Theoretical Research on the Electroreduction of Carbon Dioxide
- Corresponding author: Cheng Tao, tcheng@suda.edu.cn
Citation: Yuan Qi, Yang Hao, Xie Miao, Cheng Tao. Theoretical Research on the Electroreduction of Carbon Dioxide[J]. Acta Physico-Chimica Sinica, ;2021, 37(5): 201004. doi: 10.3866/PKU.WHXB202010040
Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazábal, G. O.; Pérez-Ramírez, J. Energy Environ. Sci. 2013, 6, 3112. doi: 10.1039/C3EE41272E
doi: 10.1039/C3EE41272E
Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; et al. Chem. Rev. 2013, 113, 6621. doi: 10.1021/cr300463y
doi: 10.1021/cr300463y
Davis, S. J.; Lewis, N. S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I. L.; Benson, S. M.; Bradley, T.; Brouwer, J.; Chiang, Y.-M.; et al. Science 2018, 360, eaas9793. doi: 10.1126/science.aas9793.
doi: 10.1126/science.aas9793
Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. Chem. Soc. Rev. 2014, 43, 631. doi: 10.1039/C3CS60323G
doi: 10.1039/C3CS60323G
Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. USA 2006, 103, 15729. doi: 10.1073/pnas.0603395103
doi: 10.1073/pnas.0603395103
Graves, C.; Ebbesen, S. D.; Mogensen, M.; Lackner, K. S. Renew. Sust. Energ. Rev. 2011, 15, 1. doi: 10.1016/j.rser.2010.07.014
doi: 10.1016/j.rser.2010.07.014
Chu, S.; Cui, Y.; Liu, N. Nat. Mater. 2017, 16, 16. doi: 10.1038/nmat4834
doi: 10.1038/nmat4834
Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; et al. Chem. Rev. 2019, 119, 7610. doi: 10.1021/acs.chemrev.8b00705
doi: 10.1021/acs.chemrev.8b00705
Kuhl, K. P.; Cave, E. R.; Abram, D. N.; Jaramillo, T. F. Energy Environ. Sci. 2012, 5, 7050. doi: 10.1039/C2EE21234J
doi: 10.1039/C2EE21234J
Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; Tao, L.; Saur, G.; van de Lagemaat, J.; Kelley, S. O.; Sargent, E. H. Joule 2018, 2, 825. doi: 10.1016/j.joule.2017.09.003
doi: 10.1016/j.joule.2017.09.003
Jouny, M.; Luc, W.; Jiao, F. Ind. Eng. Chem. Res. 2018, 57, 2165. doi: 10.1021/acs.iecr.7b03514
doi: 10.1021/acs.iecr.7b03514
Spurgeon, J. M.; Kumar, B. Energy Environ. Sci. 2018, 11, 1536. doi: 10.1039/C8EE00097B
doi: 10.1039/C8EE00097B
Whipple, D. T.; Kenis, P. J. A. J. Phys. Chem. Lett. 2010, 1, 3451. doi: 10.1021/jz1012627
doi: 10.1021/jz1012627
Yoshio, H.; Katsuhei, K.; Shin, S. Chem. Lett. 1985, 14, 1695. doi: 10.1246/cl.1985.1695.
doi: 10.1246/cl.1985.1695
Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochim. Acta 1994, 39, 1833. doi: 10.1016/0013-4686(94)85172-7
doi: 10.1016/0013-4686(94)85172-7
Bagger, A.; Ju, W.; Varela, A. S.; Strasser, P.; Rossmeisl, J. ChemPhysChem 2017, 18, 3266. doi: 10.1002/cphc.201700736
doi: 10.1002/cphc.201700736
Hori, Y.; Murata, A.; Takahashi, R. J. Chem. Soc. Faraday Trans. 1989, 85, 2309. doi: 10.1039/F19898502309
doi: 10.1039/F19898502309
Hori, Y.; Kikuchi, K.; Murata, A.; Suzuki, S. Chem. Lett. 1986, 15, 897. doi: 10.1246/cl.1986.897
doi: 10.1246/cl.1986.897
Hori, Y.; Murata, A.; Takahashi, R.; Suzuki, S. J. Chem. Soc. Chem. Commun. 1988, 17. doi: 10.1039/C39880000017
doi: 10.1039/C39880000017
Xu, S.; Carter, E. A. Chem. Rev. 2019, 119, 6631. doi: 10.1021/acs.chemrev.8b00481
doi: 10.1021/acs.chemrev.8b00481
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Science 2017, 355, eaad4998. doi: 10.1126/science.aad4998
doi: 10.1126/science.aad4998
Hammer, B.; Hansen, L. B.; Nørskov, J. K. Phys. Rev. B 1999, 59, 7413. doi: 10.1103/PhysRevB.59.7413
doi: 10.1103/PhysRevB.59.7413
Hammer, B.; Morikawa, Y.; Nørskov, J. K. Phys. Rev. Lett. 1996, 76, 2141. doi: 10.1103/PhysRevLett.76.2141.
doi: 10.1103/PhysRevLett.76.2141
Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. J. Chem. Phys 2014, 140, 084106. doi: 10.1063/1.4865107
doi: 10.1063/1.4865107
Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999. doi: 10.1021/cr9904009
doi: 10.1021/cr9904009
Skyner, R. E.; McDonagh, J. L.; Groom, C. R.; van Mourik, T.; Mitchell, J. B. O. Phys. Chem. Chem. Phys. 2015, 17, 6174. doi: 10.1039/C5CP00288E
doi: 10.1039/C5CP00288E
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. J. Phys. Chem. B 2004, 108, 17886. doi: 10.1021/jp047349j
doi: 10.1021/jp047349j
Taylor, C. D.; Wasileski, S. A.; Filhol, J.-S.; Neurock, M. Phys. Rev. B 2006, 73, 165402. doi: 10.1103/PhysRevB.73.165402
doi: 10.1103/PhysRevB.73.165402
Lozovoi, A. Y.; Alavi, A.; Kohanoff, J.; Lynden-Bell, R. M. J. Chem. Phys. 2001, 115, 1661. doi: 10.1063/1.1379327
doi: 10.1063/1.1379327
Letchworth-Weaver, K.; Arias, T. A. Phys. Rev. B 2012, 86, 075140. doi: 10.1103/PhysRevB.86.075140
doi: 10.1103/PhysRevB.86.075140
Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A. J. Chem. Phys. 2012, 137, 044107. doi: 10.1063/1.4737392
doi: 10.1063/1.4737392
Chan, K.; Nørskov, J. K. J. Phys. Chem. Lett. 2015, 6, 2663. doi: 10.1021/acs.jpclett.5b01043
doi: 10.1021/acs.jpclett.5b01043
Chan, K.; Nørskov, J. K. J. Phys. Chem. Lett. 2016, 7, 1686. doi: 10.1021/acs.jpclett.6b00382
doi: 10.1021/acs.jpclett.6b00382
Liu, X.; Schlexer, P.; Xiao, J.; Ji, Y.; Wang, L.; Sandberg, R. B.; Tang, M.; Brown, K. S.; Peng, H.; Ringe, S.; et al. Nat. Commun 2019, 10, 32. doi: 10.1038/s41467-018-07970-9
doi: 10.1038/s41467-018-07970-9
Schouten, K. J. P.; Pérez Gallent, E.; Koper, M. T. M. J. Electroanal. Chem. 2014, 716, 53. doi: 10.1016/j.jelechem.2013.08.033
doi: 10.1016/j.jelechem.2013.08.033
Wuttig, A.; Yoon, Y.; Ryu, J.; Surendranath, Y. J. Am. Chem. Soc. 2017, 139, 17109. doi: 10.1021/jacs.7b08345
doi: 10.1021/jacs.7b08345
Laio, A.; Parrinello, M. Proc. Natl. Acad. Sci. USA 2002, 99, 12562. doi: 10.1073/pnas.202427399
doi: 10.1073/pnas.202427399
Ciccotti, G.; Ryckaert, J. P. Comput. Phys. Rep. 1986, 4, 346. doi: 10.1016/0167-7977(86)90022-5
doi: 10.1016/0167-7977(86)90022-5
Ryckaert, J. P.; Ciccotti, G. J. Chem. Phys. 1983, 78, 7368. doi: 10.1063/1.444728
doi: 10.1063/1.444728
Fixman, M. Proc. Natl. Acad. Sci. USA 1974, 71, 3050. doi: 10.1073/pnas.71.8.3050
doi: 10.1073/pnas.71.8.3050
Carter, E. A.; Ciccotti, G.; Hynes, J. T.; Kapral, R. Chem. Phys. Lett. 1989, 156, 472. doi: 10.1016/S0009-2614(89)87314-2
doi: 10.1016/S0009-2614(89)87314-2
Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. Energy Environ. Sci. 2010, 3, 1311. doi: 10.1039/C0EE00071J
doi: 10.1039/C0EE00071J
Yoo, J. S.; Christensen, R.; Vegge, T.; Nørskov, J. K.; Studt, F. ChemSusChem 2016, 9, 358. doi: 10.1002/cssc.201501197
doi: 10.1002/cssc.201501197
Lim, H.-K.; Shin, H.; Goddard, W. A.; Hwang, Y. J.; Min, B. K.; Kim, H. J. Am. Chem. Soc. 2014, 136, 11355. doi: 10.1021/ja503782w
doi: 10.1021/ja503782w
Cheng, T.; Xiao, H.; Goddard, W. A. J. Am. Chem. Soc. 2016, 138, 13802. doi: 10.1021/jacs.6b08534
doi: 10.1021/jacs.6b08534
Gao, S.; Lin, Y.; Jiao, X.; Sun, Y.; Luo, Q.; Zhang, W.; Li, D.; Yang, J.; Xie, Y. Nature 2016, 529, 68. doi: 10.1038/nature16455
doi: 10.1038/nature16455
Jia, L.; Yang, H.; Deng, J.; Chen, J.; Zhou, Y.; Ding, P.; Li, L.; Han, N.; Li, Y. Chin. J. Chem. 2019, 37, 497. doi: 10.1002/cjoc.201900010
doi: 10.1002/cjoc.201900010
Schouten, K. J. P.; Kwon, Y.; van der Ham, C. J. M.; Qin, Z.; Koper, M. T. M. Chem. Sci. 2011, 2, 1902. doi: 10.1039/C1SC00277E
doi: 10.1039/C1SC00277E
Peterson, A. A.; Nørskov, J. K. J. Phys. Chem. Lett. 2012, 3, 251. doi: 10.1021/jz201461p
doi: 10.1021/jz201461p
Roberts, F. S.; Kuhl, K. P.; Nilsson, A. Angew. Chem. Int. Ed. 2015, 54, 5179. doi: 10.1002/anie.201412214
doi: 10.1002/anie.201412214
Cheng, T.; Xiao, H.; Goddard, W. A. Proc. Natl. Acad. Sci. USA 2017, 114, 1795. doi: 10.1073/pnas.1612106114
doi: 10.1073/pnas.1612106114
Wang, L.; Nitopi, S. A.; Bertheussen, E.; Orazov, M.; Morales-Guio, C. G.; Liu, X.; Higgins, D. C.; Chan, K.; Nørskov, J. K.; Hahn, C.; et al. ACS Catal. 2018, 8, 7445. doi: 10.1021/acscatal.8b01200
doi: 10.1021/acscatal.8b01200
Montoya, J. H.; Shi, C.; Chan, K.; Nørskov, J. K. J. Phys. Chem. Lett. 2015, 6, 2032. doi: 10.1021/acs.jpclett.5b00722
doi: 10.1021/acs.jpclett.5b00722
Garza, A. J.; Bell, A. T.; Head-Gordon, M. ACS Catal. 2018, 8, 1490. doi: 10.1021/acscatal.7b03477
doi: 10.1021/acscatal.7b03477
Ma, W.; Xie, S.; Liu, T.; Fan, Q.; Ye, J.; Sun, F.; Jiang, Z.; Zhang, Q.; Cheng, J.; Wang, Y. Nat. Catal. 2020, 3, 478. doi: 10.1038/s41929-020-0450-0
doi: 10.1038/s41929-020-0450-0
Luc, W.; Fu, X.; Shi, J.; Lv, J.-J.; Jouny, M.; Ko, B. H.; Xu, Y.; Tu, Q.; Hu, X.; Wu, J.; et al. Nat. Catal. 2019, 2, 423. doi: 10.1038/s41929-019-0269-8
doi: 10.1038/s41929-019-0269-8
Kuhl, K. P.; Hatsukade, T.; Cave, E. R.; Abram, D. N.; Kibsgaard, J.; Jaramillo, T. F. J. Am. Chem. Soc. 2014, 136, 14107. doi: 10.1021/ja505791r
doi: 10.1021/ja505791r
Pokharel, U. R.; Fronczek, F. R.; Maverick, A. W. Nat. Commun 2014, 5, 5883. doi: 10.1038/ncomms6883
doi: 10.1038/ncomms6883
Francke, R.; Schille, B.; Roemelt, M. Chem. Rev. 2018, 118, 4631. doi: 10.1021/acs.chemrev.7b00459
doi: 10.1021/acs.chemrev.7b00459
Dalle, K. E.; Warnan, J.; Leung, J. J.; Reuillard, B.; Karmel, I. S.; Reisner, E. Chem. Rev. 2019, 119, 2752. doi: 10.1021/acs.chemrev.8b00392
doi: 10.1021/acs.chemrev.8b00392
Handoko, A. D.; Wei, F.; Jenndy; Yeo, B. S.; Seh, Z. W. Nat. Catal. 2018, 1, 922. doi: 10.1038/s41929-018-0182-6
doi: 10.1038/s41929-018-0182-6
Lum, Y.; Ager, J. W. Angew. Chem. Int. Ed. 2018, 57, 551. doi: 10.1002/anie.201710590
doi: 10.1002/anie.201710590
Lum, Y.; Cheng, T.; Goddard, W. A.; Ager, J. W. J. Am. Chem. Soc. 2018, 140, 9337. doi: 10.1021/jacs.8b03986
doi: 10.1021/jacs.8b03986
Favaro, M.; Xiao, H.; Cheng, T.; Goddard, W. A.; Yano, J.; Crumlin, E. J. Proc. Natl. Acad. Sci. USA 2017, 114, 6706. doi: 10.1073/pnas.1701405114
doi: 10.1073/pnas.1701405114
Eilert, A.; Roberts, F. S.; Friebel, D.; Nilsson, A. J. Phys. Chem. Lett. 2016, 7, 1466. doi: 10.1021/acs.jpclett.6b00367
doi: 10.1021/acs.jpclett.6b00367
Dunwell, M.; Yang, X.; Setzler, B. P.; Anibal, J.; Yan, Y.; Xu, B. ACS Catal. 2018, 8, 3999. doi: 10.1021/acscatal.8b01032
doi: 10.1021/acscatal.8b01032
Pander, J. E.; Baruch, M. F.; Bocarsly, A. B. ACS Catal. 2016, 6, 7824. doi: 10.1021/acscatal.6b01879
doi: 10.1021/acscatal.6b01879
Baruch, M. F.; Pander, J. E.; White, J. L.; Bocarsly, A. B. ACS Catal. 2015, 5, 3148. doi: 10.1021/acscatal.5b00402
doi: 10.1021/acscatal.5b00402
Figueiredo, M. C.; Ledezma-Yanez, I.; Koper, M. T. M. ACS Catal. 2016, 6, 2382. doi: 10.1021/acscatal.5b02543
doi: 10.1021/acscatal.5b02543
Pérez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M. Angew. Chem. Int. Ed. 2017, 56, 3621. doi: 10.1002/anie.201700580
doi: 10.1002/anie.201700580
Chernyshova, I. V.; Somasundaran, P.; Ponnurangam, S. Proc. Natl. Acad. Sci. USA 2018, 115, E9261. doi: 10.1073/pnas.1802256115
doi: 10.1073/pnas.1802256115
Sun, K.; Cheng, T.; Wu, L.; Hu, Y.; Zhou, J.; Maclennan, A.; Jiang, Z.; Gao, Y.; Goddard, W. A.; Wang, Z. J. Am. Chem. Soc. 2017, 139, 15608. doi: 10.1021/jacs.7b09251
doi: 10.1021/jacs.7b09251
Feng, X.; Jiang, K.; Fan, S.; Kanan, M. W. ACS Cent. Sci. 2016, 2, 169. doi: 10.1021/acscentsci.6b00022
doi: 10.1021/acscentsci.6b00022
Wang, Z.; Yang, G.; Zhang, Z.; Jin, M.; Yin, Y. ACS Nano 2016, 10, 4559. doi: 10.1021/acsnano.6b00602
doi: 10.1021/acsnano.6b00602
Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. J. Am. Chem. Soc. 2014, 136, 6978. doi: 10.1021/ja500328k
doi: 10.1021/ja500328k
Gao, D.; Scholten, F.; Roldan Cuenya, B. ACS Catal. 2017, 7, 5112. doi: 10.1021/acscatal.7b01416
doi: 10.1021/acscatal.7b01416
Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Science 2011, 334, 643. doi: 10.1126/science.1209786
doi: 10.1126/science.1209786
Cheng, T.; Fortunelli, A.; Goddard, W. A. Proc. Natl. Acad. Sci. USA 2019, 116, 7718. doi: 10.1073/pnas.1821709116
doi: 10.1073/pnas.1821709116
Jouny, M.; Lv, J.-J.; Cheng, T.; Ko, B. H.; Zhu, J.-J.; Goddard, W. A.; Jiao, F. Nat. Chem. 2019, 11, 846. doi: 10.1038/s41557-019-0312-z
doi: 10.1038/s41557-019-0312-z
Feng, Y.; Yang, H.; Zhang, Y.; Huang, X.; Li, L.; Cheng, T.; Shao, Q. Nano Lett. 2020, 11, 8282. doi: 10.1021/acs.nanolett.0c03400
doi: 10.1021/acs.nanolett.0c03400
Ma, X.; Li, Z.; Achenie, L. E. K.; Xin, H. J. Phys. Chem. Lett. 2015, 6, 3528. doi: 10.1021/acs.jpclett.5b01660
doi: 10.1021/acs.jpclett.5b01660
Tran, K.; Ulissi, Z. W. Nat. Catal. 2018, 1, 696. doi: 10.1038/s41929-018-0142-1
doi: 10.1038/s41929-018-0142-1
Zhong, M.; Tran, K.; Min, Y.; Wang, C.; Wang, Z.; Dinh, C.-T.; De Luna, P.; Yu, Z.; Rasouli, A. S.; Brodersen, P.; et al. Nature 2020, 581, 178. doi: 10.1038/s41586-020-2242-8
doi: 10.1038/s41586-020-2242-8
Ulissi, Z. W.; Tang, M. T.; Xiao, J.; Liu, X.; Torelli, D. A.; Karamad, M.; Cummins, K.; Hahn, C.; Lewis, N. S.; Jaramillo, T. F.; et al. ACS Catal. 2017, 7, 6600. doi: 10.1021/acscatal.7b01648
doi: 10.1021/acscatal.7b01648
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Guodong Xu , Chengcai Sheng , Xiaomeng Zhao , Tuojiang Zhang , Zongtang Liu , Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
Yifei Cheng , Jiahui Yang , Wei Shao , Wanqun Zhang , Wanqun Hu , Weiwei Li , Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
Hongbo Zhang , Yihong Tang , Suxia Zhang , Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074