Utilization of the van der Waals Gap of 2D Materials
- Corresponding author: Gong Yongji, yongjigong@buaa.edu.cn
Citation: Que Haifeng, Jiang Huaning, Wang Xingguo, Zhai Pengbo, Meng Lingjia, Zhang Peng, Gong Yongji. Utilization of the van der Waals Gap of 2D Materials[J]. Acta Physico-Chimica Sinica, ;2021, 37(11): 201005. doi: 10.3866/PKU.WHXB202010051
Hu, Y. J.; Jin, J.; Zhang, H.; Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073.
doi: 10.3866/PKU.WHXB20100812
Zhang, P.; Ma, L. L.; Fan, F. F.; Zeng, Z.; Peng, C.; Loya, P. E.; Liu, Z.; Gong, Y. J.; Zhang, J. N.; Zhang X. X.; et al. Nat. Commun. 2014, 5, 3782. doi: 10.1038/ncomms4782
doi: 10.1038/ncomms4782
Li, J. Y.; Ding, Y.; Zhang, D. W.; Zhou, P. Acta Phys. -Chim. Sin. 2019, 35, 1058.
doi: 10.3866/PKU.WHXB201812020
Jiang, H. N.; Zhang, P.; Wang, X. G.; Gong, Y. J. Nano Res. 2020, doi: 10.1007/s12274-020-3020-5
Wang, X. G.; Zhou, Z.; Zhang, P.; Zhang, S. Q.; Ma, Y.; Yang, W. W.; Wang, H.; Li, B. X.; Meng, L. J.; Jiang, H. N.; et al. Chem. Mater. 2020, 32, 2321. doi: 10.1021/acs.chemmater.9b04416
doi: 10.1021/acs.chemmater.9b04416
Xue, Y. H.; Zhang, Q.; Wang, W. J.; Cao, H.; Yang, Q. H.; Fu, L. Adv. Energy Mater. 2017, 7, 1602684. doi: 10.1002/aenm.201602684
doi: 10.1002/aenm.201602684
Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Chen, R.; et al. Nature 2018, 555, 231. doi: 10.1038/nature25774
doi: 10.1038/nature25774
Kobayashi, K.; Yamauchi, J. Phys. Rev. B: Condens. 1995, 51, 17085. doi: 10.1103/PhysRevB.51.17085
doi: 10.1103/PhysRevB.51.17085
Lu, N.; Guo, H.; Wang, L.; Wu, X.; Zeng, X. C. Nanoscale 2014, 6, 4566. doi: 10.1039/C4NR00783B
doi: 10.1039/C4NR00783B
Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F.; Pantelides, S. T.; Bolotin, K. I. Nano Lett. 2013, 13, 3626. doi: 10.1021/nl4014748
doi: 10.1021/nl4014748
Komsa, H. P.; Krasheninnikov, A. V. Phys. Rev. B 2013, 88, 085318. doi: 10.1103/physrevb.88.085318
doi: 10.1103/physrevb.88.085318
Terrones, H.; Lopez-Urias, F.; Terrones, M. Sci. Rep. 2013, 3, 1549. doi: 10.1038/srep01549
doi: 10.1038/srep01549
Lu, N.; Guo, H.; Li, L.; Dai, J.; Wang, L.; Mei, W. N.; Wu, X.; Zeng, X. C. Nanoscale 2014, 6, 2879. doi: 10.1039/c3nr06072a
doi: 10.1039/c3nr06072a
Ma, Y.; Dai, Y.; Guo, M.; Niu, C.; Huang, B. Nanoscale 2011, 3, 3883. doi: 10.1039/c1nr10577a
doi: 10.1039/c1nr10577a
Kośmider, K.; Fernández-Rossier, J. Phys. Rev. B 2013, 87, 075451. doi: 10.1103/physrevb.87.075451
doi: 10.1103/physrevb.87.075451
Bao, W. Z.; Wan, J. Y.; Han, X. G.; Cai, X. H.; Zhu, H. L.; Kim, D. H.; Ma, D. K.; Xu, Y. L.; Munday, J. N.; Drew, H. D.; et al. Nat. Commun. 2014, 5, 4224. doi: 10.1038/ncomms5224
doi: 10.1038/ncomms5224
Wan, J. Y.; Bao, W. Z.; Liu, Y.; Dai, J. Q.; Shen, F.; Zhou, L. H.; Cai, X. H.; Urban, D.; Li, Y. Y.; Jungjohann, K.; et al. Adv. Energy Mater. 2015, 5, 1401742. doi: 10.1002/aenm.201401742
doi: 10.1002/aenm.201401742
Kim, N.; Kim, K. S.; Jung, N.; Brus, L.; Kim, P. Nano Lett. 2011, 11, 860. doi: 10.1021/nl104228f
doi: 10.1021/nl104228f
Yu, Y. J.; Yang, F. Y.; Lu, X. F.; Yan, Y. J.; Cho, Y. H.; Ma, L. G.; Niu, X. H.; Kim, S.; Son, Y. W.; Feng, D. L.; et al. Nat. Nanotechnol. 2015, 10, 270. doi: 10.1038/nnano.2014.323
doi: 10.1038/nnano.2014.323
Wu, H.; Kong, D.; Ruan, Z.; Hsu, P. C.; Wang, S.; Yu, Z.; Carney, T. J.; Hu, L.; Fan, S.; Cui, Y. Nat. Nanotechnol. 2013, 8, 421. doi: 10.1038/nnano.2013.84
doi: 10.1038/nnano.2013.84
Li, H. P.; Pan, W.; Zhang, W.; Huang, S. Y.; Wu, H. Adv. Funct. Mater. 2013, 23, 209. doi: 10.1002/adfm.201200996
doi: 10.1002/adfm.201200996
Motter, J. P.; Koski, K. J.; Cui, Y. Chem. Mat. 2014, 26, 2313. doi: 10.1021/cm500242h
doi: 10.1021/cm500242h
Koski, K. J.; Cha, J. J.; Reed, B. W.; Wessells, C. D.; Kong, D.; Cui, Y. J. Am. Chem. Soc. 2012, 134, 7584. doi: 10.1021/ja300368x
doi: 10.1021/ja300368x
Yang, W. W.; Zhang, S. Q.; Chen, Q.; Zhang, C.; Wei, Y.; Jiang, H. N.; Lin, Y. X.; Zhao. M. T.; He, Q. Q.; Wang, X. G.; et al. Adv. Mater. 2020, 32, e2001167. doi: 10.1002/adma.202001167
doi: 10.1002/adma.202001167
Friend, R. H.; Yoffe, A. D. Adv. Phys. 1987, 36, 1. doi: 10.1080/00018738700101951
doi: 10.1080/00018738700101951
Kanetani, K.; Sugawara, K.; Sato, T.; Shimizu, R.; Iwaya, K.; Hitosugi, T.; Takahashi, T. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 19610. doi: 10.1073/pnas.1208889109
doi: 10.1073/pnas.1208889109
Bouwmeester, H. J.; van der Lee, A.; van Smaalen, S.; Wiegers, G. A. Phys. Rev. B: Condens. 1991, 43, 9431. doi: 10.1103/physrevb.43.9431
doi: 10.1103/physrevb.43.9431
Harshman, D. R.; Mills, A. P. Phys. Rev. B: Condens. 1992, 45, 10684. doi: 10.1038/nmat4251
doi: 10.1038/nmat4251
Kumar, P.; Skomski, R.; Pushpa, R. ACS Omega. 2017, 2, 7985. doi: 10.1021/acsomega.7b01164
doi: 10.1021/acsomega.7b01164
Xie, J.; Zhang, J.; Li, S.; Grote, F.; Zhang, X.; Zhang, H.; Wang, R.; Lei, Y.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2013, 135, 17881. doi: 10.1021/ja408329q
doi: 10.1021/ja408329q
Qin, S.; Lei, W.; Liu, D.; Chen, Y. Sci. Rep. 2014, 4, 7582. doi: 10.1038/srep07582
doi: 10.1038/srep07582
Ye, L. J.; Chen, S. J.; Li, W. J.; Pi, M. Y.; Wu, T. L.; Zhang, D. K. J. Phys. Chem. C 2015, 119, 9560. doi: 10.1021/jp5128018
doi: 10.1021/jp5128018
Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R.; et al. Nature 2018, 555, 231. doi: 10.1038/nature25774
doi: 10.1038/nature25774
Wang, M.; Koski, K. J. ACS Nano 2015, 9, 3226. doi: 10.1021/acsnano.5b00336
doi: 10.1021/acsnano.5b00336
Wang, M. J.; Al-Dhahir, I.; Appiah, J.; Koski, K. J. Chem. Mater. 2017, 29, 1650. doi: 10.1021/acs.chemmater.6b04918
doi: 10.1021/acs.chemmater.6b04918
Hennig, G. R. J. Chem. Phys. 1965, 43, 1201. doi: 10.1063/1.1696905
doi: 10.1063/1.1696905
Yang, W. W.; Xiao, J. W.; Ma, Y.; Cui, S. Q.; Zhang, P.; Zhai, P. B.; Meng. L. J.; Wang, X. G.; Wei, Y.; Du, Z. G.; et al. Adv. Energy Mater. 2019, 9, 1803137. doi: 10.1002/aenm.201803137
doi: 10.1002/aenm.201803137
Wang, M.; Lahti, G.; Williams, D.; Koski, K. J. ACS Nano 2018, 12, 6163. doi: 10.1021/acsnano.8b02789
doi: 10.1021/acsnano.8b02789
Gong, Y. J.; Yuan, H. T.; Wu, C. L.; Tang, P. Z.; Yang, S. Z.; Yang, A. K.; Li, G. D.; Liu, B. F.; Groep, J. V. D.; Brongersma, M. L.; et al. Nat. Nanotechnol. 2018, 13, 294. doi: 10.1038/s41565-018-0069-3
doi: 10.1038/s41565-018-0069-3
He, Q.; Lin, Z.; Ding, M.; Yin, A.; Halim, U.; Wang, C.; Liu, Y.; Cheng, H. C.; Huang, Y.; Duan, X. Nano Lett. 2019, 19, 6819. doi: 10.1021/acs.nanolett.9b01898
doi: 10.1021/acs.nanolett.9b01898
Wang, N. Z.; Tang, H. B.; Shi, M. Z.; Zhang, H.; Zhuo, W. Z.; Liu, D. Y.; Meng, F. B.; Ma, L. K.; Ying, J. J.; Zou, L. J.; et al. J. Am. Chem. Soc. 2019, 141, 17166. doi: 10.1021/jacs.9b06929
doi: 10.1021/jacs.9b06929
Wang, H.; Lu, Z.; Kong, D.; Sun, J.; Hymel, T. M.; Cui, Y. ACS Nano 2014, 8, 4940. doi: 10.1021/nn500959v
doi: 10.1021/nn500959v
Wang, X.; Shen, X.; Wang, Z.; Yu, R.; Chen, L. ACS Nano 2014, 8, 11394. doi: 10.1021/nn505501v
doi: 10.1021/nn505501v
Chen, W. S.; Gu, J. J.; Liu, Q. L.; Luo, R. C.; Yao, L. L.; Sun, B. Y.; Zhang, W.; Su, H. L.; Chen, B.; Liu, P.; et al. ACS Nano 2018, 12, 308. doi: 10.1021/acsnano.7b06364
doi: 10.1021/acsnano.7b06364
Meng, L. J.; Ma, Y.; Si, K. P.; Xu, S. Y.; Wang, J. L.; Gong, Y. J. Tungsten 2019, 1, 46. doi: 10.1007/s42864-019-00012-x
doi: 10.1007/s42864-019-00012-x
Li, J. Y.; Zhang, Z. Y.; Cui, W.; Wang, H.; Cen, W. L.; Johnson, G.; Jiang, G. M.; Zhang, S.; Dong, F. ACS Catal. 2018, 8, 8376. doi: 10.1021/acscatal.8b02459
doi: 10.1021/acscatal.8b02459
O'Farrell, E. C.; Tan, J. Y.; Yeo, Y.; Koon, G. K.; Ozyilmaz, B.; Watanabe, K.; Taniguchi, T. Phys. Rev. Lett. 2016, 117, 076603. doi: 10.1103/physrevlett.117.076603
doi: 10.1103/physrevlett.117.076603
Zhao, J.; Islam, S. M.; Kontsevoi, O. Y.; Tan, G.; Stoumpos, C. C.; Chen, H.; Li, R. K.; Kanatzidis, M. G. J. Am. Chem. Soc. 2017, 139, 6978. doi: 10.1021/jacs.7b02243
doi: 10.1021/jacs.7b02243
Ebina, Y.; Sakai, N.; Sasaki, T. J. Phys. Chem. B 2005, 109, 17212. doi: 10.1021/jp051823j
doi: 10.1021/jp051823j
Hata, H.; Kubo, S.; Kobayashi, Y.; Mallouk, T. E. J. Am. Chem. Soc. 2007, 129, 3064. doi: 10.1021/ja068272a
doi: 10.1021/ja068272a
Hata, H.; Kobayashi, Y.; Salama, M.; Malek, R.; Mallouk, T. E. Chem. Mater. 2007, 19, 6588. doi: 10.1021/cm701936y
doi: 10.1021/cm701936y
Hata, H.; Kobayashi, Y.; Bojan, V.; Youngblood, W. J.; Mallouk, T. E. Nano Lett. 2008, 8, 794. doi: 10.1021/nl072571w
doi: 10.1021/nl072571w
Oshima, T.; Lu, D.; Ishitani, O.; Maeda, K. Angew. Chem. Int. Ed. 2015, 54, 2698. doi: 10.1002/ange.201411494
doi: 10.1002/ange.201411494
Luo, Y.; Li, X.; Cai, X.; Zou, X.; Kang, F.; Cheng, H. M.; Liu, B. ACS Nano 2018, 12, 4565. doi: 10.1021/acsnano.8b00942
doi: 10.1021/acsnano.8b00942
Chen, Z. X.; Liu, C. B.; Liu, J.; Li J.; Xi, S. B.; Chi, X.; Xu, H. S.; Park, I. H.; Peng, X. W.; Li, X.; et al. Adv. Mater. 2020, 32, e1906437. doi: 10.1002/adma.201906437
doi: 10.1002/adma.201906437
Nair, N. L.; Maniv, E.; John, C.; Doyle, S.; Orenstein, J.; Analytis, J. G. Nat. Mater. 2020, 19, 153. doi: 10.1038/s41563-019-0518-x
doi: 10.1038/s41563-019-0518-x
Zhao, X. H.; Song, P.; Wang, C. C.; Anders C. Riis-Jensen; Fu, W.; Deng, Y.; Wan, D. Y.; Kang, L. X.; Ning, S. C.; Dan, J. D.; et al. Nature 2020, 581, 171. doi: 10.1038/s41586-020-2241-9
doi: 10.1038/s41586-020-2241-9
Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-Gonzalez, J.; Rojo, T. Energy Environ. Sci. 2012, 5, 5884. doi: 10.1039/c2ee02781j
doi: 10.1039/c2ee02781j
Kim, H.; Kim, J. C.; Bianchini, M.; Seo, D. H.; Rodriguez-Garcia, J.; Ceder, G. Adv. Energy Mater. 2018, 8, 1702384. doi: 10.1002/aenm.201702384
doi: 10.1002/aenm.201702384
Song, M.; Tan, H.; Chao, D. L.; Fan, H. J. Adv. Funct. Mater. 2018, 28, 1802564. doi: 10.1002/adfm.201802564
doi: 10.1002/adfm.201802564
Muldoon, J.; Bucur, C. B.; Gregory, T. Chem. Rev. 2014, 114, 11683. doi: 10.1021/cr500049y
doi: 10.1021/cr500049y
Zhai, P. B.; Wei, Y.; Xiao, J.; Liu, W.; Zuo, J. H.; Gu, X. K.; Yang, W. W.; Cui, S. Q.; Li, B.; Yang, S. B.; et al. Adv. Energy Mater. 2020, 10, 1903339. doi: 10.1002/aenm.201903339
doi: 10.1002/aenm.201903339
Chen, K.; Sun, Z. H.; Fang, R. P.; Li, F.; Cheng, H. M. Acta Phys. -Chim. Sin. 2018, 34, 377.
doi: 10.3866/PKU.WHXB201709001
Lamb, A. B. Chem. Eng. News 1942, 20, 267. doi: 10.1021/cen-v020n004.p267
doi: 10.1021/cen-v020n004.p267
Rüdorff, W. J. C. Chimia 1965, 19, 489.
Whittingham, M. S.; Gamble, F. R. Mater. Res. Bull. 1975, 10, 363. doi: 10.1016/0025-5408(75)90006-9
doi: 10.1016/0025-5408(75)90006-9
Whittingham, M. S. Science 1976, 192, 1126. doi: 10.1126/science.192.4244.1126
doi: 10.1126/science.192.4244.1126
Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Mater. Res. Bull. 1980, 15, 783. doi: 10.1016/0025-5408(80)90012-4
doi: 10.1016/0025-5408(80)90012-4
Mashtalir, O.; Naguib, M.; Mochalin, V. N.; Dall'Agnese, Y.; Heon, M.; Barsoum, M. W.; Gogotsi, Y. Nat. Commun. 2013, 4, 1716. doi: 10.1038/ncomms2664
doi: 10.1038/ncomms2664
Eames, C.; Islam, M. S. J. Am. Chem. Soc. 2014, 136, 16270. doi: 10.1021/ja508154e
doi: 10.1021/ja508154e
Muller, G. A.; Cook, J. B.; Kim, H. S.; Tolbert, S. H.; Dunn, B. Nano Lett. 2015, 15, 1911. doi: 10.1021/nl504764m
doi: 10.1021/nl504764m
Liu, W.; Zhai, P. B.; Qin, S. J.; Xiao, J.; Wei, Y.; Yang, W. W.; Cui, S. Q.; Chen, Q.; Jin, C. Q.; Yang, S. B.; et al. J. Energy Chem. 2021, 56, 463. doi: 10.1016/j.jechem.2020.08.019
doi: 10.1016/j.jechem.2020.08.019
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
Yingying Chen , Di Xu , Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
Wei Li , Guoqiang Feng , Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115