Citation: Liang Jiashun, Liu Xuan, Li Qing. Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(9): 201007. doi: 10.3866/PKU.WHXB202010072 shu

Principles, Strategies, and Approaches for Designing Highly Durable Platinum-based Catalysts for Proton Exchange Membrane Fuel Cells

  • Corresponding author: Li Qing, qing_li@hust.edu.cn
  • Received Date: 29 October 2020
    Revised Date: 22 November 2020
    Accepted Date: 23 November 2020
    Available Online: 30 November 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (21972051) and the Graduates' Innovation Fund, Huazhong University of Science and Technology, China (2020yjsCXCY020)the National Natural Science Foundation of China 21972051the Graduates' Innovation Fund, Huazhong University of Science and Technology, China 2020yjsCXCY020

  • Proton exchange membrane fuel cells (PEMFCs) have attracted significant attention owing to their high conversion efficiency, high power density, and low pollution. Their performance is mainly governed by the oxygen reduction reaction (ORR) occurring at the cathode. Owing to the sluggish kinetics of ORR, a large amount of electrocatalysts, i.e., platinum (Pt), is required to accelerate the reaction rate and improve the performance of PEMFCs for practical applications. The use of Pt electrocatalysts inevitably increases the cost, thereby hindering the commercialization of PEMFCs. In addition, the activity and stability of the commercial Pt/C catalyst are still insufficient. Therefore, advanced electrocatalysts with high activity, good stability, and low cost are urgently needed. To date, some theoretical models, especially d-band center theory, have been proposed and guided the search for next-generation electrocatalysts with higher ORR activity. Based on these theories, several strategies and catalysts, especially Pt-based alloy catalysts, have been developed to accelerate ORR and improve the fuel cell performance. For instance, Pt–Ni octahedral nanoparticles (NPs) electrocatalysts have achieved remarkable ORR activity, with one order of magnitude higher activity than that of commercial Pt/C. However, PEMFCs are usually operated at a high voltage (0.6–0.8 V) and an acidic electrolyte, where the transition metals (M) are easily oxidized and etched away. The electronic effect induced by the introduction of M would be eliminated due to the dissolution of transition metals and the agglomeration of NPs, leading to the decay of ORR activity. Therefore, the long-term stability of oxygen reduction catalysts and fuel cells remains highly challenging. It is crucial to design an efficient and highly stable ORR catalyst to promote the application of PEMFCs. Aiming to the stability issues of fuel cell cathode catalysts, the current review summarizes the principles, strategies, and approaches for improving the stability of Pt-based catalysts. First, we introduce thermodynamic and kinetic principles that affect the stability of catalysts. Thermodynamic (such as cohesive energy, alloy formation energy, and segregation energy) and kinetic parameters (such as vacancy formation and diffusion barrier) regarding the structural stability of catalysts significantly affect the metal dissolution and atomic diffusion processes. In addition, these parameters seem to be associated with chemical bond energy to some extent, which could be employed as a descriptor for the stability of catalysts. Later, we outline some representative strategies and methods for improving catalyst stability, namely elemental doping, atomic arrangement engineering, chemical or physical confinement, and supporting material design. Finally, a brief summary and future research perspectives are provided.
  • 加载中
    1. [1]

      Yang, T. Y.; Cui, C.; Rong, H. P.; Zhang, J. T.; Wang, D. S. Acta Phys. -Chim. Sin. 2020, 36, 2003047.  doi: 10.3866/PKU.WHXB202003047

    2. [2]

      Gasteiger, H. A.; Markovic, N. M. Science 2009, 324, 48. doi: 10.1126/science.1172083  doi: 10.1126/science.1172083

    3. [3]

      Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115  doi: 10.1038/nature11115

    4. [4]

      Bashyam, R.; Zelenay, P. Nature 2006, 443, 63. doi: 10.1038/nature05118  doi: 10.1038/nature05118

    5. [5]

      Kojima, K.; Fukazawa, K. ECS Trans. 2015, 69, 213.

    6. [6]

      Konno, N.; Mizuno, S.; Nakaji, H.; Ishikawa, Y. SAE Int. J. Alt. Power 2015, 4, 123. doi: 10.4271/2015-01-1175  doi: 10.4271/2015-01-1175

    7. [7]

      Yoshida, T.; Kojima, K. Electrochem. Soc. Inter. 2015, 24, 45.

    8. [8]

      Miao, Z. P.; Wang, X. M.; Tsai, M. C.; Jin, Q. Q.; Liang, J. S.; Ma, F.; Wang, T. Y.; Zheng, S. J.; Hwang, B. J.; Huang, Y. H.; et al. Adv. Energy Mater. 2018, 8, 1801226. doi: 10.1002/aenm.201801226  doi: 10.1002/aenm.201801226

    9. [9]

      He, D. S.; He, D. P.; Wang, J.; Lin, Y.; Yin, P. Q.; Hong, X.; Wu, Y.; Li, Y. D. J. Am. Chem. Soc. 2016, 138, 1494. doi: 10.1021/jacs.5b12530  doi: 10.1021/jacs.5b12530

    10. [10]

      Liang, J.; Ma, F.; Hwang, S.; Wang, X.; Sokolowski, J.; Li, Q.; Wu, G.; Su, D. Joule 2019, 3, 956. doi: 10.1016/j.joule.2019.03.014  doi: 10.1016/j.joule.2019.03.014

    11. [11]

      Li, J. R.; Xi, Z.; Pan, Y. T.; Spendelow, J. S.; Duchesne, P. N.; Su, D.; Li, Q.; Yu, C.; Yin, Z. Y.; Shen, B.; et al. J. Am. Chem. Soc. 2018, 140, 2926. doi: 10.1021/jacs.7b12829  doi: 10.1021/jacs.7b12829

    12. [12]

      US Department of Energy, DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components. https: //www.energy.gov/eere/fuelcells/doe-technicaltargets-polymer-electrolyte-membrane-fuelcell-components

    13. [13]

      Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Norskov, J. K. Angew. Chem. Int. Ed. 2006, 45, 2897. doi: 10.1002/anie.200504386  doi: 10.1002/anie.200504386

    14. [14]

      Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Science 2007, 315, 493. doi: 10.1126/science.1135941  doi: 10.1126/science.1135941

    15. [15]

      Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Nat. Mater. 2007, 6, 241. doi: 10.1038/nmat1840  doi: 10.1038/nmat1840

    16. [16]

      Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Norskov, J. K. Nat. Chem. 2009, 1, 552. doi: 10.1038/Nchem.367  doi: 10.1038/Nchem.367

    17. [17]

      Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H. L.; Snyder, J. D.; Li, D.; Herron, J. A.; Mavrikakis, M.; et al. Science 2014, 343, 1339. doi: 10.1126/science.1249061  doi: 10.1126/science.1249061

    18. [18]

      Becknell, N.; Kang, Y. J.; Chen, C.; Resasco, J.; Kornienko, N.; Guo, J. H.; Markovic, N. M.; Somorjai, G. A.; Stamenkovic, V. R.; Yang, P. D. J. Am. Chem. Soc. 2015, 137, 15817. doi: 10.1021/jacs.5b09639  doi: 10.1021/jacs.5b09639

    19. [19]

      Luo, M. C.; Sun, Y. J.; Qin, Y. N.; Yang, Y.; Wu, D.; Guo, S. J. Acta Phys. -Chim. Sin 2018, 34, 361.  doi: 10.3866/PKU.WHXB201708312

    20. [20]

      Greeley, J.; Mavrikakis, M. Nat. Mater. 2004, 3, 810. doi: 10.1038/nmat1223  doi: 10.1038/nmat1223

    21. [21]

      Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. J. Electrochem. Soc. 2005, 152, J23. doi: 10.1149/1.1856988  doi: 10.1149/1.1856988

    22. [22]

      Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H.; et al. Nat. Chem. 2010, 2, 454. doi: 10.1038/Nchem.623  doi: 10.1038/Nchem.623

    23. [23]

      Luo, M. C.; Guo, S. J. Nat. Rev. Mater. 2017, 2, 17059. doi: 10.1038/natrevmats.2017.59  doi: 10.1038/natrevmats.2017.59

    24. [24]

      Liu, M. L.; Zhao, Z. P.; Duan, X. F.; Huang, Y. Adv. Mater. 2019, 31, 1802234. doi: 10.1002/adma.201802234  doi: 10.1002/adma.201802234

    25. [25]

      Chung, D. Y.; Yoo, J. M.; Sung, Y. E. Adv. Mater. 2018, 30, 1704123. doi: 10.1002/adma.201704123  doi: 10.1002/adma.201704123

    26. [26]

      Wang, X. X.; Swihart, M. T.; Wu, G. Nat. Catal. 2019, 2, 578. doi: 10.1038/s41929-019-0304-9  doi: 10.1038/s41929-019-0304-9

    27. [27]

      Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y. S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D.; et al. Chem. Rev. 2007, 107, 3904. doi: 10.1021/cr050182l  doi: 10.1021/cr050182l

    28. [28]

      Pourbaix, M. NACE 1974, 307.

    29. [29]

      Jinnouchi, R.; Toyoda, E.; Hatanaka, T.; Morimoto, Y. J. Phys. Chem. C 2010, 114, 17557. doi: 10.1021/jp106593d  doi: 10.1021/jp106593d

    30. [30]

      Tetteh, E. B.; Lee, H. Y.; Shin, C. H.; Kim, S. H.; Ham, H. C.; Tran, T. N.; Jang, J. H.; Yoo, S. J.; Yu, J. S. ACS Energy Lett. 2020, 5, 1601. doi: 10.1021/acsenergylett.0c00184  doi: 10.1021/acsenergylett.0c00184

    31. [31]

      Yoo, S. J.; Hwang, S. J.; Lee, J. G.; Lee, S. C.; Lim, T. H.; Sung, Y. E.; Wieckowski, A.; Kim, S. K. Energy Environ. Sci. 2012, 5, 7521. doi: 10.1039/c2ee02691k  doi: 10.1039/c2ee02691k

    32. [32]

      Hwang, S. J.; Kim, S. K.; Lee, J. G.; Lee, S. C.; Jang, J. H.; Kim, P.; Lim, T. H.; Sung, Y. E.; Yoo, S. J. J. Am. Chem. Soc. 2012, 134, 19508. doi: 10.1021/ja307951y  doi: 10.1021/ja307951y

    33. [33]

      Tang, H. L.; Su, Y.; Zhang, B. S.; Lee, A. F.; Isaacs, M. A.; Wilson, K.; Li, L.; Ren, Y. G.; Huang, J. H.; Haruta, M.; et al. Sci. Adv. 2017, 3, e1700231. doi: 10.1126/sciadv.1700231  doi: 10.1126/sciadv.1700231

    34. [34]

      Zhang, J.; Wang, H.; Wang, L.; Ali, S.; Wang, C.; Wang, L.; Meng, X.; Li, B.; Su, D. S.; Xiao, F. S. J. Am. Chem. Soc. 2019, 141, 2975. doi: 10.1021/jacs.8b10864  doi: 10.1021/jacs.8b10864

    35. [35]

      Xiong, Y.; Yang, Y.; DiSalvo, F. J.; Abruña, H. D. ACS Nano 2020, 14, 13069. doi: 10.1021/acsnano.0c04559  doi: 10.1021/acsnano.0c04559

    36. [36]

      Chong, L.; Wen, J. G.; Kubal, J.; Sen, F. G.; Zou, J. X.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W. J.; Liu, D. J. Science 2018, 362, 1276. doi: 10.1126/science.aau0630  doi: 10.1126/science.aau0630

    37. [37]

      Ao, X.; Zhang, W.; Zhao, B. T.; Ding, Y.; Nam, G.; Soule, L.; Abdelhafiz, A.; Wang, C. D.; Liu, M. L. Energy Environ. Sci. 2020, 13, 3032. doi: 10.1039/d0ee00832j  doi: 10.1039/d0ee00832j

    38. [38]

      Greeley, J.; Norskov, J. K. Electrochim. Acta 2007, 52, 5829. doi: 10.1016/j.electacta.2007.02.082  doi: 10.1016/j.electacta.2007.02.082

    39. [39]

      Marcus, R. A. J. Electroanal. Chem. 1997, 438, 251. doi: 10.1016/S0022-0728(97)00091-0  doi: 10.1016/S0022-0728(97)00091-0

    40. [40]

      David A.; Porter, K. E. E.; Mohamed S., Phase Transformations in Metals and Alloys, 3rd ed.; Chapman & Hall: London, 2009.

    41. [41]

      Mullin, J. W. Crystallization, 3rd ed.; Oxford University Press: Oxford, 1997.

    42. [42]

      Vej-Hansen, U. G.; Rossmeisl, J.; Stephens, I. E. L.; Schiotz, J. Phys. Chem. Chem. Phys. 2016, 18, 3302. doi: 10.1039/c5cp04694g  doi: 10.1039/c5cp04694g

    43. [43]

      Liang, J. S.; Zhao, Z. L.; Li, N.; Wang, X. M.; Li, S. Z.; Liu, X.; Wang, T. Y.; Lu, G.; Wang, D. L.; Hwang, B. J.; et al. Adv. Energy Mater. 2020, 10, 2000179. doi: 10.1002/aenm.202000179  doi: 10.1002/aenm.202000179

    44. [44]

      Zhang, J.; Yang, H. Z.; Fang, J. Y.; Zou, S. Z. Nano Lett. 2010, 10, 638. doi: 10.1021/nl903717z  doi: 10.1021/nl903717z

    45. [45]

      Choi, S. I.; Xie, S. F.; Shao, M. H.; Odell, J. H.; Lu, N.; Peng, H. C.; Protsailo, L.; Guerrero, S.; Park, J. H.; Xia, X. H.; et al. Nano Lett. 2013, 13, 3420. doi: 10.1021/nl401881z  doi: 10.1021/nl401881z

    46. [46]

      Cui, C. H.; Gan, L.; Li, H. H.; Yu, S. H.; Heggen, M.; Strasser, P. Nano Lett. 2012, 12, 5885. doi: 10.1021/nl3032795  doi: 10.1021/nl3032795

    47. [47]

      Chan, Q. W.; Xu, Y.; Duan, Z. Y.; Xiao, F.; Fu, F.; Hong, Y. M.; Kim, J.; Choi, S. I.; Su, D.; Shao, M. H. Nano Lett. 2017, 17, 3926. doi: 10.1021/acs.nanolett.7b01510  doi: 10.1021/acs.nanolett.7b01510

    48. [48]

      Wu, J. B.; Gross, A.; Yang, H. Nano Lett. 2011, 11, 798. doi: 10.1021/nl104094p  doi: 10.1021/nl104094p

    49. [49]

      Huang, X. Q.; Zhao, Z. P.; Cao, L.; Chen, Y.; Zhu, E. B.; Lin, Z. Y.; Li, M. F.; Yan, A. M.; Zettl, A.; Wang, Y. M.; et al. Science 2015, 348, 1230. doi: 10.1126/science.aaa8765  doi: 10.1126/science.aaa8765

    50. [50]

      Jia, Q. Y.; Zhao, Z. P.; Cao, L.; Li, J. K.; Ghoshal, S.; Davies, V.; Stavitski, E.; Attenkofer, K.; Liu, Z. Y.; Li, M. F.; et al. Nano Lett. 2018, 18, 798. doi: 10.1021/acs.nanolett.7b04007  doi: 10.1021/acs.nanolett.7b04007

    51. [51]

      Beermann, V.; Gocyla, M.; Willinger, E.; Rudi, S.; Heggen, M.; Dunin-Borkowski, R. E.; Willinger, M. G.; Strasser, P. Nano Lett. 2016, 16, 1719. doi: 10.1021/acs.nanolett.5b04636  doi: 10.1021/acs.nanolett.5b04636

    52. [52]

      Lim, J.; Shin, H.; Kim, M.; Lee, H.; Lee, K. S.; Kwon, Y.; Song, D.; Oh, S.; Kim, H.; Cho, E. Nano Lett 2018, 18, 2450. doi: 10.1021/acs.nanolett.8b00028  doi: 10.1021/acs.nanolett.8b00028

    53. [53]

      Zhang, C. L.; Sandorf, W.; Peng, Z. M. ACS Catal. 2015, 5, 2296. doi: 10.1021/cs502112g  doi: 10.1021/cs502112g

    54. [54]

      Li, Y. J.; Quan, F. X.; Chen, L.; Zhang, W. J.; Yu, H. B.; Chen, C. F. RSC Adv. 2014, 4, 1895. doi: 10.1039/c3ra46299d  doi: 10.1039/c3ra46299d

    55. [55]

      Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Science 2007, 315, 220. doi: 10.1126/science.1134569  doi: 10.1126/science.1134569

    56. [56]

      Wu, Z. F.; Su, Y. Q.; Hensen, E. J. M.; Tian, X. L.; You, C. H.; Xu, Q. J. Mater. Chem. A 2019, 7, 26402. doi: 10.1039/c9ta08682j  doi: 10.1039/c9ta08682j

    57. [57]

      Lu, B. A.; Sheng, T.; Tian, N.; Zhang, Z. C.; Xiao, C.; Cao, Z. M.; Ma, H. B.; Zhou, Z. Y.; Sun, S. G. Nano Energy 2017, 33, 65. doi: 10.1016/j.nanoen.2017.01.003  doi: 10.1016/j.nanoen.2017.01.003

    58. [58]

      Kuttiyiel, K. A.; Kattel, S.; Cheng, S. B.; Lee, J. H.; Wu, L. J.; Zhu, Y. M.; Park, G. G.; Liu, P.; Sasaki, K.; Chen, J. G. G.; et al. ACS Appl. Energy Mater. 2018, 1, 3771. doi: 10.1021/acsaem.8b00555  doi: 10.1021/acsaem.8b00555

    59. [59]

      Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989. doi: 10.1126/science.287.5460.1989  doi: 10.1126/science.287.5460.1989

    60. [60]

      Chen, M.; Kim, J.; Liu, J. P.; Fan, H. Y.; Sun, S. H. J. Am. Chem. Soc. 2006, 128, 7132. doi: 10.1021/ja061704x  doi: 10.1021/ja061704x

    61. [61]

      Kim, J.; Rong, C. B.; Lee, Y.; Liu, J. P.; Sun, S. H. Chem. Mater. 2008, 20, 7242. doi: 10.1021/cm8024878  doi: 10.1021/cm8024878

    62. [62]

      Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M.; Liu, J.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z.; et al. Science 2015, 349, 412. doi: 10.1126/science.aab0801  doi: 10.1126/science.aab0801

    63. [63]

      Qi, Z. Y.; Xiao, C. X.; Liu, C.; Goh, T. W.; Zhou, L.; Maligal-Ganesh, R.; Pei, Y. C.; Li, X. L.; Curtiss, L. A.; Huang, W. Y. J. Am. Chem. Soc. 2017, 139, 4762. doi: 10.1021/jacs.6b12780  doi: 10.1021/jacs.6b12780

    64. [64]

      Kim, J. M.; Rong, C. B.; Liu, J. P.; Sun, S. H. Adv. Mater. 2009, 21, 906. doi: 10.1002/adma.200801620  doi: 10.1002/adma.200801620

    65. [65]

      Kang, S. S.; Miao, G. X.; Shi, S.; Jia, Z.; Nikles, D. E.; Harrell, J. W. J. Am. Chem. Soc. 2006, 128, 1042. doi: 10.1021/ja057343n  doi: 10.1021/ja057343n

    66. [66]

      Yi, D. K.; Selvan, S. T.; Lee, S. S.; Papaefthymiou, G. C.; Kundaliya, D.; Ying, J. Y. J. Am. Chem. Soc. 2005, 127, 4990. doi: 10.1021/ja0428863  doi: 10.1021/ja0428863

    67. [67]

      Lee, D. C.; Mikulec, F. V.; Pelaez, J. M.; Koo, B.; Korgel, B. A. J. Phys. Chem. B 2006, 110, 11160. doi: 10.1021/jp060974z  doi: 10.1021/jp060974z

    68. [68]

      Wang, T.; Liang, J.; Zhao, Z.; Li, S.; Lu, G.; Xia, Z.; Wang, C.; Luo, J.; Han, J.; Ma, C.; et al. Adv. Energy Mater. 2019, 9, 1803771. doi: 10.1002/aenm.201803771  doi: 10.1002/aenm.201803771

    69. [69]

      Chung, D. Y.; Jun, S. W.; Yoon, G.; Kwon, S. G.; Shin, D. Y.; Seo, P.; Yoo, J. M.; Shin, H.; Chung, Y. H.; Kim, H.; et al. J. Am. Chem. Soc. 2015, 137, 15478. doi: 10.1021/jacs.5b09653  doi: 10.1021/jacs.5b09653

    70. [70]

      Du, X. X.; He, Y.; Wang, X. X.; Wang, J. N. Energy Environ. Sci. 2016, 9, 2623. doi: 10.1039/C6EE01204C  doi: 10.1039/C6EE01204C

    71. [71]

      Jung, C.; Lee, C.; Bang, K.; Lim, J.; Lee, H.; Ryu, H. J.; Cho, E.; Lee, H. M. ACS Appl. Mater. Inter. 2017, 9, 31806. doi: 10.1021/acsami.7b07648  doi: 10.1021/acsami.7b07648

    72. [72]

      Chen, H.; Wang, D.; Yu, Y.; Newton, K. A.; Muller, D. A.; Abruna, H.; DiSalvo, F. J. J. Am. Chem. Soc. 2012, 134, 18453. doi: 10.1021/ja308674b  doi: 10.1021/ja308674b

    73. [73]

      Dong, A. G.; Chen, J.; Ye, X. C.; Kikkawa, J. M.; Murray, C. B. J. Am. Chem. Soc. 2011, 133, 13296. doi: 10.1021/ja2057314  doi: 10.1021/ja2057314

    74. [74]

      Zhang, S.; Zhang, X.; Jiang, G. M.; Zhu, H. Y.; Guo, S. J.; Su, D.; Lu, G.; Sun, S. H. J. Am. Chem. Soc. 2014, 136, 7734. doi: 10.1021/ja5030172  doi: 10.1021/ja5030172

    75. [75]

      Wang, D. L.; Xin, H. L. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruna, H. D. Nat. Mater. 2013, 12, 81. doi: 10.1038/Nmat3458  doi: 10.1038/Nmat3458

    76. [76]

      Li, J.; Sharma, S.; Liu, X.; Pan, Y. T.; Spendelow, J. S.; Chi, M.; Jia, Y.; Zhang, P.; Cullen, D. A.; Xi, Z.; et al. Joule 2019, 3, 124. doi: 10.1016/j.joule.2018.09.016  doi: 10.1016/j.joule.2018.09.016

    77. [77]

      Liang, J. S.; Li, N.; Zhao, Z. L.; Ma, L.; Wang, X. M.; Li, S. Z.; Liu, X.; Wang, T. Y.; Du, Y. P.; Lu, G.; et al. Angew. Chem. Int. Ed. 2019, 58, 15471. doi: 10.1002/anie.201908824  doi: 10.1002/anie.201908824

    78. [78]

      Wang, X. X.; Hwang, S.; Pan, Y. T.; Chen, K.; He, Y.; Karakalos, S.; Zhang, H.; Spendelow, J. S.; Su, D.; Wu, G. Nano Lett. 2018, 18, 4163. doi: 10.1021/acs.nanolett.8b00978  doi: 10.1021/acs.nanolett.8b00978

    79. [79]

      Gimenez-Lopez, M. D.; Kurtoglu, A.; Walsh, D. A.; Khlobystov, A. N. Adv. Mater. 2016, 28, 9103. doi: 10.1002/adma.201602485  doi: 10.1002/adma.201602485

    80. [80]

      Cheng, N. C.; Banis, M. N.; Liu, J.; Riese, A.; Li, X.; Li, R. Y.; Ye, S. Y.; Knights, S.; Sun, X. L. Adv. Mater. 2015, 27, 277. doi: 10.1002/adma.201404314  doi: 10.1002/adma.201404314

    81. [81]

      Jiang, K. Z.; Zhao, D. D.; Guo, S. J.; Zhang, X.; Zhu, X.; Guo, J.; Lu, G.; Huang, X. Q. Sci. Adv. 2017, 3, e1601705. doi: 10.1126/sciadv.1601705  doi: 10.1126/sciadv.1601705

    82. [82]

      Gao, F.; Zhang, Y. P.; Song, P. P.; Wang, J.; Yan, B.; Sun, Q. W.; Li, L.; Zhu, X.; Du, Y. K. Nanoscale 2019, 11, 4831. doi: 10.1039/c8nr09892a  doi: 10.1039/c8nr09892a

    83. [83]

      Song, P. P.; Xu, H.; Wang, J.; Zhang, Y. P.; Gao, F.; Guo, J.; Shiraishi, Y.; Du, Y. K. Nanoscale 2018, 10, 16468. doi: 10.1039/c8nr04918a  doi: 10.1039/c8nr04918a

    84. [84]

      Huang, H. W.; Li, K.; Chen, Z.; Luo, L. H.; Gu, Y. Q.; Zhang, D. Y.; Ma, C.; Si, R.; Yang, J. L.; Peng, Z. M.; et al. J. Am. Chem. Soc. 2017, 139, 8152. doi: 10.1021/jacs.7b01036  doi: 10.1021/jacs.7b01036

    85. [85]

      Li, K.; Li, X. X.; Huang, H. W.; Luo, L. H.; Li, X.; Yan, X. P.; Ma, C.; Si, R.; Yang, J. L.; Zeng, J. J. Am. Chem. Soc. 2018, 140, 16159. doi: 10.1021/jacs.8b08836  doi: 10.1021/jacs.8b08836

    86. [86]

      Jung, S. M.; Yun, S. W.; Kim, J. H.; You, S. H.; Park, J.; Lee, S.; Chang, S. H.; Chae, S. C.; Joo, S. H.; Jung, Y.; et al. Nat. Catal. 2020, 3, 681. doi: 10.1038/s41929-020-00501-0  doi: 10.1038/s41929-020-00501-0

    87. [87]

      Liu, Y.; Mustain, W. E. J. Am. Chem. Soc. 2013, 135, 530. doi: 10.1021/ja307635r  doi: 10.1021/ja307635r

    88. [88]

      Jimenez-Morales, I.; Haidar, F.; Cavaliere, S.; Jones, D.; Roziere, J. ACS Catal. 2020, 10, 10399. doi: 10.1021/acscatal.0c02220  doi: 10.1021/acscatal.0c02220

    89. [89]

      He, C.; Sankarasubramanian, S.; Matanovic, I.; Atanassov, P.; Ramani, V. ChemSusChem 2019, 12, 3468. doi: 10.1002/cssc.201900499  doi: 10.1002/cssc.201900499

    90. [90]

      Park, C.; Lee, E.; Lee, G.; Tak, Y. Appl. Catal. B-Environ. 2020, 268, 118414. doi: 10.1016/j.apcatb.2019.118414  doi: 10.1016/j.apcatb.2019.118414

    91. [91]

      Qiao, Z.; Hwang, S.; Li, X.; Wang, C. Y.; Samarakoon, W.; Karakalos, S.; Li, D. G.; Chen, M. J.; He, Y. H.; Wang, M. Y.; et al. Energy Environ. Sci. 2019, 12, 2830. doi: 10.1039/c9ee01899a  doi: 10.1039/c9ee01899a

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    5. [5]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    10. [10]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

Metrics
  • PDF Downloads(44)
  • Abstract views(1264)
  • HTML views(357)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return