Citation: Que Haifeng, Jiang Huaning, Wang Xingguo, Zhai Pengbo, Meng Lingjia, Zhang Peng, Gong Yongji. Utilization of the van der Waals Gap of 2D Materials[J]. Acta Physico-Chimica Sinica, ;2021, 37(11): 201005. doi: 10.3866/PKU.WHXB202010051 shu

Utilization of the van der Waals Gap of 2D Materials

  • Corresponding author: Gong Yongji, yongjigong@buaa.edu.cn
  • Received Date: 23 October 2020
    Revised Date: 21 November 2020
    Accepted Date: 23 November 2020
    Available Online: 1 December 2020

    Fund Project: the National Natural Science Foundation of China 51872012The project was supported by the National Natural Science Foundation of China (51872012) and the Key Technologies Research and Development Program of China (2018YFA0306900)the Key Technologies Research and Development Program of China 2018YFA0306900

  • Since their discovery, two-dimensional (2D) materials have attracted significant research attention owing to their excellent and controllable physical and chemical properties. These materials have emerged rapidly as important material system owing to their unique properties such as electricity, optics, quantum properties, and catalytic properties. 2D materials are mostly bonded by strong ionic or covalent bonds within the layers, and the layers are stacked together by van der Waals forces, thereby making it possible to peel off 2D materials with few or single layers. The weak interaction between the layers of 2D materials also enables the use of van der Waals gaps for regulating the electronic structure of the system and further optimizing the material properties. The introduction of guest atoms can significantly change the interlayer spacing of the original material and coupling strength between the layers. Also, interaction between the guest and host atom also has the potential to change the electronic structure of the original material, thereby affecting the material properties. For example, the electron structure of a host can be modified by interlayer guest atoms, and characteristics such as carrier concentration, optical transmittance, conductivity, and band gap can be tuned. Organic cations intercalated between the layers of 2D materials can produce stable superlattices, which have great potential for developing new electronic and optoelectronic devices. This method enables the modulation of the electrical, magnetic, and optical properties of the original materials, thereby establishing a family of 2D materials with widely adjustable electrical and optical properties. It is also possible to introduce some new properties to the 2D materials, such as magnetic properties and catalytic properties, by the intercalation of guest atoms. Interlayer storage, represented by lithium-ion batteries, is also an important application of 2D van der Waals gap utilization in energy storage, which has also attracted significant research attention. Herein, we review the studies conducted in recent years from the following aspects: (1) changing the layer spacing to change the interlayer coupling; (2) introducing the interaction between guest and host atoms to change the physico-chemical properties of raw materials; (3) introducing the guest substances to obtain new properties; and (4) interlayer energy storage. We systematically describe various interlayer optimization methods of 2D van der Waals gaps and their effects on the physical and chemical properties of synthetic materials, and suggest the direction of further development and utilization of 2D van der Waals gaps.
  • 加载中
    1. [1]

      Hu, Y. J.; Jin, J.; Zhang, H.; Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073.  doi: 10.3866/PKU.WHXB20100812

    2. [2]

      Zhang, P.; Ma, L. L.; Fan, F. F.; Zeng, Z.; Peng, C.; Loya, P. E.; Liu, Z.; Gong, Y. J.; Zhang, J. N.; Zhang X. X.; et al. Nat. Commun. 2014, 5, 3782. doi: 10.1038/ncomms4782  doi: 10.1038/ncomms4782

    3. [3]

      Li, J. Y.; Ding, Y.; Zhang, D. W.; Zhou, P. Acta Phys. -Chim. Sin. 2019, 35, 1058.  doi: 10.3866/PKU.WHXB201812020

    4. [4]

      Jiang, H. N.; Zhang, P.; Wang, X. G.; Gong, Y. J. Nano Res. 2020, doi: 10.1007/s12274-020-3020-5

    5. [5]

      Wang, X. G.; Zhou, Z.; Zhang, P.; Zhang, S. Q.; Ma, Y.; Yang, W. W.; Wang, H.; Li, B. X.; Meng, L. J.; Jiang, H. N.; et al. Chem. Mater. 2020, 32, 2321. doi: 10.1021/acs.chemmater.9b04416  doi: 10.1021/acs.chemmater.9b04416

    6. [6]

      Xue, Y. H.; Zhang, Q.; Wang, W. J.; Cao, H.; Yang, Q. H.; Fu, L. Adv. Energy Mater. 2017, 7, 1602684. doi: 10.1002/aenm.201602684  doi: 10.1002/aenm.201602684

    7. [7]

      Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Chen, R.; et al. Nature 2018, 555, 231. doi: 10.1038/nature25774  doi: 10.1038/nature25774

    8. [8]

      Kobayashi, K.; Yamauchi, J. Phys. Rev. B: Condens. 1995, 51, 17085. doi: 10.1103/PhysRevB.51.17085  doi: 10.1103/PhysRevB.51.17085

    9. [9]

      Lu, N.; Guo, H.; Wang, L.; Wu, X.; Zeng, X. C. Nanoscale 2014, 6, 4566. doi: 10.1039/C4NR00783B  doi: 10.1039/C4NR00783B

    10. [10]

      Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F.; Pantelides, S. T.; Bolotin, K. I. Nano Lett. 2013, 13, 3626. doi: 10.1021/nl4014748  doi: 10.1021/nl4014748

    11. [11]

      Komsa, H. P.; Krasheninnikov, A. V. Phys. Rev. B 2013, 88, 085318. doi: 10.1103/physrevb.88.085318  doi: 10.1103/physrevb.88.085318

    12. [12]

      Terrones, H.; Lopez-Urias, F.; Terrones, M. Sci. Rep. 2013, 3, 1549. doi: 10.1038/srep01549  doi: 10.1038/srep01549

    13. [13]

      Lu, N.; Guo, H.; Li, L.; Dai, J.; Wang, L.; Mei, W. N.; Wu, X.; Zeng, X. C. Nanoscale 2014, 6, 2879. doi: 10.1039/c3nr06072a  doi: 10.1039/c3nr06072a

    14. [14]

      Ma, Y.; Dai, Y.; Guo, M.; Niu, C.; Huang, B. Nanoscale 2011, 3, 3883. doi: 10.1039/c1nr10577a  doi: 10.1039/c1nr10577a

    15. [15]

      Kośmider, K.; Fernández-Rossier, J. Phys. Rev. B 2013, 87, 075451. doi: 10.1103/physrevb.87.075451  doi: 10.1103/physrevb.87.075451

    16. [16]

      Bao, W. Z.; Wan, J. Y.; Han, X. G.; Cai, X. H.; Zhu, H. L.; Kim, D. H.; Ma, D. K.; Xu, Y. L.; Munday, J. N.; Drew, H. D.; et al. Nat. Commun. 2014, 5, 4224. doi: 10.1038/ncomms5224  doi: 10.1038/ncomms5224

    17. [17]

      Wan, J. Y.; Bao, W. Z.; Liu, Y.; Dai, J. Q.; Shen, F.; Zhou, L. H.; Cai, X. H.; Urban, D.; Li, Y. Y.; Jungjohann, K.; et al. Adv. Energy Mater. 2015, 5, 1401742. doi: 10.1002/aenm.201401742  doi: 10.1002/aenm.201401742

    18. [18]

      Kim, N.; Kim, K. S.; Jung, N.; Brus, L.; Kim, P. Nano Lett. 2011, 11, 860. doi: 10.1021/nl104228f  doi: 10.1021/nl104228f

    19. [19]

      Yu, Y. J.; Yang, F. Y.; Lu, X. F.; Yan, Y. J.; Cho, Y. H.; Ma, L. G.; Niu, X. H.; Kim, S.; Son, Y. W.; Feng, D. L.; et al. Nat. Nanotechnol. 2015, 10, 270. doi: 10.1038/nnano.2014.323  doi: 10.1038/nnano.2014.323

    20. [20]

      Wu, H.; Kong, D.; Ruan, Z.; Hsu, P. C.; Wang, S.; Yu, Z.; Carney, T. J.; Hu, L.; Fan, S.; Cui, Y. Nat. Nanotechnol. 2013, 8, 421. doi: 10.1038/nnano.2013.84  doi: 10.1038/nnano.2013.84

    21. [21]

      Li, H. P.; Pan, W.; Zhang, W.; Huang, S. Y.; Wu, H. Adv. Funct. Mater. 2013, 23, 209. doi: 10.1002/adfm.201200996  doi: 10.1002/adfm.201200996

    22. [22]

      Motter, J. P.; Koski, K. J.; Cui, Y. Chem. Mat. 2014, 26, 2313. doi: 10.1021/cm500242h  doi: 10.1021/cm500242h

    23. [23]

      Koski, K. J.; Cha, J. J.; Reed, B. W.; Wessells, C. D.; Kong, D.; Cui, Y. J. Am. Chem. Soc. 2012, 134, 7584. doi: 10.1021/ja300368x  doi: 10.1021/ja300368x

    24. [24]

      Yang, W. W.; Zhang, S. Q.; Chen, Q.; Zhang, C.; Wei, Y.; Jiang, H. N.; Lin, Y. X.; Zhao. M. T.; He, Q. Q.; Wang, X. G.; et al. Adv. Mater. 2020, 32, e2001167. doi: 10.1002/adma.202001167  doi: 10.1002/adma.202001167

    25. [25]

      Friend, R. H.; Yoffe, A. D. Adv. Phys. 1987, 36, 1. doi: 10.1080/00018738700101951  doi: 10.1080/00018738700101951

    26. [26]

      Kanetani, K.; Sugawara, K.; Sato, T.; Shimizu, R.; Iwaya, K.; Hitosugi, T.; Takahashi, T. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 19610. doi: 10.1073/pnas.1208889109  doi: 10.1073/pnas.1208889109

    27. [27]

      Bouwmeester, H. J.; van der Lee, A.; van Smaalen, S.; Wiegers, G. A. Phys. Rev. B: Condens. 1991, 43, 9431. doi: 10.1103/physrevb.43.9431  doi: 10.1103/physrevb.43.9431

    28. [28]

      Harshman, D. R.; Mills, A. P. Phys. Rev. B: Condens. 1992, 45, 10684. doi: 10.1038/nmat4251  doi: 10.1038/nmat4251

    29. [29]

      Kumar, P.; Skomski, R.; Pushpa, R. ACS Omega. 2017, 2, 7985. doi: 10.1021/acsomega.7b01164  doi: 10.1021/acsomega.7b01164

    30. [30]

      Xie, J.; Zhang, J.; Li, S.; Grote, F.; Zhang, X.; Zhang, H.; Wang, R.; Lei, Y.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2013, 135, 17881. doi: 10.1021/ja408329q  doi: 10.1021/ja408329q

    31. [31]

      Qin, S.; Lei, W.; Liu, D.; Chen, Y. Sci. Rep. 2014, 4, 7582. doi: 10.1038/srep07582  doi: 10.1038/srep07582

    32. [32]

      Ye, L. J.; Chen, S. J.; Li, W. J.; Pi, M. Y.; Wu, T. L.; Zhang, D. K. J. Phys. Chem. C 2015, 119, 9560. doi: 10.1021/jp5128018  doi: 10.1021/jp5128018

    33. [33]

      Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R.; et al. Nature 2018, 555, 231. doi: 10.1038/nature25774  doi: 10.1038/nature25774

    34. [34]

      Wang, M.; Koski, K. J. ACS Nano 2015, 9, 3226. doi: 10.1021/acsnano.5b00336  doi: 10.1021/acsnano.5b00336

    35. [35]

      Wang, M. J.; Al-Dhahir, I.; Appiah, J.; Koski, K. J. Chem. Mater. 2017, 29, 1650. doi: 10.1021/acs.chemmater.6b04918  doi: 10.1021/acs.chemmater.6b04918

    36. [36]

      Hennig, G. R. J. Chem. Phys. 1965, 43, 1201. doi: 10.1063/1.1696905  doi: 10.1063/1.1696905

    37. [37]

      Yang, W. W.; Xiao, J. W.; Ma, Y.; Cui, S. Q.; Zhang, P.; Zhai, P. B.; Meng. L. J.; Wang, X. G.; Wei, Y.; Du, Z. G.; et al. Adv. Energy Mater. 2019, 9, 1803137. doi: 10.1002/aenm.201803137  doi: 10.1002/aenm.201803137

    38. [38]

      Wang, M.; Lahti, G.; Williams, D.; Koski, K. J. ACS Nano 2018, 12, 6163. doi: 10.1021/acsnano.8b02789  doi: 10.1021/acsnano.8b02789

    39. [39]

      Gong, Y. J.; Yuan, H. T.; Wu, C. L.; Tang, P. Z.; Yang, S. Z.; Yang, A. K.; Li, G. D.; Liu, B. F.; Groep, J. V. D.; Brongersma, M. L.; et al. Nat. Nanotechnol. 2018, 13, 294. doi: 10.1038/s41565-018-0069-3  doi: 10.1038/s41565-018-0069-3

    40. [40]

      He, Q.; Lin, Z.; Ding, M.; Yin, A.; Halim, U.; Wang, C.; Liu, Y.; Cheng, H. C.; Huang, Y.; Duan, X. Nano Lett. 2019, 19, 6819. doi: 10.1021/acs.nanolett.9b01898  doi: 10.1021/acs.nanolett.9b01898

    41. [41]

      Wang, N. Z.; Tang, H. B.; Shi, M. Z.; Zhang, H.; Zhuo, W. Z.; Liu, D. Y.; Meng, F. B.; Ma, L. K.; Ying, J. J.; Zou, L. J.; et al. J. Am. Chem. Soc. 2019, 141, 17166. doi: 10.1021/jacs.9b06929  doi: 10.1021/jacs.9b06929

    42. [42]

      Wang, H.; Lu, Z.; Kong, D.; Sun, J.; Hymel, T. M.; Cui, Y. ACS Nano 2014, 8, 4940. doi: 10.1021/nn500959v  doi: 10.1021/nn500959v

    43. [43]

      Wang, X.; Shen, X.; Wang, Z.; Yu, R.; Chen, L. ACS Nano 2014, 8, 11394. doi: 10.1021/nn505501v  doi: 10.1021/nn505501v

    44. [44]

      Chen, W. S.; Gu, J. J.; Liu, Q. L.; Luo, R. C.; Yao, L. L.; Sun, B. Y.; Zhang, W.; Su, H. L.; Chen, B.; Liu, P.; et al. ACS Nano 2018, 12, 308. doi: 10.1021/acsnano.7b06364  doi: 10.1021/acsnano.7b06364

    45. [45]

      Meng, L. J.; Ma, Y.; Si, K. P.; Xu, S. Y.; Wang, J. L.; Gong, Y. J. Tungsten 2019, 1, 46. doi: 10.1007/s42864-019-00012-x  doi: 10.1007/s42864-019-00012-x

    46. [46]

      Li, J. Y.; Zhang, Z. Y.; Cui, W.; Wang, H.; Cen, W. L.; Johnson, G.; Jiang, G. M.; Zhang, S.; Dong, F. ACS Catal. 2018, 8, 8376. doi: 10.1021/acscatal.8b02459  doi: 10.1021/acscatal.8b02459

    47. [47]

      O'Farrell, E. C.; Tan, J. Y.; Yeo, Y.; Koon, G. K.; Ozyilmaz, B.; Watanabe, K.; Taniguchi, T. Phys. Rev. Lett. 2016, 117, 076603. doi: 10.1103/physrevlett.117.076603  doi: 10.1103/physrevlett.117.076603

    48. [48]

      Zhao, J.; Islam, S. M.; Kontsevoi, O. Y.; Tan, G.; Stoumpos, C. C.; Chen, H.; Li, R. K.; Kanatzidis, M. G. J. Am. Chem. Soc. 2017, 139, 6978. doi: 10.1021/jacs.7b02243  doi: 10.1021/jacs.7b02243

    49. [49]

      Ebina, Y.; Sakai, N.; Sasaki, T. J. Phys. Chem. B 2005, 109, 17212. doi: 10.1021/jp051823j  doi: 10.1021/jp051823j

    50. [50]

      Hata, H.; Kubo, S.; Kobayashi, Y.; Mallouk, T. E. J. Am. Chem. Soc. 2007, 129, 3064. doi: 10.1021/ja068272a  doi: 10.1021/ja068272a

    51. [51]

      Hata, H.; Kobayashi, Y.; Salama, M.; Malek, R.; Mallouk, T. E. Chem. Mater. 2007, 19, 6588. doi: 10.1021/cm701936y  doi: 10.1021/cm701936y

    52. [52]

      Hata, H.; Kobayashi, Y.; Bojan, V.; Youngblood, W. J.; Mallouk, T. E. Nano Lett. 2008, 8, 794. doi: 10.1021/nl072571w  doi: 10.1021/nl072571w

    53. [53]

      Oshima, T.; Lu, D.; Ishitani, O.; Maeda, K. Angew. Chem. Int. Ed. 2015, 54, 2698. doi: 10.1002/ange.201411494  doi: 10.1002/ange.201411494

    54. [54]

      Luo, Y.; Li, X.; Cai, X.; Zou, X.; Kang, F.; Cheng, H. M.; Liu, B. ACS Nano 2018, 12, 4565. doi: 10.1021/acsnano.8b00942  doi: 10.1021/acsnano.8b00942

    55. [55]

      Chen, Z. X.; Liu, C. B.; Liu, J.; Li J.; Xi, S. B.; Chi, X.; Xu, H. S.; Park, I. H.; Peng, X. W.; Li, X.; et al. Adv. Mater. 2020, 32, e1906437. doi: 10.1002/adma.201906437  doi: 10.1002/adma.201906437

    56. [56]

      Nair, N. L.; Maniv, E.; John, C.; Doyle, S.; Orenstein, J.; Analytis, J. G. Nat. Mater. 2020, 19, 153. doi: 10.1038/s41563-019-0518-x  doi: 10.1038/s41563-019-0518-x

    57. [57]

      Zhao, X. H.; Song, P.; Wang, C. C.; Anders C. Riis-Jensen; Fu, W.; Deng, Y.; Wan, D. Y.; Kang, L. X.; Ning, S. C.; Dan, J. D.; et al. Nature 2020, 581, 171. doi: 10.1038/s41586-020-2241-9  doi: 10.1038/s41586-020-2241-9

    58. [58]

      Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-Gonzalez, J.; Rojo, T. Energy Environ. Sci. 2012, 5, 5884. doi: 10.1039/c2ee02781j  doi: 10.1039/c2ee02781j

    59. [59]

      Kim, H.; Kim, J. C.; Bianchini, M.; Seo, D. H.; Rodriguez-Garcia, J.; Ceder, G. Adv. Energy Mater. 2018, 8, 1702384. doi: 10.1002/aenm.201702384  doi: 10.1002/aenm.201702384

    60. [60]

      Song, M.; Tan, H.; Chao, D. L.; Fan, H. J. Adv. Funct. Mater. 2018, 28, 1802564. doi: 10.1002/adfm.201802564  doi: 10.1002/adfm.201802564

    61. [61]

      Muldoon, J.; Bucur, C. B.; Gregory, T. Chem. Rev. 2014, 114, 11683. doi: 10.1021/cr500049y  doi: 10.1021/cr500049y

    62. [62]

      Zhai, P. B.; Wei, Y.; Xiao, J.; Liu, W.; Zuo, J. H.; Gu, X. K.; Yang, W. W.; Cui, S. Q.; Li, B.; Yang, S. B.; et al. Adv. Energy Mater. 2020, 10, 1903339. doi: 10.1002/aenm.201903339  doi: 10.1002/aenm.201903339

    63. [63]

      Chen, K.; Sun, Z. H.; Fang, R. P.; Li, F.; Cheng, H. M. Acta Phys. -Chim. Sin. 2018, 34, 377.  doi: 10.3866/PKU.WHXB201709001

    64. [64]

      Lamb, A. B. Chem. Eng. News 1942, 20, 267. doi: 10.1021/cen-v020n004.p267  doi: 10.1021/cen-v020n004.p267

    65. [65]

      Rüdorff, W. J. C. Chimia 1965, 19, 489.

    66. [66]

      Whittingham, M. S.; Gamble, F. R. Mater. Res. Bull. 1975, 10, 363. doi: 10.1016/0025-5408(75)90006-9  doi: 10.1016/0025-5408(75)90006-9

    67. [67]

      Whittingham, M. S. Science 1976, 192, 1126. doi: 10.1126/science.192.4244.1126  doi: 10.1126/science.192.4244.1126

    68. [68]

      Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. Mater. Res. Bull. 1980, 15, 783. doi: 10.1016/0025-5408(80)90012-4  doi: 10.1016/0025-5408(80)90012-4

    69. [69]

      Mashtalir, O.; Naguib, M.; Mochalin, V. N.; Dall'Agnese, Y.; Heon, M.; Barsoum, M. W.; Gogotsi, Y. Nat. Commun. 2013, 4, 1716. doi: 10.1038/ncomms2664  doi: 10.1038/ncomms2664

    70. [70]

      Eames, C.; Islam, M. S. J. Am. Chem. Soc. 2014, 136, 16270. doi: 10.1021/ja508154e  doi: 10.1021/ja508154e

    71. [71]

      Muller, G. A.; Cook, J. B.; Kim, H. S.; Tolbert, S. H.; Dunn, B. Nano Lett. 2015, 15, 1911. doi: 10.1021/nl504764m  doi: 10.1021/nl504764m

    72. [72]

      Liu, W.; Zhai, P. B.; Qin, S. J.; Xiao, J.; Wei, Y.; Yang, W. W.; Cui, S. Q.; Chen, Q.; Jin, C. Q.; Yang, S. B.; et al. J. Energy Chem. 2021, 56, 463. doi: 10.1016/j.jechem.2020.08.019  doi: 10.1016/j.jechem.2020.08.019

  • 加载中
    1. [1]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    2. [2]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    3. [3]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    7. [7]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    8. [8]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    9. [9]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    12. [12]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    13. [13]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    15. [15]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    16. [16]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    18. [18]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    19. [19]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(173)
  • Abstract views(4444)
  • HTML views(1748)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return