Citation: Xibao Li, Jiyou Liu, Juntong Huang, Chaozheng He, Zhijun Feng, Zhi Chen, Liying Wan, Fang Deng. All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance[J]. Acta Physico-Chimica Sinica, ;2021, 37(6): 201003. doi: 10.3866/PKU.WHXB202010030 shu

All Organic S-Scheme Heterojunction PDI-Ala/S-C3N4 Photocatalyst with Enhanced Photocatalytic Performance

  • Corresponding author: Xibao Li, lixibao@nchu.edu.cn Chaozheng He, hecz2019@xatu.edu.cn Fang Deng, 40030@nchu.edu.cn
  • Received Date: 15 October 2020
    Revised Date: 9 November 2020
    Accepted Date: 18 November 2020
    Available Online: 24 November 2020

    Fund Project: the National Natural Science Foundation of China 51962023the National Natural Science Foundation of China 51772140the National Natural Science Foundation of China 21603109the Natural Science Foundation of Jiangxi Province, China 20192ACBL21047the Natural Science Foundation of Jiangxi Province, China 20171ACB21033the Henan Joint Fund of the National Natural Science Foundation of China U1404216the Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle (Nanchang Hangkong University) ES202002077

  • Organic photocatalysts have attracted attention owing to their suitable redox band positions, low cost, high chemical stability, and good tunability of their framework and electronic structure. As a novel organic photocatalyst, PDI-Ala (N, N'-bis(propionic acid)-perylene-3, 4, 9, 10-tetracarboxylic diimide) has strong visible-light response, low valence band position, and strong oxidation ability. However, the low photogenerated charge transfer rate and high carrier recombination rate limit its application. Due to the aromatic heterocyclic structure of g-C3N4 and large delocalized π bond in the planar structure of PDI-Ala, g-C3N4 and PDI-Ala can be tightly combined through π–π interactions and N―C bond. The band structure of sulfur-doped g-C3N4 (S-C3N4) matched well with PDI-Ala than that with g-C3N4. The electron delocalization effect, internal electric field, and newly formed chemical bond jointly promote the separation and migration of photogenerated carriers between PDI-Ala and S-C3N4. To this end, a novel step-scheme (S-scheme) heterojunction photocatalyst comprising organic semiconductor PDI-Ala and S-C3N4 was prepared by an in situ self-assembly strategy. Meanwhile, PDI-Ala was self-assembled by transverse hydrogen bonding and longitudinal π–π stacking. The crystal structure, morphology, valency, optical properties, stability, and energy band structure of the PDI-Ala/S-C3N4 photocatalysts were systematically analyzed and studied by various characterization methods such as X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectrometry, X-ray photoelectron spectroscopy, ultraviolet visible diffuse reflectance spectroscopy, electrochemical impedance spectroscopy, and Mott-Schottky curve. The work functions and interface coupling characteristics were determined using density functional theory. The photocatalytic activities of the synthesized photocatalyst for H2O2 production and the degradation of tetracycline (TC) and p-nitrophenol (PNP) under visible-light irradiation are discussed. The PDI-Ala/S-C3N4 S-scheme heterojunction with band matching and tight interface bonding accelerates the intermolecular electron transfer and broadens the visible-light response range of the heterojunction. In addition, in the processes of the PDI-Ala/S-C3N4 photocatalytic degradation reaction, a variety of active species (h+, ·O2-, and H2O2) were produced and accumulated. Therefore, the PDI-Ala/S-C3N4 heterojunction exhibited enhanced photocatalytic performance in the degradation of TC, PNP, and H2O2 production. Under visible-light irradiation, the optimum 30%PDI-Ala/S-C3N4 removed 90% of TC within 90 min. In addition, 30%PDI-Ala/S-C3N4 displayed the highest H2O2 evolution rate of 28.3 μmol·h-1·g-1, which was 2.9 and 1.6 times higher than those of PDI-Ala and S-C3N4, respectively. These results reveal that the all organic photocatalyst comprising PDI-based supramolecular and S-C3N4 can be efficiently applied for the degradation of organic pollutants and production of H2O2. This work not only provides a novel strategy for the design of all organic S-scheme heterojunctions but also provides a new insight and reference for understanding the structure–activity relationship of heterostructure catalysts with effective interface bonding.
  • 加载中
    1. [1]

      Long, Z.; Li, Q.; Wei, T.; Zhang, G.; Ren, Z. J. Hazard. Mater. 2020, 395, 122599. doi: 10.1016/j.jhazmat.2020.122599  doi: 10.1016/j.jhazmat.2020.122599

    2. [2]

      Liu, J.; Luo, X.; Sun, Y.; Tsang, D.; Qi, J.; Zhang, W.; Li, N.; Yin, M.; Wang, J.; Lippold, H.; et al. Environ. Int. 2019, 126, 771. doi: 10.1016/j.envint.2019.01.076  doi: 10.1016/j.envint.2019.01.076

    3. [3]

      Li, X.; Xiong, J.; Gao, X.; Ma, J.; Chen, Z.; Kang, B.; Liu, J.; Li, H.; Feng, Z.; Huang, J. J. Hazard. Mater. 2020, 387, 121690. doi: 10.1016/j.jhazmat.2019.121690  doi: 10.1016/j.jhazmat.2019.121690

    4. [4]

      Li, Y.; Zhou, M.; Cheng, B.; Shao, Y. J. Mater. Sci. Technol. 2020, 56, 1. doi: 10.1016/j.jmst.2020.04.028  doi: 10.1016/j.jmst.2020.04.028

    5. [5]

      Li, Y.; Zhou, X.; Xing, Y. Appl. Surf. Sci. 2020, 506, 144933. doi: 10.1016/j.apsusc.2019.144933  doi: 10.1016/j.apsusc.2019.144933

    6. [6]

      Benlin, D.; Tu, X.; Zhao, W.; Wang, X.; Leung, D.; Xu, J. Chemosphere 2018, 211, 10. doi: 10.1016/j.chemosphere.2018.07.131  doi: 10.1016/j.chemosphere.2018.07.131

    7. [7]

      Ma, D.; Yang, L.; Sheng, Z.; Chen, Y. Chem. Eng. J. 2021, 405, 126538. doi: 10.1016/j.cej.2020.126538  doi: 10.1016/j.cej.2020.126538

    8. [8]

      Zhang, H.; Ji, Q.; Lai, L.; Yao, G.; Lai, B. Chin. Chem. Lett. 2019, 30 (5), 1129. doi: 10.1016/j.cclet.2019.01.025  doi: 10.1016/j.cclet.2019.01.025

    9. [9]

      Chen, L.; Tian, L.; Zhao, X.; Hu, Z.; Fan, J.; Lv, K. Arab. J. Chem. 2020, 13 (2), 4404. doi: 10.1016/j.arabjc.2019.08.011  doi: 10.1016/j.arabjc.2019.08.011

    10. [10]

      Ma, J.; Dai, J.; Duan, Y.; Zhang, J.; Qiang, L.; Xue, J. Renew. Energ. 2020, 156, 1008. doi: 10.1016/j.renene.2020.04.104  doi: 10.1016/j.renene.2020.04.104

    11. [11]

      Zheng, Y.; Cheng, B.; Fan, J.; Yu, J.; Ho, W. J. Hazard. Mater. 2021, 403, 123559. doi: 10.1016/j.jhazmat.2020.123559  doi: 10.1016/j.jhazmat.2020.123559

    12. [12]

      Liang, H.; Hua, P.; Zhou, Y.; Fu, Z.; Tang, J.; Niu, J. Chin. Chem. Lett. 2019, 30 (12), 2245. doi: 10.1016/j.cclet.2019.05.046  doi: 10.1016/j.cclet.2019.05.046

    13. [13]

      Xu, Y.; Ma, Y.; Ji, X.; Huang, S.; Xia, J.; Xie, M.; Yan, J.; Xu, H.; Li, H. Appl. Surf. Sci. 2019, 464, 552. doi: 10.1016/j.apsusc.2018.09.103  doi: 10.1016/j.apsusc.2018.09.103

    14. [14]

      Wang, Y.; Zhang, S.; Ge, Y.; Wang, C.; Hu, J.; Liu, H. Acta Phys. -Chim. Sin. 2020, 36 (8), 1905083.  doi: 10.3866/PKU.WHXB201905083

    15. [15]

      Ding, H.; Han, D.; Han, Y.; Liang, Y.; Liu, X.; Li, Z.; Zhu, S.; Wu, S. J. Hazard. Mater. 2020, 393, 122423. doi: 10.1016/j.jhazmat.2020.122423  doi: 10.1016/j.jhazmat.2020.122423

    16. [16]

      Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Angew. Chem. Int. Ed. 2020, 59 (13), 5218. doi: 10.1002/anie.201916012  doi: 10.1002/anie.201916012

    17. [17]

      Zou, J.; Zhang, G.; Xu, X. Appl. Catal. A 2018, 563, 73. doi: 10.1016/j.apcata.2018.06.030  doi: 10.1016/j.apcata.2018.06.030

    18. [18]

      Mishra, A.; Mehta, A.; Basu, S.; Shetti, N. P.; Reddy, K. R.; Aminabhavi, T. M. Carbon 2019, 149, 693. doi: 10.1016/j.carbon.2019.04.104  doi: 10.1016/j.carbon.2019.04.104

    19. [19]

      Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B 2019, 243, 556. doi: 10.1016/j.apcatb.2018.11.011  doi: 10.1016/j.apcatb.2018.11.011

    20. [20]

      Yang, Y.; Zhang, D.; Xiang, Q. Nanoscale 2019, 11 (40), 18797. doi: 10.1039/C9NR07242J  doi: 10.1039/C9NR07242J

    21. [21]

      He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J. Chin. J. Catal. 2020, 41, 9. doi: 10.1016/S1872-2067(19)63382-6  doi: 10.1016/S1872-2067(19)63382-6

    22. [22]

      Luo, J.; Lin, Z.; Zhao, Y.; Jiang, S.; Song, S. Chin. J. Catal. 2020, 41 (1), 122. doi: 10.1016/S1872-2067(19)63490-X  doi: 10.1016/S1872-2067(19)63490-X

    23. [23]

      Xiong, J.; Li, X.; Huang, J.; Gao, X.; Chen, Z.; Liu, J.; Li, H.; Kang, B.; Yao, W.; Zhu, Y. Appl. Catal. B 2020, 266, 118602. doi: 10.1016/j.apcatb.2020.118602  doi: 10.1016/j.apcatb.2020.118602

    24. [24]

      Zhang, H.; Jia, L.; Wu, P.; Xu, R.; He, J.; Jiang, W. Appl. Surf. Sci. 2020, 527, 146584. doi: 10.1016/j.apsusc.2020.146584  doi: 10.1016/j.apsusc.2020.146584

    25. [25]

      Wu, T.; Liu, X.; Liu, Y.; Cheng, M.; Liu, Z.; Zeng, G.; Shao, B.; Liang, Q.; Zhang, W.; He, Q.; et al. Coord. Chem. Rev. 2020, 403, 213097. doi: 10.1016/j.ccr.2019.213097  doi: 10.1016/j.ccr.2019.213097

    26. [26]

      Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Nat. Commun. 2020, 11 (1), 4613. doi: 10.1038/s41467-020-18350-7  doi: 10.1038/s41467-020-18350-7

    27. [27]

      Pan, B.; Wu, Y.; Qin, J.; Wang, C. Catal. Today 2019, 335, 208. doi: 10.1016/j.cattod.2018.11.017  doi: 10.1016/j.cattod.2018.11.017

    28. [28]

      He, F.; Zhu, B.; Cheng, B.; Yu, J.; Ho, W.; Macyk, W. Appl. Catal. B 2020, 272, 119006. doi: 10.1016/j.apcatb.2020.119006  doi: 10.1016/j.apcatb.2020.119006

    29. [29]

      Xie, Q.; He, W.; Liu, S.; Li, C.; Zhang, J.; Wong, P. K. Chin. J. Catal. 2020, 41 (1), 140. doi: 10.1016/S1872-2067(19)63481-9  doi: 10.1016/S1872-2067(19)63481-9

    30. [30]

      Cao, S.; Fan, B.; Feng, Y.; Chen, H.; Jiang, F.; Wang, X. Chem. Eng. J. 2018, 353, 147. doi: 10.1016/j.cej.2018.07.116  doi: 10.1016/j.cej.2018.07.116

    31. [31]

      Hasija, V.; Raizada, P.; Sudhaik, A.; Sharma, K.; Kumar, A.; Singh, P.; Jonnalagadda, S. B.; Thakur, V. K. Appl. Mater. Today 2019, 15, 494. doi: 10.1016/j.apmt.2019.04.003  doi: 10.1016/j.apmt.2019.04.003

    32. [32]

      Jia, J.; Jiang, C.; Zhang, X.; Li, P.; Xiong, J.; Zhang, Z.; Wu, T.; Wang, Y. Appl. Surf. Sci. 2019, 495, 143524. doi: 10.1016/j.apsusc.2019.07.266  doi: 10.1016/j.apsusc.2019.07.266

    33. [33]

      Wang, Z.; Chen, Y.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. J. Mater. Sci. Technol. 2020, 56, 143. doi: 10.1016/j.jmst.2020.02.062  doi: 10.1016/j.jmst.2020.02.062

    34. [34]

      Miyake, G. M.; Theriot, J. C. Macromolecules 2014, 47 (23), 8255. doi: 10.1021/ma502044f  doi: 10.1021/ma502044f

    35. [35]

      Patel, N. R.; Kelly, C. B.; Siegenfeld, A. P.; Molander, G. A. ACS Catal. 2017, 7 (3), 1766. doi: 10.1021/acscatal.6b03665  doi: 10.1021/acscatal.6b03665

    36. [36]

      Yu, F.; Yu, Z.; Xu, Z.; Xiong, J.; Fan, Q.; Feng, X.; Tao, Y.; Hua, J.; Luo, F. Mol. Syst. Des. Eng. 2020, 5 (4), 882. doi: 10.1039/C9ME00181F  doi: 10.1039/C9ME00181F

    37. [37]

      Li, Y.; Li, X.; Zhang, H.; Fan, J.; Xiang, Q. J. Mater. Sci. Technol. 2020, 56, 69. doi: 10.1016/j.jmst.2020.03.033  doi: 10.1016/j.jmst.2020.03.033

    38. [38]

      Li, Y.; Zhang, M.; Zhou, L.; Yang, S.; Wu, Z.; Ma, Y. Acta Phys. -Chim. Sin. 2021, 37, 2009030.  doi: 10.3866/PKU.WHXB202009030

    39. [39]

      Xu, Q.; Dekun, M.; Yang, S.; Tian, Z.; Cheng, B.; Fan, J. Appl. Surf. Sci. 2019, 495, 143555. doi: 10.1016/j.apsusc.2019.143555  doi: 10.1016/j.apsusc.2019.143555

    40. [40]

      Xia, J.; Chai, L.; Tian, T.; Li, H.; Hao, F.; Cui, Y.; Wang, Y.; Li, M.; Zhu, Y. Powder Technol. 2020, 373, 488. doi: 10.1016/j.powtec.2020.06.071  doi: 10.1016/j.powtec.2020.06.071

    41. [41]

      Xu, Y.; Ge, F.; Chen, Z.; Huang, S.; Wei, W.; Xie, M.; Xu, H.; Li, H. Appl. Surf. Sci. 2019, 469, 739. doi: 10.1016/j.apsusc.2018.11.062  doi: 10.1016/j.apsusc.2018.11.062

    42. [42]

      Li, X.; Wang, B.; Yin, W.; Di, J.; Xia, J.; Zhu, W.; Li, H. Acta Phys. -Chim. Sin. 2020, 36 (3), 1902001.  doi: 10.3866/PKU.WHXB201902001

    43. [43]

      Qin, D.; Xia, Y.; Li, Q.; Yang, C.; Qin, Y.; Lv, K. J. Mater. Sci. Technol. 2020, 56, 206. doi: 10.1016/j.jmst.2020.03.034  doi: 10.1016/j.jmst.2020.03.034

    44. [44]

      Qin, Y.; Li, H.; Lu, J.; Feng, Y.; Meng, F.; Ma, C.; Yan, Y.; Meng, M. Appl. Catal. B 2020, 277, 119254. doi: 10.1016/j.apcatb.2020.119254  doi: 10.1016/j.apcatb.2020.119254

    45. [45]

      Zhang, Q.; Jiang, L.; Wang, J.; Zhu, Y.; Pu, Y.; Dai, W. Appl. Catal. B 2020, 277, 119122. doi: 10.1016/j.apcatb.2020.119122  doi: 10.1016/j.apcatb.2020.119122

    46. [46]

      Miao, H.; Yang, J.; Peng, G.; Li, H.; Zhu, Y. Sci. Bull. 2019, 64 (13), 896. doi: 10.1016/j.scib.2019.05.006  doi: 10.1016/j.scib.2019.05.006

    47. [47]

      Gao, X.; Gao, K.; Fu, F.; Liang, C.; Li, Q.; Liu, J.; Gao, L.; Zhu, Y. Appl. Catal. B 2020, 265, 118562. doi: 10.1016/j.apcatb.2019.118562  doi: 10.1016/j.apcatb.2019.118562

    48. [48]

      Zhang, K.; Wang, J.; Jiang, W.; Yao, W.; Yang, H.; Zhu, Y. Appl. Catal. B 2018, 232, 175. doi: 10.1016/j.apcatb.2018.03.059  doi: 10.1016/j.apcatb.2018.03.059

    49. [49]

      Dai, W.; Jiang, L.; Wang, J.; Pu, Y.; Zhu, Y.; Wang, Y.; Xiao, B. Chem. Eng. J. 2020, 397, 125476. doi: 10.1016/j.cej.2020.125476  doi: 10.1016/j.cej.2020.125476

    50. [50]

      Gao, Q.; Xu, J.; Wang, Z.; Zhu, Y. Appl. Catal. B 2020, 271, 118933. doi: 10.1016/j.apcatb.2020.118933  doi: 10.1016/j.apcatb.2020.118933

    51. [51]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6 (7), 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    52. [52]

      Li, Z.; Wu, Z.; He, R.; Wan, L.; Zhang, S. J. Mater. Sci. Technol. 2020, 56, 151. doi: 10.1016/j.jmst.2020.02.061  doi: 10.1016/j.jmst.2020.02.061

    53. [53]

      Wang, J.; Wang, G.; Cheng, B.; Yu, J.; Fan, J. Chin. J. Catal. 2021, 42 (1), 56. doi: 10.1016/S1872-2067(20)63634-8  doi: 10.1016/S1872-2067(20)63634-8

    54. [54]

      Chen, Y.; Su, F.; Xie, H.; Wang, R.; Ding, C.; Huang, J.; Xu, Y.; Ye, L. Chem. Eng. J. 2021, 404, 126498. doi: 10.1016/j.cej.2020.126498  doi: 10.1016/j.cej.2020.126498

    55. [55]

      Chen, J.; Liu, T.; Zhang, H.; Wang, B.; Zheng, W.; Wang, X.; Li, J.; Zhong, J. Appl. Surf. Sci. 2020, 527, 146788. doi: 10.1016/j.apsusc.2020.146788  doi: 10.1016/j.apsusc.2020.146788

    56. [56]

      Wang, J.; Zhang, Q.; Deng, F.; Luo, X.; Dionysiou, D. D. Chem. Eng. J. 2020, 379, 122264. doi: 10.1016/j.cej.2019.122264  doi: 10.1016/j.cej.2019.122264

    57. [57]

      Zheng, Y.; Liu, Y.; Guo, X.; Chen, Z.; Zhang, W.; Wang, Y.; Tang, X.; Zhang, Y.; Zhao, Y. J. Mater. Sci. Technol. 2020, 41, 117. doi: 10.1016/j.jmst.2019.09.018  doi: 10.1016/j.jmst.2019.09.018

    58. [58]

      Li, Q.; Zhao, W.; Zhai, Z.; Ren, K.; Wang, T.; Guan, H.; Shi, H. J. Mater. Sci. Technol. 2020, 56, 216. doi: 10.1016/j.jmst.2020.03.038  doi: 10.1016/j.jmst.2020.03.038

    59. [59]

      Xia, Y.; Tian, Z.; Heil, T.; Meng, A.; Cheng, B.; Cao, S.; Yu, J.; Antonietti, M. Joule 2019, 3 (11), 2792. doi: 10.1016/j.joule.2019.08.011  doi: 10.1016/j.joule.2019.08.011

    60. [60]

      Mohammad, A.; Khan, M. E.; Cho, M. H. J. Alloy. Compd. 2020, 816, 152522. doi: 10.1016/j.jallcom.2019.152522  doi: 10.1016/j.jallcom.2019.152522

    61. [61]

      Chen, Z.; Hu, Z.; Zhu, D.; Feng, Z.; Li, X.; Huang, J.; Shen, X. J. Alloy. Compd. 2020, 847, 155560. doi: 10.1016/j.jallcom.2020.155560  doi: 10.1016/j.jallcom.2020.155560

    62. [62]

      Moon, G. -H.; Kim, W.; Bokare, A. D.; Sung, N. -E.; Choi, W. Energ. Environ. Sci. 2014, 7 (12), 4023. doi: 10.1039/C4EE02757D  doi: 10.1039/C4EE02757D

    63. [63]

      Hu, L.; Liu, X.; Dalgleish, S.; Matsushita, M. M.; Yoshikawa, H.; Awaga, K. J. Mater. Chem. C 2015, 3 (20), 5122. doi: 10.1039/C5TC00414D  doi: 10.1039/C5TC00414D

    64. [64]

      Hu, Z.; Huang, J.; Luo, Y.; Liu, M.; Li, X.; Yan, M.; Ye, Z.; Chen, Z.; Feng, Z.; Huang, S. Electrochim. Acta 2019, 319, 293. doi: 10.1016/j.electacta.2019.06.178  doi: 10.1016/j.electacta.2019.06.178

    65. [65]

      Chen, G.; Wang, Y.; Shen, Q.; Xiong, X.; Ren, S.; Dai, G.; Wu, C. Ceram. Int. 2020, 46 (13), 21304. doi: 10.1016/j.ceramint.2020.05.224  doi: 10.1016/j.ceramint.2020.05.224

    66. [66]

      Almeida, R.; Banerjee, A.; Chakraborty, S.; Almeida, J.; Ahuja, R. ChemPhysChem 2018, 19 (1), 148. doi: 10.1002/cphc.201700768  doi: 10.1002/cphc.201700768

    67. [67]

      Wang, X.; Meng, J.; Yang, X.; Hu, A.; Yang, Y.; Guo, Y. ACS Appl. Mater. Interfaces 2019, 11 (1), 588. doi: 10.1021/acsami.8b151  doi: 10.1021/acsami.8b151

  • 加载中
    1. [1]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    2. [2]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    3. [3]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    4. [4]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    5. [5]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    6. [6]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    7. [7]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    8. [8]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    9. [9]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    10. [10]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    11. [11]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    12. [12]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    13. [13]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    14. [14]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    15. [15]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    17. [17]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    18. [18]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    19. [19]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    20. [20]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

Metrics
  • PDF Downloads(91)
  • Abstract views(1675)
  • HTML views(463)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return