Citation: Zhang Jujia, Zhang Jin, Wang Haining, Xiang Yan, Lu Shanfu. Advancement in Distribution and Control Strategy of Phosphoric Acid in Membrane Electrode Assembly of High-Temperature Polymer Electrolyte Membrane Fuel Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(9): 201007. doi: 10.3866/PKU.WHXB202010071 shu

Advancement in Distribution and Control Strategy of Phosphoric Acid in Membrane Electrode Assembly of High-Temperature Polymer Electrolyte Membrane Fuel Cells

  • Corresponding author: Lu Shanfu, lusf@buaa.edu.cn
  • Received Date: 29 October 2020
    Revised Date: 27 November 2020
    Accepted Date: 1 December 2020
    Available Online: 7 December 2020

    Fund Project: The project was supported by the National Key R·D Program of China (2018YFB1502303) and the National Natural Science Foundation of China (21722601, U19A2017)the National Natural Science Foundation of China 21722601the National Key R·D Program of China 2018YFB1502303the National Natural Science Foundation of China U19A2017

  • High-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) have the unique advantages of fast electrode reaction kinetics, high CO tolerance, and simple water and thermal management at their operating temperature (140–200 ℃), which are considered as one of the important research directions of PEMFCs. Membrane electrode assemblies (MEAs), as the core component of HT-PEMFCs, are usually fabricated by sandwiching phosphoric acid (PA)-doped polymer membrane (HT-PEM) between two electrodes. Technically, high PA content is required in HT-PEMs to ensure fast proton conduction, since PA acts as a proton transport carrier, while a high content of PA decreases the interaction among polymer molecules, thus enhancing the movement of the polymer molecules and leading to a decrease in the mechanical strength of the polymer membranes. In addition, PA is driven into catalyst layers owing to capillary force caused by micropore structures, crack connectivity, and accessibility. The PA content in the electrodes is also affected by the hydrophilic/hydrophobic characteristics of the catalyst layers and the surface tension of the acid when it is in close contact with the catalyst layers. Furthermore, PA plays an important role in the construction of electrochemical triple-phase boundaries to promote electrochemical reactions in the catalyst layers. Simultaneously, as a liquid or "free molecule", the migration of PA may be accelerated by the current and the water produced, owing to the formation of charged phosphates or hydronium ions. This process encourages the redistribution of PA within the catalyst layers, and results in acid flooding of the catalytic layers and adsorption on the surface of the platinum catalyst, leading to increased mass transfer resistance for the gas reaction and reduced catalyst activity. Moreover, the increase in supplied absolute flow rate and the temperature elevation in the HT-PEMFC process could accelerate the evaporation of PA from the electrolyte membrane, resulting in a decrease in the stability of HT-PEMFC and corrosion of the metal end plate. Therefore, it is crucial to regulate the distribution and migration of PA in MEAs for the construction of HT-PEMFCs with high performance and stability. Hence, this paper reviews the research status of PA distribution in HT-PEM electrodes in recent years, and summarizes the corresponding regulations and optimization strategies as well as its future development trend.
  • 加载中
    1. [1]

      Karuppannan, M.; Kim, Y.; Gok, S.; Lee, E.; Hwang, J. Y.; Jang, J. H.; Cho, Y. H.; Lim, T.; Sung, Y. E.; Kwon, O. J. Energy Environ. Sci. 2019, 12, 2820. doi: 10.1039/c9ee01000a  doi: 10.1039/c9ee01000a

    2. [2]

      Breitwieser, M.; Klingele, M.; Vierrath, S.; Zengerle, R.; Thiele, S. Adv. Energy Mater. 2017, 8, 1701257. doi: 10.1002/aenm.201701257  doi: 10.1002/aenm.201701257

    3. [3]

      Aili, D.; Hansen, M. K.; Pan, C.; Li, Q.; Christensen, E.; Jensen, J. O.; Bjerrum, N. J. Int. J. Hydrogen Energy 2011, 36, 6985. doi: 10.1016/j.ijhydene.2011.03.058  doi: 10.1016/j.ijhydene.2011.03.058

    4. [4]

      Rosli, R. E.; Sulong, A. B.; Daud, W. R. W.; Zulkifley, M. A.; Husaini, T.; Rosli, M. I.; Majlan, E. H.; Haque, M. A. Int. J. Hydrogen Energy 2017, 42, 9293. doi: 10.1016/j.ijhydene.2016.06.211  doi: 10.1016/j.ijhydene.2016.06.211

    5. [5]

      Tang, H.; Geng, K.; Hu, Y.; Li, N. J. Membr. Sci. 2020, 605, 118107. doi: 10.1016/j.memsci.2020.118107  doi: 10.1016/j.memsci.2020.118107

    6. [6]

      Teixeira, F. C.; de Sá, A. I.; Teixeira, A. P. S.; Rangel, C. M. New J. Chem. 2019, 43, 15249. doi: 10.1039/c9nj03405f  doi: 10.1039/c9nj03405f

    7. [7]

      Lu, S.; Xu, X.; Zhang, J.; Peng, S.; Liang, D.; Wang, H.; Xiang, Y. Adv. Energy Mater. 2014, 4, 1400842. doi: 10.1002/aenm.201400842  doi: 10.1002/aenm.201400842

    8. [8]

      Cheng, Y.; Zhang, J.; Lu, S.; Kuang, H.; Bradley, J.; De Marco, R.; Aili, D.; Li, Q.; Cui, C. Q.; Jiang, S. P. Int. J. Hydrogen Energy 2018, 43, 22487. doi: 10.1016/j.ijhydene.2018.10.036  doi: 10.1016/j.ijhydene.2018.10.036

    9. [9]

      Li, Q.; Jensen, J. O.; Savinell, R. F.; Bjerrum, N. J. Prog. Polym. Sci. 2009, 34, 449. doi: 10.1016/j.progpolymsci.2008.12.003  doi: 10.1016/j.progpolymsci.2008.12.003

    10. [10]

      Xu, C.; Scott, K.; Li, Q.; Yang, J.; Wu, X. Fuel Cells 2013, 13, 118. doi: 10.1002/fuce.201200149  doi: 10.1002/fuce.201200149

    11. [11]

      Suwanmanee, U.; Saebea, D.; Hacker, V.; Assabumrungrat, S.; Arpornwichanop, A.; Authayanun, S. Energy Convers. Manage. 2018, 171, 20. doi: 10.1016/j.enconman.2018.05.068  doi: 10.1016/j.enconman.2018.05.068

    12. [12]

      Yang., J.; Li., Q.; Cleemann., L. N.; Jensen., J. O.; Pan., C.; Bjerrum., N. J.; He, R. Adv. Energy Mater. 2013, 3, 622. doi: 10.1002/aenm.201200710  doi: 10.1002/aenm.201200710

    13. [13]

      Jensen, J.; Li, Q.; Pan, C.; Vestbo, A.; Mortensen, K.; Nybopetersen, H.; Lausorensen, C.; Nedergaardclausen, T.; Schramm, J.; Bjerrum, N. Int. J. Hydrogen Energy 2007, 32, 1567. doi: 10.1016/j.ijhydene.2006.10.034  doi: 10.1016/j.ijhydene.2006.10.034

    14. [14]

      Authayanun, S.; Saebea, D.; Patcharavorachot, Y.; Arpornwichanop, A. Energy 2015, 80, 331. doi: 10.1016/j.energy.2014.11.075  doi: 10.1016/j.energy.2014.11.075

    15. [15]

      Chang, C. P.; Wu, Y. C.; Chen, W. Y.; Pan, C.; Su, Y. C.; Huang, Y. J.; Tseng, F. G. Renew. Energy 2020, 153, 530. doi: 10.1016/j.renene.2020.01.137  doi: 10.1016/j.renene.2020.01.137

    16. [16]

      Sánchez, D.; Muñoz de Escalona, J. M.; Monje, B.; Chacartegui, R.; Sánchez, T. J. Power Sources 2011, 196, 4355. doi: 10.1016/j.jpowsour.2010.07.060  doi: 10.1016/j.jpowsour.2010.07.060

    17. [17]

      Elumalai, V.; Annapooranan, R.; Ganapathikrishnan, M.; Sangeetha, D. J. Appl. Polym. Sci. 2018, 135, 45954. doi: 10.1002/app.45954  doi: 10.1002/app.45954

    18. [18]

      Zhang, C.; Zhang, L.; Zhou, W.; Wang, Y.; Chan, S. H. Electrochim. Acta 2014, 149, 271. doi: 10.1016/j.electacta.2014.10.059  doi: 10.1016/j.electacta.2014.10.059

    19. [19]

      Li, Q.; Aili, D.; Hjuler., H. A.; Jensen, J. O. High Temperature Polymer Electrolyte Membrane Fuel Cells; Springer: Cham, 2016; pp. 168–194.

    20. [20]

      Ma, W.; Zhao, C.; Yang, J.; Ni, J.; Wang, S.; Zhang, N.; Lin, H.; Wang, J.; Zhang, G.; Li, Q.; Na, H. Energy Environ. Sci. 2012, 5. doi: 10.1039/c2ee21521g  doi: 10.1039/c2ee21521g

    21. [21]

      Angioni, S.; Villa, D. C.; Barco, S. D.; Quartarone, E.; Righetti, P. P.; Tomasi, C.; Mustarelli, P. J. Mater. Chem. A 2014, 2, 663. doi: 10.1039/c3ta12200j  doi: 10.1039/c3ta12200j

    22. [22]

      Quartarone, E.; Angioni, S.; Mustarelli, P. Materials (Basel) 2017, 10. doi: 10.3390/ma10070687  doi: 10.3390/ma10070687

    23. [23]

      Bose, S.; Kuila, T.; Nguyen, T. X. H.; Kim, N. H.; Lau, K. T.; Lee, J. H. Prog. Polym. Sci. 2011, 36, 813. doi: 10.1016/j.progpolymsci.2011.01.003  doi: 10.1016/j.progpolymsci.2011.01.003

    24. [24]

      Zhang, J.; Liu, J.; Lu, S.; Zhu, H.; Aili, D.; De Marco, R.; Xiang, Y.; Forsyth, M.; Li, Q.; Jiang, S. P. ACS Appl. Mater. Interfaces 2017, 9, 31922. doi: 10.1021/acsami.7b09591  doi: 10.1021/acsami.7b09591

    25. [25]

      Lu, S. F.; Peng, S. K.; Xiang, Y. Acta Phys. -Chim. Sin. 2016, 32, 1859.  doi: 10.3866/PKU.WHXB201606022

    26. [26]

      Kim, D. K.; Kim, H.; Park, H.; Oh, S.; Ahn, S. H.; Kim, H. J.; Kim, S. K. J. Power Sources 2019, 438, 227022. doi: 10.1016/j.jpowsour.2019.227022  doi: 10.1016/j.jpowsour.2019.227022

    27. [27]

      Zagoraiou, E.; Paloukis, F.; Neophytides, S. G.; Daletou, M. K. Electrochim. Acta 2020, 356, 136778. doi: 10.1016/j.electacta.2020.136778  doi: 10.1016/j.electacta.2020.136778

    28. [28]

      Guo, Z.; Xiu, R.; Lu, S.; Xu, X.; Yang, S.; Xiang, Y. J. Mater. Chem. A 2015, 3, 8847. doi: 10.1039/c5ta00415b  doi: 10.1039/c5ta00415b

    29. [29]

      Kerres, J.; Atanasov, V. Int. J. Hydrogen Energy 2015, 40, 14723. doi: 10.1016/j.ijhydene.2015.08.054  doi: 10.1016/j.ijhydene.2015.08.054

    30. [30]

      Jeong, Y. H.; Jung, J. H.; Choi, E.; Han, S.; Begley, A. I.; Yoo, S. J.; Jang, J. H.; Kim, H. J.; Nam, S. W.; Lee, K. Y.; Kim, J. Y. J. Power Sources 2015, 299, 480. doi: 10.1016/j.jpowsour.2015.09.015  doi: 10.1016/j.jpowsour.2015.09.015

    31. [31]

      Lang, S.; Kazdal, T. J.; Kühl, F.; Hampe, M. J. Int. J. Hydrogen Energy 2015, 40, 1163. doi: 10.1016/j.ijhydene.2014.11.041  doi: 10.1016/j.ijhydene.2014.11.041

    32. [32]

      Xu, X.; Wang, H.; Lu, S.; Guo, Z.; Rao, S.; Xiu, R.; Xiang, Y. J. Power Sources 2015, 286, 458. doi: 10.1016/j.jpowsour.2015.04.028  doi: 10.1016/j.jpowsour.2015.04.028

    33. [33]

      Razaq, M.; Razaq, A.; Yeager, E. J. Electrochem. Soc 1987, 136, 385. doi: 10.1149/1.2096641  doi: 10.1149/1.2096641

    34. [34]

      Myles, T.; Bonville, L.; Maric, R. Catalysts 2017, 7, 16. doi: 10.3390/catal7010016  doi: 10.3390/catal7010016

    35. [35]

      Hu, Y.; Jiang, Y.; Jensen, J. O.; Cleemann, L. N.; Li, Q. J. Power Sources 2018, 375, 77. doi: 10.1016/j.jpowsour.2017.11.054  doi: 10.1016/j.jpowsour.2017.11.054

    36. [36]

      Novitski, D.; Holdcroft, S. ACS Appl. Mater. Interfaces 2015, 7, 27314. doi: 10.1021/acsami.5b08720  doi: 10.1021/acsami.5b08720

    37. [37]

      Fleige, M.; Holst-Olesen, K.; Wiberg, G. K. H.; Arenz, M. Electrochim. Acta 2016, 209, 399. doi: 10.1016/j.electacta.2016.05.048  doi: 10.1016/j.electacta.2016.05.048

    38. [38]

      Lobato, J.; Cañizares, P.; Rodrigo, M. A.; Linares, J. J.; Pinar, F. J. Int. J. Hydrogen Energy 2010, 35, 1347. doi: 10.1016/j.ijhydene.2009.11.091  doi: 10.1016/j.ijhydene.2009.11.091

    39. [39]

      Heider, E.; Jusys, Z.; Behm, R. J.; Jörissen, L.; Zeis, R. J. Phys. Chem. C 2015, 119, 18859. doi: 10.1021/acs.jpcc.5b03858  doi: 10.1021/acs.jpcc.5b03858

    40. [40]

      Zhou, F.; Singdeo, D.; Kær, S. K. Fuel Cells 2019, 19, 2. doi: 10.1002/fuce.201700144  doi: 10.1002/fuce.201700144

    41. [41]

      Liu, S.; Rasinski, M.; Rahim, Y.; Zhang, S.; Wippermann, K.; Reimer, U.; Lehnert, W. J. Power Sources 2019, 439, 227090. doi: 10.1016/j.jpowsour.2019.227090  doi: 10.1016/j.jpowsour.2019.227090

    42. [42]

      Yan, W. M.; Chen, C. Y.; Liang, C. H. Energy 2019, 186, 115836. doi: 10.1016/j.energy.2019.07.166  doi: 10.1016/j.energy.2019.07.166

    43. [43]

      Matar, S.; Higier, A.; Liu, H. J. Power Sources 2010, 195, 181. doi: 10.1016/j.jpowsour.2009.06.084  doi: 10.1016/j.jpowsour.2009.06.084

    44. [44]

      Li, R.; Cai, Y.; Wippermann, K.; Lehnert, W. J. Power Sources 2019, 434, 226718. doi: 10.1016/j.jpowsour.2019.226718  doi: 10.1016/j.jpowsour.2019.226718

    45. [45]

      Mack, F.; Heissler, S.; Laukenmann, R.; Zeis, R. J. Power Sources 2014, 270, 627. doi: 10.1016/j.jpowsour.2014.06.171  doi: 10.1016/j.jpowsour.2014.06.171

    46. [46]

      Zeis, R. Beilstein J. Nanotechnol. 2015, 6, 68. doi: 10.3762/bjnano.6.8  doi: 10.3762/bjnano.6.8

    47. [47]

      Vilčiauskas, L.; Tuckerman, M. E.; Bester, G.; Paddison, S. J.; Kreuer, K. D. Nat. Chem. 2012, 4, 461. doi: 10.1038/nchem.1329  doi: 10.1038/nchem.1329

    48. [48]

      Krueger, R. A.; Vilciauskas, L.; Melchior, J. P.; Bester, G.; Kreuer, K. D. J. Phys. Chem. B 2015, 119, 15866. doi:10.1021/acs.jpcb.5b09684  doi: 10.1021/acs.jpcb.5b09684

    49. [49]

      Ma, Y. L.; Wainright, J. S.; Litt, M. H.; Savinell, R. F. J. Electrochem. Soc. 2004, 151, A8. doi: 10.1149/1.163003  doi: 10.1149/1.163003

    50. [50]

      Lee, K. S.; Spendelow, J. S.; Choe, Y. K.; Fujimoto, C.; Kim, Y. S. Nat. Energy 2016, 1, 16120. doi: 10.1038/nenergy.2016.120  doi: 10.1038/nenergy.2016.120

    51. [51]

      Kannan, A.; Li, Q.; Cleemann, L. N.; Jensen, J. O. Fuel Cells 2018, 18, 103. doi: 10.1002/fuce.201700181  doi: 10.1002/fuce.201700181

    52. [52]

      Martin, S.; Li, Q.; Steenberg, T.; Jensen, J. O. J. Power Sources 2014, 272, 559. doi: 10.1016/j.jpowsour.2014.08.112  doi: 10.1016/j.jpowsour.2014.08.112

    53. [53]

      Becker, H.; Reimer, U.; Aili, D.; Cleemann, L. N.; Jensen, J. O.; Lehnert, W.; Li, Q. J. Electrochem. Soc. 2018, 165, F863. doi: 10.1149/2.1201810jes  doi: 10.1149/2.1201810jes

    54. [54]

      Eberhardt, S. H.; Marone, F.; Stampanoni, M.; Buchi, F. N.; Schmidt, T. J. J. Electrochem. Soc. 2016, 162, F310. doi: 10.1149/2.0801608jes  doi: 10.1149/2.0801608jes

    55. [55]

      Halter, J.; Thomas, S.; Kær, S.K.; Schmidt, T. J.; Büchi. F. N. J. Power Sources 2018, 399, 151. doi: 10.1016/j.jpowsour.2018.07.090  doi: 10.1016/j.jpowsour.2018.07.090

    56. [56]

      Eberhardt, S. H.; Toulec, M.; Marone, F.; Stampanoni, M.; Buchi, F. N.; Schmidt, T. J. J. Electrochem. Soc. 2015, 162, F310. doi: 10.1149/2.0751503jes  doi: 10.1149/2.0751503jes

    57. [57]

      Kwon, K.; Park, J. O.; Yoo, D. Y.; Yi, J. S. Electrochim. Acta 2009, 54, 6570. doi: 10.1016/j.electacta.2009.06.031  doi: 10.1016/j.electacta.2009.06.031

    58. [58]

      Kaserer, S.; Caldwell, K. M.; Ramaker, D. E.; Roth, C. J. Phys. Chem. C 2013, 117, 6210. doi: 10.1021/jp311924q  doi: 10.1021/jp311924q

    59. [59]

      Li, X.; Ma, H.; Wang, P.; Liu, Z.; Peng, J.; Hu, W.; Jiang, Z.; Liu, B. ACS Appl. Mater. Interfaces 2019, 11, 30735. doi: 10.1021/acsami.9b06808  doi: 10.1021/acsami.9b06808

    60. [60]

      Rao, S. S.; Hande, V. R.; Sawant, S. M.; Praveen, S.; Rath, S. K.; Sudarshan, K.; Ratna, D.; Patri, M. ACS Appl. Mater. Interfaces 2019, 11, 37013. doi: 10.1021/acsami.9b09405  doi: 10.1021/acsami.9b09405

    61. [61]

      Hooshyari, K.; Rezania, H.; Vatanpour, V.; Salarizadeh, P.; Askari, M. B.; Beydaghi, H.; Enhessari, M. J. Membr. Sci. 2020, 612, 118436. doi: 10.1016/j.memsci.2020.118436  doi: 10.1016/j.memsci.2020.118436

    62. [62]

      Bai, H.; Wang, H.; Zhang, J.; Wu, C.; Zhang, J.; Xiang, Y.; Lu, S. J. Membr. Sci. 2018, 558, 26. doi: 10.1016/j.memsci.2018.04.039  doi: 10.1016/j.memsci.2018.04.039

    63. [63]

      Zhang, J.; Chen, S.; Bai, H.; Lu, S.; Xiang, Y.; Jiang, S. P. Int. J. Hydrogen Energy, doi: 10.1016/j.ijhydene.2020.07.082

    64. [64]

      Dai, Y.; Wang, J.; Tao, P.; He, R. J. Colloid Interface Sci. 2019, 553, 503. doi: 10.1016/j.jcis.2019.06.020  doi: 10.1016/j.jcis.2019.06.020

    65. [65]

      Zhang, J.; Zhang, J.; Bai, H.; Tan, Q.; Wang, H.; He, B.; Xiang, Y.; Lu, S. J. Membr. Sci. 2019, 572, 496. doi: 10.1016/j.memsci.2018.11.035  doi: 10.1016/j.memsci.2018.11.035

    66. [66]

      Bai, H.; Wang, H.; Zhang, J.; Zhang, J.; Lu, S.; Xiang, Y. J. Membr. Sci. 2019, 592, 117395. doi: 10.1016/j.memsci.2019.117395  doi: 10.1016/j.memsci.2019.117395

    67. [67]

      Sood, R.; Donnadio, A.; Giancola, S.; Kreisz, A.; Jones, D. J.; Cavaliere, S. ACS Appl. Mater. Interfaces 2016, 8, 16897. doi: 10.1021/acsami.6b02713  doi: 10.1021/acsami.6b02713

    68. [68]

      Henkensmeier, D.; Duong, N. M. H.; Brela, M.; Dyduch, K.; Michalak, A.; Jankova, K.; Cho, H.; Jang, J. H.; Kim, H. J.; Cleemann, L. N.; Li, Q.; Jensen, J. O. J. Mater. Chem. A 2015, 3, 14389. doi: 10.1039/c5ta01936b  doi: 10.1039/c5ta01936b

    69. [69]

      Bu, F.; Zhang, Y.; Hong, L.; Zhao, W.; Li, D.; Li, J.; Na, H.; Zhao, C. J. Membr. Sci. 2018, 545, 167. doi: 10.1016/j.memsci.2017.09.072  doi: 10.1016/j.memsci.2017.09.072

    70. [70]

      Li, X.; Wang, P.; Liu, Z.; Peng, J.; Shi, C.; Hu, W.; Jiang, Z.; Liu, B. J. Power Sources 2018, 393, 99. doi: 10.1016/j.jpowsour.2018.05.011  doi: 10.1016/j.jpowsour.2018.05.011

    71. [71]

      Li, N.; Wang, C.; Lee, S. Y.; Park, C. H.; Lee, Y. M.; Guiver, M. D. Angew. Chem. Int. Ed. 2011, 50, 9158. doi: 10.1002/anie.201102057  doi: 10.1002/anie.201102057

    72. [72]

      Wu, W.; Li, Y.; Liu, J.; Wang, J.; He, Y.; Davey, K.; Qiao, S. Z. Adv. Mater. 2018, 30, e1707516. doi: 10.1002/adma.201707516  doi: 10.1002/adma.201707516

    73. [73]

      Adamski, M.; Skalski, T. J. G.; Britton, B.; Peckham, T. J.; Metzler, L.; Holdcroft, S. Angew. Chem. Int. Ed. 2017, 56, 9058. doi: 10.1002/anie.201703916  doi: 10.1002/anie.201703916

    74. [74]

      Bai, H.; Peng, H.; Xiang, Y.; Zhang, J.; Wang, H.; Lu, S.; Zhuang, L. J. Power Sources 2019, 443, 227219. doi: 10.1016/j.jpowsour.2019.227219  doi: 10.1016/j.jpowsour.2019.227219

    75. [75]

      Lee, K. S.; Maurya, S.; Kim, Y. S.; Kreller, C. R.; Wilson, M. S.; Larsen, D.; Elangovan, S. E.; Mukundan, R. Energy Environ. Sci. 2018, 11, 979. doi: 10.1039/c7ee03595k  doi: 10.1039/c7ee03595k

    76. [76]

      Mustarelli, P.; Quartarone, E.; Grandi, S.; Carollo, A.; Magistris, A. Adv. Mater. 2008, 20, 1339. doi: 10.1002/adma.200701767  doi: 10.1002/adma.200701767

    77. [77]

      Zhang, X.; Fu, X.; Yang, S.; Zhang, Y.; Zhang, R.; Hu, S.; Bao, X.; Zhao, F.; Li, X.; Liu, Q. J. Mater. Chem. A 2019, 7, 15288. doi: 10.1039/c9ta03666k  doi: 10.1039/c9ta03666k

    78. [78]

      Chen, H.; Wang, S.; Liu, F.; Wang, D.; Li, J.; Mao, T.; Liu, G.; Wang, X.; Xu, J.; Wang, Z. J. Membr. Sci. 2020, 596, 117722. doi: 10.1016/j.memsci.2019.117722  doi: 10.1016/j.memsci.2019.117722

    79. [79]

      Halter, J.; Bevilacqua, N.; Zeis, R.; Schmidt, T. J.; Büchi, F. N. J. Electroanal. Chem. 2020, 859, 1572. doi: 10.1016/j.jelechem.2020.113832  doi: 10.1016/j.jelechem.2020.113832

    80. [80]

      Halter, J.; Gloor, T.; Amoroso, B.; Schmidt, T. J.; Büchi, F. N. Phys. Chem. Chem. Phys. 2019, 21, 13126. doi: 10.1039/c9cp02149c  doi: 10.1039/c9cp02149c

    81. [81]

      Halter, J.; Marone, F.; Schmidt, T. J.; Büchi. F. N. J. Electrochem. Soc. 2018, 165, F1176. doi: 10.1149/2.0501814jes  doi: 10.1149/2.0501814jes

    82. [82]

      Lee, E.; Kim, D. H.; Pak, C. Appl. Surf. Sci. 2020, 510, 145461. doi: 10.1016/j.apsusc.2020.145461  doi: 10.1016/j.apsusc.2020.145461

    83. [83]

      Zhang, J.; Bai, H.; Yan, W.; Zhang, J.; Wang, H.; Xiang, Y.; Lu, S. J. Electrochem. Soc. 2020, 167, 114501. doi: 10.1149/1945-7111/ab9fe0  doi: 10.1149/1945-7111/ab9fe0

    84. [84]

      Jin, H.; Nayeem, M. O. G.; Lee, S.; Matsuhisa, N.; Inoue, D.; Yokota, T.; Hashizume, D.; Someya, T. ACS Nano 2019, 13, 7905. doi: 10.1021/acsnano.9b02297  doi: 10.1021/acsnano.9b02297

    85. [85]

      Xia, L.; Li, X.; Wu, Y.; Hu, S.; Liao, Y.; Huang, L.; Qing, Y.; Lu, X. Chem. Eng. J. 2020, 379, 122325. doi: 10.1016/j.cej.2019.122325  doi: 10.1016/j.cej.2019.122325

    86. [86]

      Mack, F.; Klages, M.; Scholta, J.; Jörissen, L.; Morawietz, T.; Hiesgen, R.; Kramer, D.; Zeis, R. J. Power Sources 2014, 255, 431. doi: 10.1016/j.jpowsour.2014.01.032  doi: 10.1016/j.jpowsour.2014.01.032

    87. [87]

      Kim, M.; Jeong, G.; Eom, K.; Cho, E.; Ryu, J.; Kim, H. J.; Kwon, H. Int. J. Hydrogen Energy 2013, 38, 12335. doi: 10.1016/j.ijhydene.2013.07.019  doi: 10.1016/j.ijhydene.2013.07.019

    88. [88]

      Lin, H. L.; Wu, T. J.; Lin, Y. T.; Wu, H. C. Int. J. Hydrogen Energy 2015, 40, 9400. doi: 10.1016/j.ijhydene.2015.05.034  doi: 10.1016/j.ijhydene.2015.05.034

    89. [89]

      Zhang, S.; Zhang, J.; Zhu, Z.; Liu, P.; Cao, F.; Chen, J.; He, Q.; Dou, M.; Nan, S.; Lu, S. J. Power Sources 2020, 473, 228616. doi: 10.1016/j.jpowsour.2020.228616  doi: 10.1016/j.jpowsour.2020.228616

    90. [90]

      Kannan, A.; Li, Q.; Cleemann, L. N.; Jensen, J. O. Fuel Cells 2018, 18, 103. doi: 10.1002/fuce.201700181  doi: 10.1002/fuce.201700181

    91. [91]

      Kim, J. H.; Kim, H. J.; Lim, T. H.; Lee, H. I. J. Power Sources 2007, 170, 275. doi: 10.1016/j.jpowsour.2007.03.082  doi: 10.1016/j.jpowsour.2007.03.082

    92. [92]

      Su, A.; Ferng, Y. M.; Tsai, X. Y. Int. J. Energy Res. 2013, 37, 1213. doi: 10.1002/er.2996  doi: 10.1002/er.2996

    93. [93]

      Zhai, Y.; Zhang, H.; Zhang, Y.; Xing, D. J. Power Sources 2007, 169, 259. doi: 10.1016/j.jpowsour.2007.03.004  doi: 10.1016/j.jpowsour.2007.03.004

    94. [94]

      Jeong, G.; Kim, M.; Han, J.; Kim, H. J.; Shul, Y. G.; Cho, E. J. Power Sources 2016, 323, 142. doi: 10.1016/j.jpowsour.2016.05.042  doi: 10.1016/j.jpowsour.2016.05.042

    95. [95]

      Su, H.; Jao, T. C.; Pasupathi, S.; Bladergroen, B. J.; Linkov, V.; Pollet, B. G. J. Power Sources 2014, 246, 63. doi: 10.1016/j.jpowsour.2013.07.062  doi: 10.1016/j.jpowsour.2013.07.062

    96. [96]

      Lobato, J.; Rodrigo, M. A.; Linares, J. J.; Scott, K. J. Power Sources 2006, 157, 284. doi: 10.1016/j.jpowsour.2005.07.040  doi: 10.1016/j.jpowsour.2005.07.040

    97. [97]

      Lee, W. J.; Lee, J. S.; Park, H. Y.; Park, H. S.; Lee, S. Y.; Song, K. H.; Kim, H. J. Int. J. Hydrogen Energy 2020, 45, 32825. doi: 10.1016/j.ijhydene.2020.03.095  doi: 10.1016/j.ijhydene.2020.03.095

    98. [98]

      Wang, S. B.; Xie, X. F.; Wang, Y. W.; Wang, J. H.; Shang, Y. M.; Li, W. W.; Fang, M. Chem. Ind. Eng. Prog. 2012, 31, 343.  doi: 10.16085/j.issn.1000-6613.2012.s1.022

    99. [99]

      Barron, O.; Su, H.; Linkov, V.; Pollet, B. G.; Pasupathi, S. J. Power Sources 2015, 278, 718. doi: 10.1016/j.jpowsour.2014.12.139  doi: 10.1016/j.jpowsour.2014.12.139

    100. [100]

      Oh, H. S.; Cho, Y.; Lee, W. H.; Kim, H. J. Mater. Chem. A 2013, 1, 2578. doi: 10.1039/c2ta00492e  doi: 10.1039/c2ta00492e

    101. [101]

      Tian, L. L.; Zhang, W. Q.; Xie, Z.; Peng, K.; Ma, Q.; Xu, Q.; Pasupathi, S.; Su, H. N. Acta Phys. -Chim. Sin. 2021, 37, 2009049.  doi: 10.3866/PKU.WHXB20200904

    102. [102]

      Martin, S.; Li, Q.; Jensen, J. O. J. Power Sources 2015, 293, 51. doi: 10.1016/j.jpowsour.2015.05.031  doi: 10.1016/j.jpowsour.2015.05.031

    103. [103]

      Martin, S.; Jensen, J. O.; Li, Q.; Garcia-Ybarra, P. L.; Castillo, J. L. Int. J. Hydrogen Energy 2019, 44, 28273. doi: 10.1016/j.ijhydene.2019.09.073  doi: 10.1016/j.ijhydene.2019.09.073

    104. [104]

      Lobato, J.; Cañizares, P.; Ubeda, D.; Pinar, F. J.; Rodrigo, M. A. Appl. Catal. B: Environ. 2011, 106, 174. doi: 10.1016/j.apcatb.2011.05.022  doi: 10.1016/j.apcatb.2011.05.022

    105. [105]

      Park, H.; Kim, D. K.; Kim, H.; Oh, S.; Jung, W. S.; Kim, S. K. Appl. Surf. Sci. 2020, 510, 145444. doi: 10.1016/j.apsusc.2020.145444  doi: 10.1016/j.apsusc.2020.145444

    106. [106]

      He, Q.; Mukerjee, S.; Zeis, R.; Parres-Esclapez, S.; Illán-Gómez, M. J.; Bueno-López, A. Appl. Catal. A 2010, 381, 54. doi: 10.1016/j.apcata.2010.03.044  doi: 10.1016/j.apcata.2010.03.044

    107. [107]

      Holst-Olesen, K.; Reda, M.; Hansen, H. A.; Vegge, T.; Arenz, M. ACS Catal. 2018, 8, 7104. doi: 10.1021/acscatal.8b01584  doi: 10.1021/acscatal.8b01584

    108. [108]

      Hu, Y.; Jensen, J. O.; Pan, C.; Cleemann, L. N.; Shypunov, I.; Li, Q. Appl. Catal. B: Environ. 2018, 234, 357. doi: 10.1016/j.apcatb.2018.03.056  doi: 10.1016/j.apcatb.2018.03.056

    109. [109]

      Cheng, Y.; He, S.; Lu, S.; Veder, J. P.; Johannessen, B.; Thomsen, L.; Saunders, M.; Becker, T.; De Marco, R.; Li, Q.; et al. Adv. Sci. 2019, 6, 1802066. doi: 10.1002/advs.201802066  doi: 10.1002/advs.201802066

  • 加载中
    1. [1]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    2. [2]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    6. [6]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    8. [8]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    9. [9]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    11. [11]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    15. [15]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    18. [18]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

Metrics
  • PDF Downloads(22)
  • Abstract views(855)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return