/acs.chemrev.7b00115
Yoshino, A. Angew. Chem. Int. Ed. 2012, 51, 5798. doi: 10.1002/anie.201105006
doi: 10.1002/anie.201105006
Li, M.; Lu, J.; Chen, Z.; Amine, K. Adv. Mater. 2018, 30, 1800561. doi: 10.1002/adma.201800561
doi: 10.1002/adma.201800561
Winter, M.; Barnett, B.; Xu, K. Chem. Rev. 2018, 118, 11433. doi: 10.1021/acs.chemrev.8b00422
doi: 10.1021/acs.chemrev.8b00422
Yan, C.; Xu, R.; Xiao, Y.; Ding, J. F.; Xu, L.; Li, B. Q.; Huang, J. Q. Adv. Funct. Mater. 2020, 30, 1909887. doi: 10.1002/adfm.201909887
doi: 10.1002/adfm.201909887
Gao, X.; Zhou, Y. N.; Han, D.; Zhou, J.; Zhou, D.; Tang, W.; Goodenough, J. B. Joule 2020, 4, 1864. doi: 10.1016/j.joule.2020.06.016
doi: 10.1016/j.joule.2020.06.016
Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A.; et al. Nat. Energy 2019, 4, 180. doi: 10.1038/s41560-019-0338-x
doi: 10.1038/s41560-019-0338-x
Dunn, J. B.; Gaines, L.; Kelly, J. C.; James, C.; Gallagher, K. G. Energy Environ. Sci. 2015, 8, 158. doi: 10.1039/c4ee03029j
doi: 10.1039/c4ee03029j
Yao, Y. X.; Chen, X.; Yan, C.; Zhang, X.; Cai, W, L.; Huang, J, Q.; Zhang, Q. Angew. Chem. Int. Ed. 2020, doi: 10.1002/anie.202011482
Deng, J.; Bae, C.; Denlinger, A.; Miller, T. Joule 2020, 4, 511. doi: 10.1016/j.joule.2020.01.013
doi: 10.1016/j.joule.2020.01.013
Zeng, X.; Li, M.; EI-Hady, D. A.; Alshitari, W.; AI-Bogami, A. S.; Lu, J.; Amine, K. Adv. Energy Mater. 2019, 9, 1900161. doi: 10.1002/aenm.201900161
doi: 10.1002/aenm.201900161
Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Nat. Energy 2018, 3, 267. doi: 10.1038/s41560-018-0107-2
doi: 10.1038/s41560-018-0107-2
Zhu, G. L.; Zhao, C. Z.; Huang, J. Q.; He, C.; Zhang, J.; Chen, S.; Xu, L.; Yuan, H.; Zhang, Q. Small 2019, 15, 1805389. doi: 10.1002/smll.201805389
doi: 10.1002/smll.201805389
Zhao, Q.; Stalin, S.; Zhao, C. Z.; Archer, L.A. Nat. Rev. Mater. 2020, 5, 229. doi: 10.1038/s41578-019-0165-5
doi: 10.1038/s41578-019-0165-5
Li, M.; Wang, C.; Chen, Z.; Xu, K.; Lu, J. Chem. Rev. 2020, 120, 6783. doi: 10.1021/acs.chemrev.9b00531
doi: 10.1021/acs.chemrev.9b00531
Peled, E. J. Electrochem. Soc. 1979, 126, 2047. doi: 10.1149/1.2128859
doi: 10.1149/1.2128859
Cheng, X. B.; Yan, C.; Zhang, X. Q.; Liu, H.; Zhang, Q. ACS Energy Lett. 2018, 3, 1564. doi: 10.1021/acsenergylett.8b00526
doi: 10.1021/acsenergylett.8b00526
Winter, M.; Appel, W. K.; Evers, B.; Hodal, T.; Möller, K. C.; Schneider, I.; Wachtler, M.; Wagner, M. R.; Wrodnigg, G. H.; Besenhard, J. O. Electroact. Mater. 2001, 53. doi: 10.1007/978-3-7091-6211-8_6
Xu, K. Chem. Rev. 2014, 114, 11503. doi: 10.1021/cr500003w
doi: 10.1021/cr500003w
Xu, K. Chem. Rev. 2004, 104, 4303. doi: 10.1021/cr030203g
doi: 10.1021/cr030203g
An, S. J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D. L. Carbon 2016, 105, 52. doi: 10.1016/j.carbon.2016.04.008
doi: 10.1016/j.carbon.2016.04.008
Liu, T.; Lin, L.; Bi, X.; Tian, L.; Yang, K.; Liu, J.; Li, M.; Chen, Z.; Lu, J.; Amine, K. Nat. Nanotechnol. 2019, 14, 50. doi: 10.1038/s41565-018-0284-y
doi: 10.1038/s41565-018-0284-y
Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587. doi: 10.1021/cm901452z
doi: 10.1021/cm901452z
Peljo, P.; Girault, H. H. Energy Environ. Sci. 2018, 11, 230. doi: 10.1039/C8EE01286E
doi: 10.1039/C8EE01286E
Yan, C.; Li, H. R.; Chen, X.; Zhang, X. Q.; Cheng, X. B.; Xu, R.; Huang, J. Q.; Zhang, Q. J. Am. Chem. Soc. 2019, 141, 9422. doi: 10.1021/jacs.9b05029
doi: 10.1021/jacs.9b05029
Liu, J.; Chisti, M. M.; Zeng, X. Anal. Chem. 2017, 89, 4013. doi: 10.1021/acs.analchem.6b04570
doi: 10.1021/acs.analchem.6b04570
Borodin, O.; Ren, X.; Vatamanu, J.; Wald Cresce, A.; Knap, J.; Xu, K. Acc. Chem. Res. 2017, 50, 2886. doi: 10.1021/acs.accounts.7b00486
doi: 10.1021/acs.accounts.7b00486
Liu, Z. F. Acta Phys. -Chim. Sin. 2019, 35, 1293.
doi: 10.3866/PKU.WHXB201906040
Groß, A.; Sakong, S. Curr. Opin. Electrochem. 2019, 14, 1. doi: 10.1016/j.coelec.2018.09.005
doi: 10.1016/j.coelec.2018.09.005
Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38, 2520. doi: 10.1039/B813846J
doi: 10.1039/B813846J
Wang, G.; Brown, W.; Kvetny, M. Curr. Opin. Electrochem. 2019, 13, 112. doi: 10.1016/j.coelec.2018.11.022
doi: 10.1016/j.coelec.2018.11.022
Magnussen, O. M.; Gross, A. J. Am. Chem. Soc. 2019, 141, 4777. doi: 10.1016/j.coelec.2018.11.022
doi: 10.1016/j.coelec.2018.11.022
Wang, F.; Borodin, O.; Ding, M. S.; Gobet, M.; Vatamanu, J.; Fan, X.; Gao, T.; Eidson, N.; Liang, Y.; Sun, W. Joule 2018, 2, 927. doi: 10.1016/j.joule.2018.02.011
doi: 10.1016/j.joule.2018.02.011
Yang, C.; Chen, J.; Qing, T.; Fan, X.; Sun, W.; von Cresce, A.; Ding, M. S.; Borodin, O.; Vatamanu, J.; Schroeder, M. A. Joule 2017, 1, 122. doi: 10.1016/j.joule.2017.08.009
doi: 10.1016/j.joule.2017.08.009
Huang, J.; Li, Z.; Ge, H.; Zhang. J. Electrochem. Soc. 2015, 162, A7037. doi: 10.1149/2.0081513jes
doi: 10.1149/2.0081513jes
Herzog, G.; Moujahid, W.; Strutwolf, J.; Arrigan, D. W. Analyst 2009, 134, 1608. doi: 10.1039/B905441N
doi: 10.1039/B905441N
Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y. NPJ Comput. Mater. 2018, 4, 15. doi: 10.1038/s41524-018-0064-0
doi: 10.1038/s41524-018-0064-0
von Cresce, A.; Xu, K. Electrochem. Solid State Lett. 2011, 14, A154. doi: 10.1149/1.3615828
doi: 10.1149/1.3615828
Xu, K.; von Wald Cresce, A. J. Mater. Res. 2012, 27, 2327. doi: 10.1557/jmr.2012.104
doi: 10.1557/jmr.2012.104
von Wald Cresce, A.; Gobet, M.; Borodin, O.; Peng, J.; Russell, S. M.; Wikner, E.; Fu, A.; Hu, L.; Lee, H. S.; Zhang, Z. J. Phys. Chem. C 2015, 119, 27255. doi: 10.1021/acs.jpcc.5b08895
doi: 10.1021/acs.jpcc.5b08895
Xu, K. J. Electrochem. Soc. 2007, 154, A162. doi: 10.1149/1.2536554
doi: 10.1149/1.2536554
Xu, K.; Lam, Y.; Zhang, S. S.; Jow, T. R.; Curtis, T. B. J. Phys. Chem. C 2007, 111, 7411. doi: 10.1021/jp068691u
doi: 10.1021/jp068691u
Schiele, A.; Breitung, B.; Hatsukade, T.; Berkes, B. B.; Hartmann, P.; Janek, J.; Brezesinski, T. ACS Energy Lett. 2017, 2, 2228. doi: 10.1021/acsenergylett.7b00619
doi: 10.1021/acsenergylett.7b00619
Yoon, T.; Chapman, N.; Seo, D. M.; Lucht, B. L. J. Electrochem. Soc. 2017, 164, A2082. doi: 10.1149/2.1421709jes
doi: 10.1149/2.1421709jes
Devic, T.; Lestriez, B.; Roué, L. ACS Energy Lett. 2019, 4, 550. doi: 10.1021/acsenergylett.8b02433
doi: 10.1021/acsenergylett.8b02433
Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 5301. doi: 10.1002/anie.201801513
doi: 10.1002/anie.201801513
Chen, X.; Shen, X.; Li, B.; Peng, H. J.; Cheng, X. B.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 734. doi: 10.1002/anie.201711552
doi: 10.1002/anie.201711552
Chen, X.; Zhang, X. Q.; Li, H. R.; Zhang, Q. Batteries Supercaps. 2019, 2, 128. doi: 10.1002/batt.201800118
doi: 10.1002/batt.201800118
Zhang, X. Q.; Chen, X.; Hou, L. P.; Li, B. Q.; Cheng, X. B.; Huang, J. Q.; Zhang, Q. ACS Energy Lett. 2019, 4, 411. doi: 10.1021/acsenergylett.8b02376
doi: 10.1021/acsenergylett.8b02376
Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6, 6362. doi: 10.1038/ncomms7362
doi: 10.1038/ncomms7362
Yan, C.; Zhang, X. Q.; Huang, J. Q.; Liu, Q.; Zhang, Q. Trends Chem. 2019, 1, 693. doi: 10.1016/j.trechm.2019.06.007
doi: 10.1016/j.trechm.2019.06.007
Li, B. Q.; Chen, X. R.; Chen, X.; Zhao, C. X.; Zhang, R.; Cheng, X. B.; Zhang, Q. Research. 2019, 2019, 4608940. doi: 10.34133/2019/4608940
doi: 10.34133/2019/4608940
Levin, E. E.; Vassiliev, S. Y.; Nikitina, V. A. Electrochim. Acta 2017, 228, 114. doi: 10.1016/j.electacta.2017.01.040
doi: 10.1016/j.electacta.2017.01.040
Shin, H.; Park, J.; Sastry, A. M.; Lu, W. J. Electrochem. Soc. 2015, 162, A1683. doi: 10.1149/2.0071509jes
doi: 10.1149/2.0071509jes
Liu, Y. M.; Nicolau, B. G.; Esbenshade, J. L.; Gewirth, A. A. Anal. Chem. 2016, 88, 7171. doi: 10.1021/acs.analchem.6b01292
doi: 10.1021/acs.analchem.6b01292
Li, J. D.; Dong, S. M.; Wang, C.; Hu, Z. L.; Zhang, Z. Y.; Zhang, H.; Cui, G. L. J. Mater. Chem. A 2018, 6, 11846. doi: 10.1039/C8TA02975J
doi: 10.1039/C8TA02975J
Tong, B.; Wang, J. W.; Liu, Z. J.; Ma, L. P.; Zhou, Z. B.; Peng, Z. Q. J. Power Sources 2018, 384, 80. doi: 10.1016/j.jpowsour.2018.02.076
doi: 10.1016/j.jpowsour.2018.02.076
Bassett, K. L.; Capraz, O. O.; Ozdogru, B.; Gewirth, A. A.; Sottos, N. R. J. Electrochem. Soc. 2019, 166, A2707. doi: 10.1149/2.1391912jes
doi: 10.1149/2.1391912jes
Liao, Y. H.; Li, G. J.; Xu, N.; Chen, T. T.; Wang, X. S.; Li, W. S. Solid State Ion. 2019, 329, 31. doi: 10.1016/j.ssi.2018.11.013
doi: 10.1016/j.ssi.2018.11.013
Liao, B.; Li, H. Y.; Xu, M. Q.; Xing, L. D.; Liao, Y. H.; Ren, X. B.; Fan, W. Z.; Yu, L.; Xu, K.; Li, W. S. Adv. Energy Mater. 2018, 8, 1800802. doi: 10.1002/aenm.201800802
doi: 10.1002/aenm.201800802
Xu, K.; Lam, Y.; Zhang, S. S.; Jow, T. R.; Curtis, T. B. J. Phys. Chem. C 2007, 111, 7411. doi: 10.1021/jp068691u
doi: 10.1021/jp068691u
Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 5301. doi: 10.1002/anie.201801513
doi: 10.1002/anie.201801513
Abe, T.; Fukuda, H.; Iriyama, Y.; Ogumi, Z. J. Electrochem. Soc. 2004, 151, A1120. doi: 10.1149/1.1763141
doi: 10.1149/1.1763141
Abe, T.; Ohtsuka, M.; Sagane, F.; Iriyama, Y.; Ogumi, Z. J. Electrochem. Soc. 2004, 151, A950. doi: 10.1149/1.1804813
doi: 10.1149/1.1804813
Yamada, Y.; Yaegashi, M.; Abe, T. Yamada, A. Chem. Commun. 2013, 49, 11194. doi: 10.1039/C3CC46665E
doi: 10.1039/C3CC46665E
Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. J. Am. Chem. Soc. 2014, 136, 5039. doi: 10.1021/ja412807w
doi: 10.1021/ja412807w
Yamada, Y.; Yamada, A. Chem. Lett. 2017, 46, 1056. doi: 10.1246/cl.170284
doi: 10.1246/cl.170284
Yamada, Y.; Wang, J. H.; Ko, S.; Watanabe, E.; Yamada, A. Nat. Energy 2019, 4, 269. doi: 10.1038/s41560-019-0336-z
doi: 10.1038/s41560-019-0336-z
Chen, S.; Zheng, J.; Mei, D.; Han, K. S.; Engelhard, M. H.; Zhao, W.; Xu, W.; Liu, J.; Zhang, J. G. Adv. Mater. 2018, 30, 1706102. doi: 10.1002/adma.201706102
doi: 10.1002/adma.201706102
Zeng, Z.; Murugesan, V.; Han, K. S.; Jiang, X.; Cao, Y.; Xiao, L.; Ai, X.; Yang, H.; Zhang, J. G.; Sushko, M. L.; Liu, J. Nat. Energy 2018, 3, 674. doi: 10.1038/s41560-018-0196-y
doi: 10.1038/s41560-018-0196-y
Zheng, J.; Chen, S.; Zhao, W.; Song, J.; Engelhard, M. H.; Zhang, J. G. ACS Energy Lett. 2018, 3, 315. doi: 10.1021/acsenergylett.7b01213
doi: 10.1021/acsenergylett.7b01213
Wang, L.; Menakath, A.; Han, F.; Wang, Y.; Zavalij, P. Y.; Gaskell, K. J.; Borodin, O.; Iuga, D.; Brown, S. P.; Wang, C.; et al. W. Nat. Chem. 2019, 11, 789. doi: 10.1038/s41557-019-0304-z
doi: 10.1038/s41557-019-0304-z
Verma, P.; Maire, P.; Novák, P. Electrochim. Acta 2010, 55, 6332. doi: 10.1016/j.electacta.2010.05.072
doi: 10.1016/j.electacta.2010.05.072
Heiskanen, S. K.; Kim, J.; Lucht, B. L. Joule 2019, 3, 2322. doi: 10.1016/j.joule.2019.08.018
doi: 10.1016/j.joule.2019.08.018
Gauthier, M.; Carney, T. J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H. H.; Fenning, D. P.; Lux, S. F.; Paschos, O.; Bauer, C.; et al. J. Phys. Chem. Lett. 2015, 6, 4653. doi: 10.1021/acs.jpclett.5b01727
doi: 10.1021/acs.jpclett.5b01727
Dey, A. N. Thin Solid Films 1977, 43, 131. doi: 10.1016/0040-6090(77)90383-2
doi: 10.1016/0040-6090(77)90383-2
Peled, E.; Golodnitsky, D.; Ardel, G. J. Electrochem. Soc. 1997, 144, L208. doi: 10.1149/1.1837858
doi: 10.1149/1.1837858
Aurbach, D. J. Power Sources 2000, 89, 206. doi: 10.1016/S0378-7753(00)00431-6
doi: 10.1016/S0378-7753(00)00431-6
Chen, D.; Mahmoud, M. A.; Wang, J. H.; Waller, G. H.; Zhao, B.; Qu, C.; El-Sayed, M. A.; Liu, M. Nano Lett. 2019, 19, 2037. doi: 10.1021/acs.nanolett.9b00179
doi: 10.1021/acs.nanolett.9b00179
Jurng, S.; Brown, Z. L.; Kim, J.; Lucht, B. L. Energy Environ. Sci. 2018, 11, 2600. doi: 10.1039/C8EE00364E
doi: 10.1039/C8EE00364E
Gauthier, M.; Carney, T. J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H. H.; Fenning, D. P.; Lux, S. F.; Paschos, O.; Bauer, C.; et al. J. Phys. Chem. Lett. 2015, 6, 4653. doi: 10.1021/acs.jpclett.5b01727
doi: 10.1021/acs.jpclett.5b01727
Zhou, Y.; Su, M.; Yu, X.; Zhang, Y.; Wang, J. G.; Ren, X.; Cao, R.; Xu, W.; Baer, D. R.; Du, Y.; et al. Nat. Nanotechnol. 2020, 15, 224. doi: 10.1038/s41565-019-0618-4
doi: 10.1038/s41565-019-0618-4
Hou, C.; Han, J.; Liu, P.; Yang, C.; Huang, G.; Fujita, T.; Hirata, A.; Chen, M. Adv. Energy Mater. 2019, 9, 1902675. doi: 10.1002/aenm.201902675
doi: 10.1002/aenm.201902675
Huang, W.; Attia, P. M.; Wang, H.; Renfrew, S. E.; Jin, N.; Das, S.; Zhang, Z.; Boyle, D. T.; Li, Y.; Bazant, M. Z.; et al. Nano Lett. 2019, 19, 5140. doi: 10.1021/acs.nanolett.9b01515
doi: 10.1021/acs.nanolett.9b01515
Benning, S.; Chen, C.; Eichel, R. A.; Notten, P. H. L.; Hausen, F. ACS Appl. Energy Mater. 2019, 2, 6761. doi: 10.1021/acsaem.9b01222
doi: 10.1021/acsaem.9b01222
Yan, C.; Yuan, H.; Park, H. S.; Huang, J. Q. J. Energy Chem. 2020, 47, 217. doi: 10.1016/j.jechem.2019.09.034
doi: 10.1016/j.jechem.2019.09.034
Xu, K.; von Cresce, A.; Lee, U. Langmuir 2010, 26, 11538. doi: 10.1021/la1009994
doi: 10.1021/la1009994
Xu, K. J. Electrochem. Soc. 2007, 154, A162. doi: 10.1149/1.2536554
doi: 10.1149/1.2536554
Liu, Y.; Zhu, Y.; Cui, Y. Nat. Energy 2019, 4, 540. doi: 10.1038/s41560-019-0405-3
doi: 10.1038/s41560-019-0405-3
Xu, K.; von Wald Cresce, A. J. Mater. Res. 2012, 27, 2327. doi: 10.1557/jmr.2012.104
doi: 10.1557/jmr.2012.104
Cheng, X. B.; Yan, C.; Zhang, X. Q.; Liu, H.; Zhang, Q. ACS Energy Lett. 2018, 3, 1564. doi: 10.1021/acsenergylett.8b00526
doi: 10.1021/acsenergylett.8b00526
Shi, S.; Lu, P.; Liu, Z.; Qi, Y.; Hector, L. G.; Li, H.; Harris, S. J. J. Am. Chem. Soc. 2012, 134, 15476. doi: 10.1021/ja305366r
doi: 10.1021/ja305366r
Aurbach, D.; Zinigrad, E.; Yaron, C.; Teller, H. Solid State Ion. 2002, 148, 405. doi: 10.1016/S0167-2738(02)00080-2
doi: 10.1016/S0167-2738(02)00080-2
Brown, Z. L.; Jurng, S.; Nguyen, C. C.; Lucht, B. L. ACS Appl. Energy Mater. 2018, 1, 3057. doi: 10.1021/acsaem.8b00705
doi: 10.1021/acsaem.8b00705
Pritzl, D.; Solchenbach, S.; Wetjen, M.; Gasteiger, H. J. Electrochem. Soc. 2017, 164, A2625. doi: 10.1149/2.1441712jes
doi: 10.1149/2.1441712jes
von Aspern, N.; Diddens, D.; Kobayashi, T.; Börner, M.; Kazakova, O. S.; Kozel, V.; Röschenthaler, G. V.; Smiatek, J.; Winter, M.; Laskovic, I. ACS Appl. Mater. Interfaces 2019, 11, 18, 16605. doi: 10.1021/acsami.9b03359
doi: 10.1021/acsami.9b03359
Xu, G.; Kushima, A.; Yuan, J.; Dou, H.; Xue, W.; Zhang, X.; Yan, X.; Li, J. Energy Environ. Sci. 2017, 10, 2544. doi: 10.1039/C7EE01898C
doi: 10.1039/C7EE01898C
Ma, J. L.; Meng, F. L.; Yu, Y.; Liu, D. P.; Yan, J. M.; Zhang, Y.; Zhang, X. B.; Jiang, Q. Nat. Chem. 2018, 11, 64. doi: 10.1038/s41557-018-0166-9
doi: 10.1038/s41557-018-0166-9
Hu, Z.; Zhao, L.; Jiang, T.; Liu, J.; Rashid, A.; Sun, P.; Wang, G.; Yan, C.; Zhang, L. Adv. Funct. Mater. 2019, 29, 1906548. doi: 10.1002/adfm.201906548
doi: 10.1002/adfm.201906548
Zheng, J.; Ji, G.; Fan, X.; Chen, J.; Li, Q.; Wang, H.; Yang, Y.; DeMella, K. C.; Raghavan, S. R.; Wang, C. Adv. Energy Mater. 2019, 9, 1803774. doi: 10.1002/aenm.201803774
doi: 10.1002/aenm.201803774
Heng, S.; Wang, Y.; Qu, Q.; Guo, R.; Shan, X.; Battaglia, V. S.; Liu, G.; Zheng, H. ACS Appl. Energy Mater. 2019, 2, 6404. doi: 10.1021/acsaem.9b00972
doi: 10.1021/acsaem.9b00972
Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; et al. J. Am. Chem. Soc. 2013, 135, 4450. doi: 10.1021/ja312241y
doi: 10.1021/ja312241y
Dollé, M.; Grugeon, B.; Dupont, L.; Tarascon, J. M. J. Power Sources 2001, 97–98, 104. doi: 10.1016/S0378-7753(01)00507-9
Ota, H; Sato, T.; Suzuki, H.; Usami, T. J. Power Sources 2001, 97–98, 107. doi: 10.1016/S0378-7753(01)00738-8
Liu, G.; Lu, W. J. Power Sources 2017, 164, A1826. doi: 10.1149/2.0381709jes
doi: 10.1149/2.0381709jes
Shen, X.; Zhang, R.; Chen, X.; Cheng, X.B.; Li, X. Y.; Zhang, Q. Adv. Energy Mater. 2020, 10, 1903645. doi: 10.1002/aenm.201903645
doi: 10.1002/aenm.201903645
Stetson, C.; Yin, Y.; Jiang, C.S.; DeCaluwe, S. C.; Al-Jassim, M.; Neale, N. R.; Ban, C.; Burrell, A. ACS Energy Lett. 2019, 4, 2770. doi: 10.1021/acsenergylett.9b02082
doi: 10.1021/acsenergylett.9b02082
Hou, L. P.; Zhang, X. Q.; Li, B. Q.; Zhang, Q. Angew. Chem. Int. Ed. 2020. doi: 10.1002/anie.202002711
Yan, C.; Yao, Y. X.; Cai, W. L.; Xu, Lei.; Kaskel, S.; Park, H. S.; Huang, J. Q. J. Energy Chem. 2020, 49, 335. doi: 10.1016/j.jechem.2020.02.052
doi: 10.1016/j.jechem.2020.02.052
Shin, H.; Park, J.; Han, S.; Sastr, A M.; Lu, W. J. Power Sources 2015, 277, 169. doi: 10.1016/j.jpowsour.2014.11.120
doi: 10.1016/j.jpowsour.2014.11.120
Yu, C.; Chen, X.; Xiao, Z.; Chao, Lei.; Zhang, C.; Lin, X.; Shen, B.; Zhang, R.; Wei, F. Nano Lett. 2019, 19, 5124. doi: 10.1021/acs.nanolett.9b01492
doi: 10.1021/acs.nanolett.9b01492
Cao, X.; Ren, X.; Zou, L.; Engelhard, M. H.; Huang, W.; Wang, H.; Matthews, B. E.; Lee, H.; Niu, C.; Arey, B. W.; et al. Nat. Energy 2019, 4, 796. doi: 10.1038/s41560-019-0464-5
doi: 10.1038/s41560-019-0464-5
Zhang, W.; Shen, Z.; Li, S.; Fan, L.; Wang, X.; Chen, F.; Zang, X.; Wu, T.; Ma, F.; Lu, Y. Adv. Funct. Mater. 2020, 30, 2003800. doi: 10.1002/adfm.202003800
doi: 10.1002/adfm.202003800
Louli, A. J.; Ellis, L. D.; Dahn, J. R. Joule 2019, 3, 745. doi: 10.1016/j.joule.2018.12.009
doi: 10.1016/j.joule.2018.12.009
Cheng, X. B.; Yan, C.; Chen, X.; Guan, C.; Huang, J. Q.; Peng, H. J.; Zhang, Rui.; Yang, S. T.; Zhang, Q. Chem 2017, 2, 258. doi: 10.1016/j.chempr.2017.01.003
doi: 10.1016/j.chempr.2017.01.003
Yan, C.; Cheng, X. B.; Yao, Y. X.; Shen, X.; Li, B. Q.; Li, W. J.; Zhang, R.; Huang, J. Q.; Li, H.; Zhang, Q. Adv. Mater. 2018, 30, 1804461. doi: 10.1002/adma.201804461
doi: 10.1002/adma.201804461
An, S. J.; Li, J.; Daniel, C.; Wood, D. L. J. Electrochem. Soc. 2019, 166, A1121. doi: 10.1149/2.0591906jes
doi: 10.1149/2.0591906jes
Zheng, G.; Lee, S. W.; Liang, Z.; Lee, H. W.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; Cui, Y. Nat. Nanotechnol. 2014, 9, 618. doi: 10.1038/nnano.2014.152
doi: 10.1038/nnano.2014.152
Yan, C.; Cheng, X. B.; Tian, Y.; Chen, X.; Zhang, X. Q.; Li, W. J.; Huang, J. Q.; Zhang, Q. Adv. Mater. 2018, 30, 1707629.
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Xuanzhu Huo , Yixi Liu , Qiyu Wu , Zhiqiang Dong , Chanzi Ruan , Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
Yanxin Wang , Hongjuan Wang , Yuren Shi , Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005
Cunling Ye , Xitong Zhao , Hongfang Wang , Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
Zunxiang Zeng , Yuling Hu , Yufei Hu , Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
Yuqiao Zhou , Weidi Cao , Shunxi Dong , Lili Lin , Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028