Citation: Zhimin Jiang, Qing Chen, Qiaoqing Zheng, Rongchen Shen, Peng Zhang, Xin Li. Constructing 1D/2D Schottky-Based Heterojunctions between Mn0.2Cd0.8S Nanorods and Ti3C2 Nanosheets for Boosted Photocatalytic H2 Evolution[J]. Acta Physico-Chimica Sinica, ;2021, 37(6): 201005. doi: 10.3866/PKU.WHXB202010059 shu

Constructing 1D/2D Schottky-Based Heterojunctions between Mn0.2Cd0.8S Nanorods and Ti3C2 Nanosheets for Boosted Photocatalytic H2 Evolution

  • Corresponding author: Peng Zhang, zhangp@zzu.edu.cn Xin Li, Xinliscau@yahoo.com
  • Received Date: 27 October 2020
    Revised Date: 24 November 2020
    Accepted Date: 1 December 2020
    Available Online: 4 December 2020

    Fund Project: the National Natural Science Foundation of China 51672089the National Natural Science Foundation of China 51972287the National Natural Science Foundation of China 51502269Special Funding on Applied Science and Technology in Guangdong, China 2017B020238005

  • Sustainable photocatalytic H2 evolution has attracted extensive attention in recent years because it can address both energy shortage and environmental pollution issues. In particular, metal sulfide solid-solution photocatalysts have been widely applied in photocatalytic hydrogen generation owing to their excellent light harvesting properties, narrow enough band gap, and suitable redox potentials of conduction and valance bands. However, it is still challenging to develop low-cost and high-efficiency sulfide solid-solution photocatalysts for practical photocatalytic hydrogen evolution. Recently, 1D MnxCd1-xS nanostructures have shown superior light absorption, charge separation, and H2-evolution activity owing to their shortened diffusion pathway of carriers and high length-to-diameter ratios. Thus, 1D MnxCd1-xS nanostructures have been applied in photocatalytic H2 evolution. However, a single MnxCd1-xS photocatalyst still has some disadvantages for photocatalytic H2 evolution, such as the rapid recombination of photogenerated electron-hole pairs and low quantum efficiency. Herein, to further boost the separation of photogenerated charge carriers and H2-evolution kinetics, an in situ solvothermal method was used to synthesize the 1D/2D Schottky-based heterojunctions between the Mn0.2Cd0.8S nanorods (MCS NRs) and Ti3C2 MXene nanosheets (NSs). Furthermore, various characterization methods have been used to investigate the crucial roles and underlying mechanisms of metallic Ti3C2 MXene NSs in boosting the photocatalytic H2 evolution over the Mn0.2Cd0.8S nanorods. X-ray Diffraction (XRD), Transmission Electron Microscope (TEM), High Resolution Transmission Electron Microscopy (HRTEM), element mapping images, and X-ray Photoelectron Spectroscopy (XPS) results clearly demonstrate that hybrid low-cost Schottky-based heterojunctions have been successfully constructed for practical applications in photocatalytic H2 evolution. Additionally, the photocatalytic hydrogen evolution reaction (HER) was also carried out in a mixed solution of Na2SO3 and Na2S using as the sacrificial agents. The highest hydrogen evolution rate of the optimized 1D/2D Schottky-based heterojunction is 15.73 mmol·g-1·h-1, which is 6.72 times higher than that of pure MCS NRs (2.34 mmol·g-1·h-1). An apparent quantum efficiency of 19.6% was achieved at 420 nm. The stability measurements of the binary photocatalysts confirmed their excellent photocatalytic stability for practical applications. More interestingly, the UV-Vis diffuse reflection spectra, photoluminescence (PL) spectrum, transient photocurrent responses, and Electrochemical Impedance Spectroscopy (EIS) Nyquist plots clearly confirmed the promoted charge separation between the MCS NRs and Ti3C2 MXene NSs. The linear sweep voltammetry also showed that the loading of MXene cocatalysts could greatly decrease the overpotential of pure MCS NRs, suggesting that the 2D Ti3C2 NSs could act as an electronic conductive bridge to improve the H2-evolution kinetics. In summary, these results show that the 2D/1D hybrid Schottky-based heterojunctions between metallic Ti3C2 MXene NSs and MCS NRs can not only improve the separation of photogenerated electrons and holes but also decrease the H2-evolution overpotential, thus resulting in significantly enhanced photocatalytic H2 generation. We believe that this study will inspire new ideas for constructing low-cost Schottky-based heterojunctions for practical applications in photocatalytic H2 evolution.
  • 加载中
    1. [1]

      Li, X.; Xie, J.; Jiang, C.; Yu, J.; Zhang, P. Front. Env. Sci. Eng. 2018, 12, 14. doi: 10.1007/s11783-018-1076-1  doi: 10.1007/s11783-018-1076-1

    2. [2]

      Li, X.; Yu, J.; Low, J.; Fang, Y.; Xiao, J.; Chen, X. J. Mater. Chem. A 2015, 3, 2485. doi: 10.1039/C4TA04461D  doi: 10.1039/C4TA04461D

    3. [3]

      Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Chem. Rev. 2019, 119, 3962. doi: 10.1021/acs.chemrev.8b00400  doi: 10.1021/acs.chemrev.8b00400

    4. [4]

      Li, X.; Wen, J.; Low, J.; Fang, Y.; Yu, J. Sci. China Mater. 2014, 57, 70. doi: 10.1007/s40843-014-0003-1  doi: 10.1007/s40843-014-0003-1

    5. [5]

      Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Nat. Commun. 2020, 11, 4613. doi: 10.1038/s41467-020-18350-7  doi: 10.1038/s41467-020-18350-7

    6. [6]

      Liang, Z. Z.; Shen, R. C.; Ng, Y. H.; Zhang, P.; Xiang, Q. J.; Li, X. J. Mater. Sci. Technol. 2020, 56, 89. doi: 10.1016/j.jmst.2020.04.032  doi: 10.1016/j.jmst.2020.04.032

    7. [7]

      Li, L.; Liu, G.; Qi, S.; Liu, X.; Gu, L.; Lou, Y.; Chen, J.; Zhao, Y. J. Mater. Chem. A 2018, 6, 23683. doi: 10.1039/c8ta08458k  doi: 10.1039/c8ta08458k

    8. [8]

      Wen, J.; Li, X.; Liu, W.; Fang, Y.; Xie, J.; Xu, Y. Chin. J. Catal. 2015, 36, 2049. doi: 10.1016/s1872-2067(15)60999-8  doi: 10.1016/s1872-2067(15)60999-8

    9. [9]

      Liu, Z. M.; Liu, G. L.; Hong, X. L. Acta Phys. -Chim. Sin. 2019, 35, 215.  doi: 10.3866/PKU.WHXB201803061

    10. [10]

      Zhang, R. L.; Wang, C.; Chen, H.; Zhao, H.; Liu, J.; Li, Y.; Su, B. L. Acta Phys. -Chim. Sin. 2020, 36, 1803014.  doi: 10.3866/PKU.WHXB201803014

    11. [11]

      Ren, D.; Shen, R.; Jiang, Z.; Lu, X.; Li, X. Chin. J. Catal. 2020, 41, 31. doi: 10.1016/s1872-2067(19)63467-4  doi: 10.1016/s1872-2067(19)63467-4

    12. [12]

      Xiong, M. H.; Yan, J. T.; Chai, B.; Fan, G. Z.; Song, G. S. J. Mater. Sci. Technol. 2020, 56, 179. doi: 10.1016/j.jmst.2020.03.037  doi: 10.1016/j.jmst.2020.03.037

    13. [13]

      Shen, R.; Ren, D.; Ding, Y.; Guan, Y.; Ng, Y. H.; Zhang, P.; Li, X. Sci. China Mater. 2020, 63, 2153. doi: 10.1007/s40843-020-1456-x  doi: 10.1007/s40843-020-1456-x

    14. [14]

      Liu, C.; Xiong, M.; Chai, B.; Yan, J.; Fan, G.; Song, G. Catal. Sci. Technol. 2019, 9, 6929. doi: 10.1039/c9cy02045d  doi: 10.1039/c9cy02045d

    15. [15]

      Wen, J.; Xie, J.; Chen, X.; Li, X. Appl. Surf. Sci. 2017, 391, 72. doi: 10.1016/j.apsusc.2016.07.030  doi: 10.1016/j.apsusc.2016.07.030

    16. [16]

      Ren, Y. J.; Zeng, D. Q.; Ong, W. J. Chin. J. Catal. 2019, 40, 289. doi: 10.1016/s1872-2067(19)63293-6  doi: 10.1016/s1872-2067(19)63293-6

    17. [17]

      Li, Y.; Li, X.; Zhang, H. W.; Fan, J. J.; Xiang, Q. J. J. Mater. Sci. Technol. 2020, 56, 69. doi: 10.1016/j.jmst.2020.03.033  doi: 10.1016/j.jmst.2020.03.033

    18. [18]

      Li, Y. F.; Zhou, M. H.; Cheng, B.; Shao, Y. J. Mater. Sci. Technol. 2020, 56, 1. doi: 10.1016/j.jmst.2020.04.028  doi: 10.1016/j.jmst.2020.04.028

    19. [19]

      Shen, R.; Xie, J.; Zhang, H.; Zhang, A.; Chen, X.; Li, X. ACS Sustain. Chem. Eng. 2017, 6, 816. doi: 10.1021/acssuschemeng.7b03169  doi: 10.1021/acssuschemeng.7b03169

    20. [20]

      Pan, J. B.; Shen, S.; Zhou, W.; Tang, J.; Ding, H. Z.; Wang, J. B.; Chen, L.; Au, C. T.; Yin, S. F. Acta Phys. -Chim. Sin. 2020, 36, 1905068.  doi: 10.3866/PKU.WHXB201905068

    21. [21]

      Shen, R. C.; Xie, J.; Xiang, Q. J.; Chen, X. B.; Jiang, J. Z.; Li, X. Chin. J. Catal. 2019, 40, 240. doi: 10.1016/s1872-2067(19)63294-8  doi: 10.1016/s1872-2067(19)63294-8

    22. [22]

      Bai, Y.; Shi, X.; Wang, P. Q.; Xie, H.; Ye, L. ACS Appl. Mater. Interfaces 2017, 9, 30273. doi: 10.1021/acsami.7b10233  doi: 10.1021/acsami.7b10233

    23. [23]

      Mao, Q.; Chen, J. M.; Chen, H. R.; Chen, Z. J.; Chen, J. Y.; Li, Y. W. J. Mater. Chem. A 2019, 7, 8472. doi: 10.1039/c8ta12526k  doi: 10.1039/c8ta12526k

    24. [24]

      Shi, J.; Li, S.; Wang, F.; Li, Y.; Gao, L.; Zhang, X.; Lu, J. Catal. Sci. Technol. 2018, 8, 6458. doi: 10.1039/c8cy01884g  doi: 10.1039/c8cy01884g

    25. [25]

      Zhang, J.; Qi, L.; Ran, J.; Yu, J.; Qiao, S. Z. Adv. Energy Mater. 2014, 4, 1301925. doi: 10.1002/aenm.201301925  doi: 10.1002/aenm.201301925

    26. [26]

      Gao, R.; Cheng, B.; Fan, J.; Yu, J.; Ho, W. Chin. J. Catal. 2021, 42, 15. doi: 10.1016/S1872-2067(20)63614-2  doi: 10.1016/S1872-2067(20)63614-2

    27. [27]

      Shen, R.; Ding, Y.; Li, S.; Zhang, P.; Xiang, Q.; Ng, Y. H.; Li, X. Chin. J. Catal. 2021, 42, 25. doi: 10.1016/s1872-2067(20)63600-2  doi: 10.1016/s1872-2067(20)63600-2

    28. [28]

      Kozlova, E. A.; Lyulyukin, M. N.; Markovskaya, D. V.; Selishchev, D. S.; Cherepanova, S. V.; Kozlov, D. V. Photochem. Photobiol. Sci. 2019, 18, 871. doi: 10.1039/c8pp00332g  doi: 10.1039/c8pp00332g

    29. [29]

      Wang, S.; Wang, Y.; Zhang, S. L.; Zang, S. Q.; Lou, X. W. D. Adv. Mater. 2019, 31, 1903404. doi: 10.1002/adma.201903404  doi: 10.1002/adma.201903404

    30. [30]

      Liu, X.; Liang, X.; Wang, P.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y. Appl. Catal. B-Environ. 2017, 203, 282. doi: 10.1016/j.apcatb.2016.10.040  doi: 10.1016/j.apcatb.2016.10.040

    31. [31]

      Huang, Q.-Z.; Tao, Z.-J.; Ye, L.-Q.; Yao, H.-C.; Li, Z.-J. Appl. Catal. B-Environ. 2018, 237, 689. doi: 10.1016/j.apcatb.2018.06.040  doi: 10.1016/j.apcatb.2018.06.040

    32. [32]

      Luo, J.; Lin, Z.; Zhao, Y.; Jiang, S.; Song, S. Chin. J. Catal. 2020, 41, 122. doi: 10.1016/s1872-2067(19)63490-x  doi: 10.1016/s1872-2067(19)63490-x

    33. [33]

      Mei, F.; Li, Z.; Dai, K.; Zhang, J.; Liang, C. Chin. J. Catal. 2020, 41, 41. doi: 10.1016/s1872-2067(19)63389-9  doi: 10.1016/s1872-2067(19)63389-9

    34. [34]

      Qin, D. R.; Xia, Y.; Li, Q.; Yang, C.; Qin, Y. M.; Lv, K. L. J. Mater. Sci. Technol. 2020, 56, 206. doi: 10.1016/j.jmst.2020.03.034  doi: 10.1016/j.jmst.2020.03.034

    35. [35]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    36. [36]

      Hu, P.; Ngaw, C. K.; Tay, Y. Y.; Cao, S.; Barber, J.; Tan, T. T.; Loo, S. C. Chem. Commun. 2015, 51, 9381. doi: 10.1039/c5cc02237a  doi: 10.1039/c5cc02237a

    37. [37]

      Wei, Z.; Xu, M.; Liu, J.; Guo, W.; Jiang, Z.; Shangguan, W. Chin. J. Catal. 2020, 41, 103. doi: 10.1016/s1872-2067(19)63479-0  doi: 10.1016/s1872-2067(19)63479-0

    38. [38]

      Li, X.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Xie, J. Small 2016, 12, 6640. doi: 10.1002/smll.201600382  doi: 10.1002/smll.201600382

    39. [39]

      Li, Q.; Li, X.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J. Adv. Energy Mater. 2015, 5, 1500010. doi: 10.1002/aenm.201500010  doi: 10.1002/aenm.201500010

    40. [40]

      Pang, J.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M. H. Chem. Soc. Rev. 2019, 48, 72. doi: 10.1039/c8cs00324f  doi: 10.1039/c8cs00324f

    41. [41]

      Kuang, P. Y.; Low, J. X.; Cheng, B.; Yu, J. G.; Fan, J. J. J. Mater. Sci. 2020, 56, 18. doi: 10.1016/j.jmst.2020.02.037  doi: 10.1016/j.jmst.2020.02.037

    42. [42]

      Cheng, L.; Li, X.; Zhang, H.; Xiang, Q. J. Phys. Chem. Lett. 2019, 10, 3488. doi: 10.1021/acs.jpclett.9b00736  doi: 10.1021/acs.jpclett.9b00736

    43. [43]

      Yang, Y.; Zhang, S.; Li, Y.; Fan, J.; Lv, K. Appl. Catal. B-Environ. 2019, 258, 117956. doi: 10.1016/j.apcatb.2019.117956  doi: 10.1016/j.apcatb.2019.117956

    44. [44]

      Li, K.; Zhang, S.; Li, Y.; Fan, J.; Lv, K. Chin. J. Catal. 2021, 42, 3. doi: 10.1016/S1872-2067(20)63630-0  doi: 10.1016/S1872-2067(20)63630-0

    45. [45]

      Low, J. X.; Zhang, L. Y.; Tong, T.; Shen, B. J.; Yu, J. G. J. Catal. 2018, 361, 255. doi: 10.1016/j.jcat.2018.03.009  doi: 10.1016/j.jcat.2018.03.009

    46. [46]

      He, F.; Zhu, B.; Cheng, B.; Yu, J.; Ho, W.; Macyk, W. Appl. Catal. B-Environ. 2020, 272, 119006. doi: 10.1016/j.apcatb.2020.119006  doi: 10.1016/j.apcatb.2020.119006

    47. [47]

      Sun, Y.; Jin, D.; Sun, Y.; Meng, X.; Gao, Y.; Dall'Agnese, Y.; Chen, G.; Wang, X.-F. J. Mater. Chem. A 2018, 6, 9124. doi: 10.1039/c8ta02706d  doi: 10.1039/c8ta02706d

    48. [48]

      Zuo, G.; Wang, Y.; Teo, W. L.; Xie, A.; Guo, Y.; Dai, Y.; Zhou, W.; Jana, D.; Xian, Q.; Dong, W.; Zhao, Y. Angew. Chem. 2020, 59, 11287. doi: 10.1002/ange.202002136  doi: 10.1002/ange.202002136

    49. [49]

      Ran, J.; Gao, G.; Li, F.-T.; Ma, T.-Y.; Du, A.; Qiao, S.-Z. Nat. Commun. 2017, 8, 13907. doi: 10.1038/ncomms13907  doi: 10.1038/ncomms13907

    50. [50]

      Cheng, L.; Chen, Q.; Li, J.; Liu, H. Appl. Catal. B-Environ. 2020, 267, 118379. doi: 10.1016/j.apcatb.2019.118379  doi: 10.1016/j.apcatb.2019.118379

    51. [51]

      Ding, M.; Xiao, R.; Zhao, C.; Bukhvalov, D.; Chen, Z.; Xu, H.; Tang, H.; Xu, J.; Yang, X. Solar RRL 2020, 2000414. doi: 10.1002/solr.202000414  doi: 10.1002/solr.202000414

    52. [52]

      Xiao, R.; Zhao, C.; Zou, Z.; Chen, Z.; Tian, L.; Xu, H.; Tang, H.; Liu, Q.; Lin, Z.; Yang, X. Appl. Catal. B-Environ. 2020, 268, 118382. doi: 10.1016/j.apcatb.2019.118382  doi: 10.1016/j.apcatb.2019.118382

    53. [53]

      Yuan, W.; Cheng, L.; An, Y.; Lv, S.; Wu, H.; Fan, X.; Zhang, Y.; Guo, X.; Tang, J. Adv. Sci. 2018, 5, 1700870. doi: 10.1002/advs.201700870  doi: 10.1002/advs.201700870

    54. [54]

      Li, Y.; Ding, L.; Liang, Z.; Xue, Y.; Cui, H.; Tian, J. Chem. Eng. J. 2020, 383, 123178. doi: 10.1016/j.cej.2019.123178  doi: 10.1016/j.cej.2019.123178

    55. [55]

      Li, Y.; Ding, L.; Yin, S.; Liang, Z.; Xue, Y.; Wang, X.; Cui, H.; Tian, J. Nano-Micro. Lett. 2020, 12, 6. doi: 10.1007/s40820-019-0339-0  doi: 10.1007/s40820-019-0339-0

    56. [56]

      Min, S.; Xue, Y.; Wang, F.; Zhang, Z.; Zhu, H. Chem. Commun. 2019, 55, 10631. doi: 10.1039/c9cc05489h  doi: 10.1039/c9cc05489h

    57. [57]

      Ren, D.; Liang, Z.; Ng, Y. H.; Zhang, P.; Xiang, Q.; Li, X. Chem. Eng. J. 2020, 390, 124496. doi: 10.1016/j.cej.2020.124496  doi: 10.1016/j.cej.2020.124496

    58. [58]

      Shen, R.; Zhang, L.; Chen, X.; Jaroniec, M.; Li, N.; Li, X. Appl. Catal. B-Environ. 2020, 266, 118619. doi: 10.1016/j.apcatb.2020.118619  doi: 10.1016/j.apcatb.2020.118619

    59. [59]

      Alfonso-Herrera, L. A.; Huerta-Flores, A. M.; Torres Martínez, L. M.; Ramírez-Herrera, D. J.; Rivera-Villanueva, J. M. J. Photochem. Photobiol. A: Chem. 2020, 389, 112240. doi: 10.1016/j.jphotochem.2019.112240  doi: 10.1016/j.jphotochem.2019.112240

    60. [60]

      Li, Y. Y.; Zhou, B. X.; Zhang, H. W.; Ma, S. F.; Huang, W. Q.; Peng, W.; Hu, W.; Huang, G. F. Nanoscale 2019, 11, 6876. doi: 10.1039/c9nr00229d  doi: 10.1039/c9nr00229d

    61. [61]

      Li, Y.; Yin, Z.; Ji, G.; Liang, Z.; Xue, Y.; Guo, Y.; Tian, J.; Wang, X.; Cui, H. Appl. Catal. B-Environ. 2019, 246, 12. doi: 10.1016/j.apcatb.2019.01.051  doi: 10.1016/j.apcatb.2019.01.051

    62. [62]

      Zeng, P.; Luo, J.; Wang, J.; Peng, T. Catal. Sci. Technol. 2019, 9, 762. doi: 10.1039/c8cy02266f.  doi: 10.1039/c8cy02266f

    63. [63]

      Han, Y.; Dong, X.; Liang, Z. Catal. Sci. Technol. 2019, 9, 1427. doi: 10.1039/c8cy02179a  doi: 10.1039/c8cy02179a

    64. [64]

      Chen, G.; Li, F.; Fan, Y.; Luo, Y.; Li, D.; Meng, Q. Catal. Commun. 2013, 40, 51. doi: 10.1016/j.catcom.2013.05.025  doi: 10.1016/j.catcom.2013.05.025

    65. [65]

      Jiang, X.; Gong, H.; Liu, Q.; Song, M.; Huang, C. Appl. Catal. B-Environ. 2020, 268, 118439. doi: 10.1016/j.apcatb.2019.118439  doi: 10.1016/j.apcatb.2019.118439

    66. [66]

      Liu, H.; Xu, Z. Z.; Zhang, Z.; Ao, D. Appl. Catal. A-Gen. 2016, 518, 150. doi: 10.1016/j.apcata.2015.08.026  doi: 10.1016/j.apcata.2015.08.026

    67. [67]

      Ren, D.; Zhang, W.; Ding, Y.; Shen, R.; Jiang, Z.; Lu, X.; Li, X. Solar RRL 2020, 4, 1900423. doi: 10.1002/solr.201900423  doi: 10.1002/solr.201900423

  • 加载中
    1. [1]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    2. [2]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    3. [3]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    4. [4]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    5. [5]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    6. [6]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    7. [7]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    8. [8]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

    9. [9]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    10. [10]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    13. [13]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    14. [14]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    15. [15]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    16. [16]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    17. [17]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    18. [18]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    19. [19]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    20. [20]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

Metrics
  • PDF Downloads(70)
  • Abstract views(1081)
  • HTML views(440)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return