Citation: Yuan Qi, Yang Hao, Xie Miao, Cheng Tao. Theoretical Research on the Electroreduction of Carbon Dioxide[J]. Acta Physico-Chimica Sinica, ;2021, 37(5): 201004. doi: 10.3866/PKU.WHXB202010040 shu

Theoretical Research on the Electroreduction of Carbon Dioxide

  • Corresponding author: Cheng Tao, tcheng@suda.edu.cn
  • Received Date: 19 October 2020
    Revised Date: 10 November 2020
    Accepted Date: 30 November 2020
    Available Online: 10 December 2020

    Fund Project: the National Natural Science Foundation of China 21975148the Natural Science Foundation of Jiangsu Higher Education Institutions SBK20190810The project was supported by the National Natural Science Foundation of China (21975148) and the Natural Science Foundation of Jiangsu Higher Education Institutions (SBK20190810)

  • Converting CO2 into value-added products via sustainable energy, such as electrical energy, has several advantages. First, it is one of the most promising routes to close the carbon loop and plays a crucial role in significantly reducing the CO2 concentration in the atmosphere. Second, it can utilize CO2 as a valuable industry reactant that can store energy by converting electrical energy to chemical energy. Although the CO2 reduction reaction has been studied for more than three decades, the sluggish kinetics remain a bottleneck, which requires a highly efficient catalyst. However, none of the reported catalysts meets the requirements for any practical application due to low activity and poor selectivity. To rationally design a more efficient CO2 reduction catalyst, understanding the reaction mechanism is crucial. Although it is challenging to experimentally capture and characterize the reactive intermediates, atomic modeling serves as an alternative for providing an understanding of the elementary reactions on a microscale. Significant progress has been made in understanding the reaction mechanism using multiscale simulations. In this study, important progress in revealing the reaction mechanism of CO2 reduction using computational simulation in recent years is summarized. First, the advances in simulation methods for electrochemical reactions are introduced, and the advantages and disadvantages of various methods are compared. Second, the detailed reaction mechanism of CO2 reduction to various major products, such as CO, CH4, and C2H4, and minor products, such as ethanol and acetate, are disused. Different results obtained from different approximations are compared, while a mechanism that can better explain the existing experimental results is recommended. Third, the operando technique, such as ambient pressure X-ray photoelectron spectroscopy, is disused. The operando analysis results are direct evidence to validate the theoretically proposed reaction pathway. In turn, the theoretical predictions can help resolve the experimental spectrum, which is usually too complex to refer to a reference system. The combination of theory and operando experiments should be one of the most promising directions in determining the reaction mechanism. Fourth, novel synthesis strategies are discussed. These new ideas are beneficial for simplifying the synthesis process or increasing the diversity of products. Finally, the recent progress in the application of machine learning to big data for CO2 reduction is discussed. These new powerful tools may play a crucial role in reaction mechanism studies. Overall, in the study of electrochemical reaction mechanism, theoretical simulation can provide the reaction details and energy information of elementary reactions at the atomic level. Therefore, in the study of electrochemical reaction mechanism of carbon dioxide, the microscopic mechanism that the experiment cannot provide is supplemented. On the one hand, it explains the existing experimental phenomena; however, on the other hand, it provides new insights for the study of reaction mechanism. On this basis, the use of new research paradigms, such as high-throughput computing and machine learning, provides new ideas for a rational design for accelerating material development.
  • 加载中
    1. [1]

      Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, J. Energy Environ. Sci. 2013, 6, 3112. doi: 10.1039/C3EE41272E  doi: 10.1039/C3EE41272E

    2. [2]

      Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; et al. Chem. Rev. 2013, 113, 6621. doi: 10.1021/cr300463y  doi: 10.1021/cr300463y

    3. [3]

      Davis, S. J.; Lewis, N. S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I. L.; Benson, S. M.; Bradley, T.; Brouwer, J.; Chiang, Y.-M.; et al. Science 2018, 360, eaas9793. doi: 10.1126/science.aas9793.  doi: 10.1126/science.aas9793

    4. [4]

      Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. Chem. Soc. Rev. 2014, 43, 631. doi: 10.1039/C3CS60323G  doi: 10.1039/C3CS60323G

    5. [5]

      Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. USA 2006, 103, 15729. doi: 10.1073/pnas.0603395103  doi: 10.1073/pnas.0603395103

    6. [6]

      Graves, C.; Ebbesen, S. D.; Mogensen, M.; Lackner, K. S. Renew. Sust. Energ. Rev. 2011, 15, 1. doi: 10.1016/j.rser.2010.07.014  doi: 10.1016/j.rser.2010.07.014

    7. [7]

      Chu, S.; Cui, Y.; Liu, N. Nat. Mater. 2017, 16, 16. doi: 10.1038/nmat4834  doi: 10.1038/nmat4834

    8. [8]

      Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; et al. Chem. Rev. 2019, 119, 7610. doi: 10.1021/acs.chemrev.8b00705  doi: 10.1021/acs.chemrev.8b00705

    9. [9]

      Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Energy Environ. Sci. 2012, 5, 7050. doi: 10.1039/C2EE21234J  doi: 10.1039/C2EE21234J

    10. [10]

      Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. Joule 2018, 2, 825. doi: 10.1016/j.joule.2017.09.003  doi: 10.1016/j.joule.2017.09.003

    11. [11]

      Jouny, M.; Luc, W.; Jiao, F. Ind. Eng. Chem. Res. 2018, 57, 2165. doi: 10.1021/acs.iecr.7b03514  doi: 10.1021/acs.iecr.7b03514

    12. [12]

      Spurgeon, J. M.; Kumar, B. Energy Environ. Sci. 2018, 11, 1536. doi: 10.1039/C8EE00097B  doi: 10.1039/C8EE00097B

    13. [13]

      Whipple, D. T.; Kenis, P. J. A. J. Phys. Chem. Lett. 2010, 1, 3451. doi: 10.1021/jz1012627  doi: 10.1021/jz1012627

    14. [14]

      Yoshio, H.; Katsuhei, K.; Shin, S. Chem. Lett. 1985, 14, 1695. doi: 10.1246/cl.1985.1695.  doi: 10.1246/cl.1985.1695

    15. [15]

      Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochim. Acta 1994, 39, 1833. doi: 10.1016/0013-4686(94)85172-7  doi: 10.1016/0013-4686(94)85172-7

    16. [16]

      Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. ChemPhysChem 2017, 18, 3266. doi: 10.1002/cphc.201700736  doi: 10.1002/cphc.201700736

    17. [17]

      Hori, Y.; Murata, A.; Takahashi, R. J. Chem. Soc. Faraday Trans. 1989, 85, 2309. doi: 10.1039/F19898502309  doi: 10.1039/F19898502309

    18. [18]

      Hori, Y.; Kikuchi, K.; Murata, A.; Suzuki, S. Chem. Lett. 1986, 15, 897. doi: 10.1246/cl.1986.897  doi: 10.1246/cl.1986.897

    19. [19]

      Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S. J. Chem. Soc. Chem. Commun. 1988, 17. doi: 10.1039/C39880000017  doi: 10.1039/C39880000017

    20. [20]

      Xu, S.; Carter, E. A. Chem. Rev. 2019, 119, 6631. doi: 10.1021/acs.chemrev.8b00481  doi: 10.1021/acs.chemrev.8b00481

    21. [21]

      Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Science 2017, 355, eaad4998. doi: 10.1126/science.aad4998  doi: 10.1126/science.aad4998

    22. [22]

      Hammer, B.; Hansen, L. B.; Nørskov, J. K. Phys. Rev. B 1999, 59, 7413. doi: 10.1103/PhysRevB.59.7413  doi: 10.1103/PhysRevB.59.7413

    23. [23]

      Hammer, B.; Morikawa, Y.; Nørskov, J. K. Phys. Rev. Lett. 1996, 76, 2141. doi: 10.1103/PhysRevLett.76.2141.  doi: 10.1103/PhysRevLett.76.2141

    24. [24]

      Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. J. Chem. Phys 2014, 140, 084106. doi: 10.1063/1.4865107  doi: 10.1063/1.4865107

    25. [25]

      Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999. doi: 10.1021/cr9904009  doi: 10.1021/cr9904009

    26. [26]

      Skyner, R. E.; McDonagh, J. L.; Groom, C. R.; van Mourik, T.; Mitchell, J. B. O. Phys. Chem. Chem. Phys. 2015, 17, 6174. doi: 10.1039/C5CP00288E  doi: 10.1039/C5CP00288E

    27. [27]

      Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. J. Phys. Chem. B 2004, 108, 17886. doi: 10.1021/jp047349j  doi: 10.1021/jp047349j

    28. [28]

      Taylor, C. D.; Wasileski, S. A.; Filhol, J.-S.; Neurock, M. Phys. Rev. B 2006, 73, 165402. doi: 10.1103/PhysRevB.73.165402  doi: 10.1103/PhysRevB.73.165402

    29. [29]

      Lozovoi, A. Y.; Alavi, A.; Kohanoff, J.; Lynden-Bell, R. M. J. Chem. Phys. 2001, 115, 1661. doi: 10.1063/1.1379327  doi: 10.1063/1.1379327

    30. [30]

      Letchworth-Weaver, K.; Arias, T. A. Phys. Rev. B 2012, 86, 075140. doi: 10.1103/PhysRevB.86.075140  doi: 10.1103/PhysRevB.86.075140

    31. [31]

      Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A. J. Chem. Phys. 2012, 137, 044107. doi: 10.1063/1.4737392  doi: 10.1063/1.4737392

    32. [32]

      Chan, K.; Nørskov, J. K. J. Phys. Chem. Lett. 2015, 6, 2663. doi: 10.1021/acs.jpclett.5b01043  doi: 10.1021/acs.jpclett.5b01043

    33. [33]

      Chan, K.; Nørskov, J. K. J. Phys. Chem. Lett. 2016, 7, 1686. doi: 10.1021/acs.jpclett.6b00382  doi: 10.1021/acs.jpclett.6b00382

    34. [34]

      Liu, X.; Schlexer, P.; Xiao, J.; Ji, Y.; Wang, L.; Sandberg, R. B.; Tang, M.; Brown, K. S.; Peng, H.; Ringe, S.; et al. Nat. Commun 2019, 10, 32. doi: 10.1038/s41467-018-07970-9  doi: 10.1038/s41467-018-07970-9

    35. [35]

      Schouten, K. J. P.; Pérez Gallent, E.; Koper, M. T. M. J. Electroanal. Chem. 2014, 716, 53. doi: 10.1016/j.jelechem.2013.08.033  doi: 10.1016/j.jelechem.2013.08.033

    36. [36]

      Wuttig, A.; Yoon, Y.; Ryu, J.; Surendranath, Y. J. Am. Chem. Soc. 2017, 139, 17109. doi: 10.1021/jacs.7b08345  doi: 10.1021/jacs.7b08345

    37. [37]

      Laio, A.; Parrinello, M. Proc. Natl. Acad. Sci. USA 2002, 99, 12562. doi: 10.1073/pnas.202427399  doi: 10.1073/pnas.202427399

    38. [38]

      Ciccotti, G.; Ryckaert, J. P. Comput. Phys. Rep. 1986, 4, 346. doi: 10.1016/0167-7977(86)90022-5  doi: 10.1016/0167-7977(86)90022-5

    39. [39]

      Ryckaert, J. P.; Ciccotti, G. J. Chem. Phys. 1983, 78, 7368. doi: 10.1063/1.444728  doi: 10.1063/1.444728

    40. [40]

      Fixman, M. Proc. Natl. Acad. Sci. USA 1974, 71, 3050. doi: 10.1073/pnas.71.8.3050  doi: 10.1073/pnas.71.8.3050

    41. [41]

      Carter, E. A.; Ciccotti, G.; Hynes, J. T.; Kapral, R. Chem. Phys. Lett. 1989, 156, 472. doi: 10.1016/S0009-2614(89)87314-2  doi: 10.1016/S0009-2614(89)87314-2

    42. [42]

      Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. Energy Environ. Sci. 2010, 3, 1311. doi: 10.1039/C0EE00071J  doi: 10.1039/C0EE00071J

    43. [43]

      Yoo, J. S.; Christensen, R.; Vegge, T.; Nørskov, J. K.; Studt, F. ChemSusChem 2016, 9, 358. doi: 10.1002/cssc.201501197  doi: 10.1002/cssc.201501197

    44. [44]

      Lim, H.-K.; Shin, H.; Goddard, W. A.; Hwang, Y. J.; Min, B. K.; Kim, H. J. Am. Chem. Soc. 2014, 136, 11355. doi: 10.1021/ja503782w  doi: 10.1021/ja503782w

    45. [45]

      Cheng, T.; Xiao, H.; Goddard, W. A. J. Am. Chem. Soc. 2016, 138, 13802. doi: 10.1021/jacs.6b08534  doi: 10.1021/jacs.6b08534

    46. [46]

      Gao, S.; Lin, Y.; Jiao, X.; Sun, Y.; Luo, Q.; Zhang, W.; Li, D.; Yang, J.; Xie, Y. Nature 2016, 529, 68. doi: 10.1038/nature16455  doi: 10.1038/nature16455

    47. [47]

      Jia, L.; Yang, H.; Deng, J.; Chen, J.; Zhou, Y.; Ding, P.; Li, L.; Han, N.; Li, Y. Chin. J. Chem. 2019, 37, 497. doi: 10.1002/cjoc.201900010  doi: 10.1002/cjoc.201900010

    48. [48]

      Schouten, K. J. P.; Kwon, Y.; van der Ham, C. J. M.; Qin, Z.; Koper, M. T. M. Chem. Sci. 2011, 2, 1902. doi: 10.1039/C1SC00277E  doi: 10.1039/C1SC00277E

    49. [49]

      Peterson, A. A.; Nørskov, J. K. J. Phys. Chem. Lett. 2012, 3, 251. doi: 10.1021/jz201461p  doi: 10.1021/jz201461p

    50. [50]

      Roberts, F. S.; Kuhl, K. P.; Nilsson, A. Angew. Chem. Int. Ed. 2015, 54, 5179. doi: 10.1002/anie.201412214  doi: 10.1002/anie.201412214

    51. [51]

      Cheng, T.; Xiao, H.; Goddard, W. A. Proc. Natl. Acad. Sci. USA 2017, 114, 1795. doi: 10.1073/pnas.1612106114  doi: 10.1073/pnas.1612106114

    52. [52]

      Wang, L.; Nitopi, S. A.; Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Liu, X.; Higgins, D. C.; Chan, K.; Nørskov, J. K.; Hahn, C.; et al. ACS Catal. 2018, 8, 7445. doi: 10.1021/acscatal.8b01200  doi: 10.1021/acscatal.8b01200

    53. [53]

      Montoya, J. H.; Shi, C.; Chan, K.; Nørskov, J. K. J. Phys. Chem. Lett. 2015, 6, 2032. doi: 10.1021/acs.jpclett.5b00722  doi: 10.1021/acs.jpclett.5b00722

    54. [54]

      Garza, A. J.; Bell, A. T.; Head-Gordon, M. ACS Catal. 2018, 8, 1490. doi: 10.1021/acscatal.7b03477  doi: 10.1021/acscatal.7b03477

    55. [55]

      Ma, W.; Xie, S.; Liu, T.; Fan, Q.; Ye, J.; Sun, F.; Jiang, Z.; Zhang, Q.; Cheng, J.; Wang, Y. Nat. Catal. 2020, 3, 478. doi: 10.1038/s41929-020-0450-0  doi: 10.1038/s41929-020-0450-0

    56. [56]

      Luc, W.; Fu, X.; Shi, J.; Lv, J.-J.; Jouny, M.; Ko, B. H.; Xu, Y.; Tu, Q.; Hu, X.; Wu, J.; et al. Nat. Catal. 2019, 2, 423. doi: 10.1038/s41929-019-0269-8  doi: 10.1038/s41929-019-0269-8

    57. [57]

      Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. J. Am. Chem. Soc. 2014, 136, 14107. doi: 10.1021/ja505791r  doi: 10.1021/ja505791r

    58. [58]

      Pokharel, U. R.; Fronczek, F. R.; Maverick, A. W. Nat. Commun 2014, 5, 5883. doi: 10.1038/ncomms6883  doi: 10.1038/ncomms6883

    59. [59]

      Francke, R.; Schille, B.; Roemelt, M. Chem. Rev. 2018, 118, 4631. doi: 10.1021/acs.chemrev.7b00459  doi: 10.1021/acs.chemrev.7b00459

    60. [60]

      Dalle, K. E.; Warnan, J.; Leung, J. J.; Reuillard, B.; Karmel, I. S.; Reisner, E. Chem. Rev. 2019, 119, 2752. doi: 10.1021/acs.chemrev.8b00392  doi: 10.1021/acs.chemrev.8b00392

    61. [61]

      Handoko, A. D.; Wei, F.; Jenndy; Yeo, B. S.; Seh, Z. W. Nat. Catal. 2018, 1, 922. doi: 10.1038/s41929-018-0182-6  doi: 10.1038/s41929-018-0182-6

    62. [62]

      Lum, Y.; Ager, J. W. Angew. Chem. Int. Ed. 2018, 57, 551. doi: 10.1002/anie.201710590  doi: 10.1002/anie.201710590

    63. [63]

      Lum, Y.; Cheng, T.; Goddard, W. A.; Ager, J. W. J. Am. Chem. Soc. 2018, 140, 9337. doi: 10.1021/jacs.8b03986  doi: 10.1021/jacs.8b03986

    64. [64]

      Favaro, M.; Xiao, H.; Cheng, T.; Goddard, W. A.; Yano, J.; Crumlin, E. J. Proc. Natl. Acad. Sci. USA 2017, 114, 6706. doi: 10.1073/pnas.1701405114  doi: 10.1073/pnas.1701405114

    65. [65]

      Eilert, A.; Roberts, F. S.; Friebel, D.; Nilsson, A. J. Phys. Chem. Lett. 2016, 7, 1466. doi: 10.1021/acs.jpclett.6b00367  doi: 10.1021/acs.jpclett.6b00367

    66. [66]

      Dunwell, M.; Yang, X.; Setzler, B. P.; Anibal, J.; Yan, Y.; Xu, B. ACS Catal. 2018, 8, 3999. doi: 10.1021/acscatal.8b01032  doi: 10.1021/acscatal.8b01032

    67. [67]

      Pander, J. E.; Baruch, M. F.; Bocarsly, A. B. ACS Catal. 2016, 6, 7824. doi: 10.1021/acscatal.6b01879  doi: 10.1021/acscatal.6b01879

    68. [68]

      Baruch, M. F.; Pander, J. E.; White, J. L.; Bocarsly, A. B. ACS Catal. 2015, 5, 3148. doi: 10.1021/acscatal.5b00402  doi: 10.1021/acscatal.5b00402

    69. [69]

      Figueiredo, M. C.; Ledezma-Yanez, I.; Koper, M. T. M. ACS Catal. 2016, 6, 2382. doi: 10.1021/acscatal.5b02543  doi: 10.1021/acscatal.5b02543

    70. [70]

      Pérez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M. Angew. Chem. Int. Ed. 2017, 56, 3621. doi: 10.1002/anie.201700580  doi: 10.1002/anie.201700580

    71. [71]

      Chernyshova, I. V.; Somasundaran, P.; Ponnurangam, S. Proc. Natl. Acad. Sci. USA 2018, 115, E9261. doi: 10.1073/pnas.1802256115  doi: 10.1073/pnas.1802256115

    72. [72]

      Sun, K.; Cheng, T.; Wu, L.; Hu, Y.; Zhou, J.; Maclennan, A.; Jiang, Z.; Gao, Y.; Goddard, W. A.; Wang, Z. J. Am. Chem. Soc. 2017, 139, 15608. doi: 10.1021/jacs.7b09251  doi: 10.1021/jacs.7b09251

    73. [73]

      Feng, X.; Jiang, K.; Fan, S.; Kanan, M. W. ACS Cent. Sci. 2016, 2, 169. doi: 10.1021/acscentsci.6b00022  doi: 10.1021/acscentsci.6b00022

    74. [74]

      Wang, Z.; Yang, G.; Zhang, Z.; Jin, M.; Yin, Y. ACS Nano 2016, 10, 4559. doi: 10.1021/acsnano.6b00602  doi: 10.1021/acsnano.6b00602

    75. [75]

      Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. J. Am. Chem. Soc. 2014, 136, 6978. doi: 10.1021/ja500328k  doi: 10.1021/ja500328k

    76. [76]

      Gao, D.; Scholten, F.; Roldan Cuenya, B. ACS Catal. 2017, 7, 5112. doi: 10.1021/acscatal.7b01416  doi: 10.1021/acscatal.7b01416

    77. [77]

      Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Science 2011, 334, 643. doi: 10.1126/science.1209786  doi: 10.1126/science.1209786

    78. [78]

      Cheng, T.; Fortunelli, A.; Goddard, W. A. Proc. Natl. Acad. Sci. USA 2019, 116, 7718. doi: 10.1073/pnas.1821709116  doi: 10.1073/pnas.1821709116

    79. [79]

      Jouny, M.; Lv, J.-J.; Cheng, T.; Ko, B. H.; Zhu, J.-J.; Goddard, W. A.; Jiao, F. Nat. Chem. 2019, 11, 846. doi: 10.1038/s41557-019-0312-z  doi: 10.1038/s41557-019-0312-z

    80. [80]

      Feng, Y.; Yang, H.; Zhang, Y.; Huang, X.; Li, L.; Cheng, T.; Shao, Q. Nano Lett. 2020, 11, 8282. doi: 10.1021/acs.nanolett.0c03400  doi: 10.1021/acs.nanolett.0c03400

    81. [81]

      Ma, X.; Li, Z.; Achenie, L. E. K.; Xin, H. J. Phys. Chem. Lett. 2015, 6, 3528. doi: 10.1021/acs.jpclett.5b01660  doi: 10.1021/acs.jpclett.5b01660

    82. [82]

      Tran, K.; Ulissi, Z. W. Nat. Catal. 2018, 1, 696. doi: 10.1038/s41929-018-0142-1  doi: 10.1038/s41929-018-0142-1

    83. [83]

      Zhong, M.; Tran, K.; Min, Y.; Wang, C.; Wang, Z.; Dinh, C.-T.; De Luna, P.; Yu, Z.; Rasouli, A. S.; Brodersen, P.; et al. Nature 2020, 581, 178. doi: 10.1038/s41586-020-2242-8  doi: 10.1038/s41586-020-2242-8

    84. [84]

      Ulissi, Z. W.; Tang, M. T.; Xiao, J.; Liu, X.; Torelli, D. A.; Karamad, M.; Cummins, K.; Hahn, C.; Lewis, N. S.; Jaramillo, T. F.; et al. ACS Catal. 2017, 7, 6600. doi: 10.1021/acscatal.7b01648  doi: 10.1021/acscatal.7b01648

  • 加载中
    1. [1]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    2. [2]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    3. [3]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    4. [4]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    5. [5]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    6. [6]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    8. [8]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    9. [9]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    14. [14]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    15. [15]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    16. [16]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    17. [17]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    18. [18]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    19. [19]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    20. [20]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

Metrics
  • PDF Downloads(75)
  • Abstract views(2149)
  • HTML views(1065)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return