Citation: Li Zhengrong, Shen Tao, Hu Yezhou, Chen Ke, Lu Yun, Wang Deli. Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application[J]. Acta Physico-Chimica Sinica, ;2021, 37(9): 201002. doi: 10.3866/PKU.WHXB202010029 shu

Progress on Ordered Intermetallic Electrocatalysts for Fuel Cells Application

  • Corresponding author: Wang Deli, wangdl81125@hust.edu.cn
  • Received Date: 14 October 2020
    Revised Date: 1 December 2020
    Accepted Date: 2 December 2020
    Available Online: 10 December 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (91963109)the National Natural Science Foundation of China 91963109

  • Proton exchange membrane fuel cells (PEMFCs) are considered as one of the most promising energy conversion devices owing to their high power density, high energy conversion efficiency, environment-friendly merit, and low operating temperature. In the cathodic oxygen reduction reaction and anodic small-molecule oxidation reactions, Pt shows excellent catalytic activity. However, several factors limit the practical application of Pt nanoparticles in fuel cells, such as the high price of Pt, easy agglomeration during long-term cycling, and limited electrocatalytic performance. Alloying Pt with 3d-transition metal produces ligand and strain effects, which reduces the center of Pt-d band and weakens the binding strength of oxygen species, thereby improving the catalytic activity and reducing the cost. However, the performance of fuel cells degrades seriously because the transition metals tend to dissolve in acidic electrolytes. The disordered alloy transformed into ordered intermetallic nanoparticles can prevent the dissolution of transition metals. Ordered intermetallics have highly ordered atomic arrangements and strong Pt(5d)-M(3d) orbital interactions, which result in excellent stability in both acidic and alkaline electrolytes. Ordered intermetallic nanoparticles have attracted significant attention owing to their excellent electrocatalytic activity and stability, which can be attributed to controllable composition and structure. Pd has a similar electronic structure and lattice parameters to Pt, and has thus attracted significant attention. Several Pd-based ordered intermetallics have been synthesized, and they exhibit sufficient catalytic performance. This review discusses the recent progress in noble metal-based ordered intermetallic electrocatalysts based on the research status of our group over the years. First, the structural characteristics and characterization methods of ordered intermetallic nanoparticles are introduced, exhibiting approaches to distinguish ordered and disordered phases. Then, the controllable preparation of ordered nanoparticles is highlighted, including thermal annealing and direct liquid phase synthesis. The migration and interdiffusion of atoms in the ordering process is very difficult. High-temperature thermal annealing is the most commonly used method for preparing intermetallics, which can precisely control the composition and atomic ordered arrangement. However, thermal annealing can only produce thermodynamically stable spherical nanoparticles. Supports and coating layers are usually employed to prevent agglomeration of nanoparticles at high temperatures. Finally, the applications of ordered intermetallic nanoparticles in fuel cell electrocatalysts are reviewed, including the oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), formic acid oxidation reaction (FAOR), methanol oxidation reaction (MOR), and ethanol oxidation reaction (EOR). In addition, the current challenges and future development directions of the catalysts are discussed and discussed to provide new ideas for the development of fuel cell electrocatalysts.
  • 加载中
    1. [1]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    2. [2]

      Bing, Y.; Liu, H.; Zhang, L.; Ghosh, D.; Zhang, J. Chem. Soc. Rev. 2010, 39, 2184. doi: 10.1039/b912552c  doi: 10.1039/b912552c

    3. [3]

      Rößner, L.; Armbrüster, M. ACS Catal. 2019, 9, 2018. doi: 10.1021/acscatal.8b04566  doi: 10.1021/acscatal.8b04566

    4. [4]

      Luo, M. C.; Sun, Y. J.; Qin, Y. N.; Yang, Y.; Wu, D.; Guo, S. J. Acta Phys. -Chim. Sin. 2018, 34, 361.  doi: 10.3866/PKU.WHXB201708312

    5. [5]

      Ma, Z.; Cano, Z. P.; Yu, A.; Chen, Z.; Jiang, G.; Fu, X.; Yang, L.; Wu, T.; Bai, Z.; Lu, J. Angew. Chem. Int. Ed. 2020, 59, 18334. doi: 10.1002/anie.202003654  doi: 10.1002/anie.202003654

    6. [6]

      Wang, X. X.; Sokolowski, J.; Liu, H.; Wu, G. Chin. J. Catal. 2020, 41, 739. doi: 10.1016/s1872-2067(19)63407-8  doi: 10.1016/s1872-2067(19)63407-8

    7. [7]

      Bashyam, R.; Zelenay, P. Nature 2006, 443, 63. doi: 10.1038/nature05118  doi: 10.1038/nature05118

    8. [8]

      Shao, M.; Chang, Q.; Dodelet, J. P.; Chenitz, R. Chem. Rev. 2016, 116, 3594. doi: 10.1021/acs.chemrev.5b00462  doi: 10.1021/acs.chemrev.5b00462

    9. [9]

      Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. J. Am. Chem. Soc. 2012, 134, 13934. doi: 10.1021/ja3051662  doi: 10.1021/ja3051662

    10. [10]

      Hodnik, N.; Jeyabharathi, C.; Meier, J. C.; Kostka, A.; Phani, K. L.; Recnik, A.; Bele, M.; Hocevar, S.; Gaberscek, M.; Mayrhofer, K. J. Phys. Chem. Chem. Phys. 2014, 16, 13610. doi: 10.1039/c4cp00585f  doi: 10.1039/c4cp00585f

    11. [11]

      Zhang, Z.; Luo, Z.; Chen, B.; Wei, C.; Zhao, J.; Chen, J.; Zhang, X.; Lai, Z.; Fan, Z.; Tan, C.; et al. Adv. Mater. 2016, 28, 8712. doi: 10.1002/adma.201603075  doi: 10.1002/adma.201603075

    12. [12]

      Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000. doi: 10.1002/chin.200027244  doi: 10.1002/chin.200027244

    13. [13]

      Liu, Z.; Jackson, G. S.; Eichhorn, B. W. Energy Environ. Sci. 2011, 4, 1900. doi: 10.1039/c1ee01125a  doi: 10.1039/c1ee01125a

    14. [14]

      Chung, D. Y.; Jun, S. W.; Yoon, G.; Kwon, S. G.; Shin, D. Y.; Seo, P.; Yoo, J. M.; Shin, H.; Chung, Y. H.; Kim, H.; et al. J. Am. Chem. Soc. 2015, 137, 15478. doi: 10.1021/jacs.5b09653  doi: 10.1021/jacs.5b09653

    15. [15]

      Leonard, B. M.; Zhou, Q.; Wu, D.; DiSalvo, F. J. Chem. Mater. 2011, 23, 1136. doi: 10.1021/cm1024876  doi: 10.1021/cm1024876

    16. [16]

      Wang, Y.; Zou, L.; Huang, Q.; Zou, Z.; Yang, H. Int. J. Hydrogen Energy 2017, 42, 26695. doi: 10.1016/j.ijhydene.2017.09.008  doi: 10.1016/j.ijhydene.2017.09.008

    17. [17]

      Wang, D.; Xin, H. L.; Hovden, R.; Wang, H.; Yu, Y.; Muller, D. A.; DiSalvo, F. J.; Abruna, H. D. Nat. Mater. 2013, 12, 81. doi: 10.1038/nmat3458  doi: 10.1038/nmat3458

    18. [18]

      Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J.; Lucas, C. A.; Wang, G.; Ross, P. N.; Markovic, N. M. Nat. Mater. 2007, 6, 241. doi: 10.1038/nmat1840  doi: 10.1038/nmat1840

    19. [19]

      Cui, C.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Nat. Mater. 2013, 12, 765. doi: 10.1038/nmat3668  doi: 10.1038/nmat3668

    20. [20]

      Zhang, X.; Lu, G. J. Phys. Chem. Lett. 2014, 5, 292. doi: 10.1021/jz4024699  doi: 10.1021/jz4024699

    21. [21]

      Bligaard, T.; Nørskov, J. K. Electrochim. Acta 2007, 52, 5512. doi: 10.1016/j.electacta.2007.02.041  doi: 10.1016/j.electacta.2007.02.041

    22. [22]

      Mavrikakis, M.; Hammer, B.; Nørskov, J. Phys. Rev. Lett. 1998, 81, 2819. doi: 10.1103/PhysRevLett.81.2819  doi: 10.1103/PhysRevLett.81.2819

    23. [23]

      Karamad, M.; Tripkovic, V.; Rossmeisl, J. ACS Catal. 2014, 4, 2268. doi: 10.1021/cs500328c  doi: 10.1021/cs500328c

    24. [24]

      Wang, K.; Gasteiger, H. A.; Markovic, N. M. Electrochim. Acta 1996, 41, 2587. doi: 10.1016/0013-4686(96)00079-5  doi: 10.1016/0013-4686(96)00079-5

    25. [25]

      Jaksic, M. M.; Botton, G. A.; Papakonstantinou, G. D.; Nan, F.; Jaksic, J. M. J. Phys. Chem. C 2014, 118, 8723. doi: 10.1021/jp412292w  doi: 10.1021/jp412292w

    26. [26]

      Jaksic, J. M.; Nan, F.; Papakonstantinou, G. D.; Botton, G. A.; Jaksic, M. M. J. Phys. Chem. C 2015, 119, 11267. doi: 10.1021/jp510234f  doi: 10.1021/jp510234f

    27. [27]

      Abe, H.; Matsumoto, F.; Alden, L. R. J. Am. Chem. Soc. 2008, 130, 5452. doi: 10.1021/ja075061c  doi: 10.1021/ja075061c

    28. [28]

      DeSario, D. Y.; DiSalvo, F. J. Chem. Mater. 2014, 26, 2750. doi: 10.1021/cm5007197  doi: 10.1021/cm5007197

    29. [29]

      Wang, D.; Yu, Y.; Xin, H. L.; Hovden, R.; Ercius, P.; Mundy, J. A.; Chen, H.; Richard, J. H.; Muller, D. A.; DiSalvo, F. J.; Abruna, H. D. Nano Lett. 2012, 12, 5230. doi: 10.1021/nl302404g  doi: 10.1021/nl302404g

    30. [30]

      Liu, S.; Xiao, W.; Wang, J.; Zhu, J.; Wu, Z.; Xin, H.; Wang, D. Nano Energy 2016, 27, 475. doi: 10.1016/j.nanoen.2016.07.038  doi: 10.1016/j.nanoen.2016.07.038

    31. [31]

      Xiao, W.; Cordeiro, M. A. L.; Gao, G.; Zheng, A.; Wang, J.; Lei, W.; Gong, M.; Lin, R.; Stavitski, E.; Xin, H. L.; Wang, D. Nano Energy 2018, 50, 70. doi: 10.1016/j.nanoen.2018.05.032  doi: 10.1016/j.nanoen.2018.05.032

    32. [32]

      Galeano, C.; Meier, J. C.; Peinecke, V.; Bongard, H.; Katsounaros, I.; Topalov, A. A.; Lu, A.; Mayrhofer, K. J.; Schuth, F. J. Am. Chem. Soc. 2012, 134, 20457. doi: 10.1021/ja308570c  doi: 10.1021/ja308570c

    33. [33]

      Iihama, S.; Furukawa, S.; Komatsu, T. ACS Catal. 2015, 6, 742. doi: 10.1021/acscatal.5b02464  doi: 10.1021/acscatal.5b02464

    34. [34]

      Najafishirtari, S.; Brescia, R.; Guardia, P.; Marras, S.; Manna, L.; Colombo, M. ACS Catal. 2015, 5, 2154. doi: 10.1021/cs501923x  doi: 10.1021/cs501923x

    35. [35]

      Kim J.; Lee Y.; Sun S. J. Am. Chem. Soc. 2010, 132, 4996. doi: 10.1021/ja1009629  doi: 10.1021/ja1009629

    36. [36]

      Zou, L.; Li, J.; Yuan, T.; Zhou, Y.; Li, X.; Yang, H. Nanoscale 2014, 6, 10686. doi: 10.1039/c4nr02799j  doi: 10.1039/c4nr02799j

    37. [37]

      Cui, Y.; Wu, Y.; Wang, Z.; Yao, X.; Wei, Y.; Kang, Y.; Du, H.; Li, J.; Gan, L. J. Electrochem. Soc. 2020, 167, 064520. doi: 10.1149/1945-7111/ab8407  doi: 10.1149/1945-7111/ab8407

    38. [38]

      Hu, Y.; Lu, Y.; Zhao, X.; Shen, T.; Zhao, T.; Gong, M.; Chen, K.; Lai, C.; Zhang, J.; Xin, H. L.; Wang, D. Nano Res. 2020, 13, 2365. doi: 10.1007/s12274-020-2856-z  doi: 10.1007/s12274-020-2856-z

    39. [39]

      Yang, Y.; Chen, G.; Zeng, R.; Villarino, A. M.; DiSalvo, F. J.; van Dover, R. B.; Abruna, H. D. J. Am. Chem. Soc. 2020, 142, 3980. doi: 10.1021/jacs.9b13400  doi: 10.1021/jacs.9b13400

    40. [40]

      Shao, M. J. Power Sources 2011, 196, 2433. doi: 10.1016/j.jpowsour.2010.10.093  doi: 10.1016/j.jpowsour.2010.10.093

    41. [41]

      Xiao, W.; Lei, W.; Wang, J.; Gao, G.; Zhao, T.; Cordeiro, M. A. L.; Lin, R.; Gong, M.; Guo, X.; Stavitski, E.; et al. J. Mater. Chem. A 2018, 6, 11346. doi: 10.1039/c8ta03250e  doi: 10.1039/c8ta03250e

    42. [42]

      Shen, T.; Chen, S.; Zeng, R.; Gong, M.; Zhao, T.; Lu, Y.; Liu, X.; Xiao, D.; Yang, Y.; Hu, J.; et al. ACS Catal. 2020, 10, 9977. doi: 10.1021/acscatal.0c01537  doi: 10.1021/acscatal.0c01537

    43. [43]

      Meku, E.; Du, C.; Sun, Y.; Du, L.; Wang, Y.; Yin, G. J. Electrochem. Soc. 2015, 163, F132. doi: 10.1149/2.0031603jes  doi: 10.1149/2.0031603jes

    44. [44]

      Takao, G.; Noh, S. H.; Fuma, A.; Toyokazu, T.; Byungchan, H.; Takeo, O. J. Mater. Chem. A 2018, 6, 14828. doi: 10.1039/C8TA03233E  doi: 10.1039/C8TA03233E

    45. [45]

      Casado-Rivera, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vazquez-Alvarez, T. J. Am. Chem. Soc. 2004, 126, 4043. doi: 10.1021/ja038497a  doi: 10.1021/ja038497a

    46. [46]

      Wang, D.; Yu, Y.; Zhu, J.; Liu, S.; Muller, D. A.; Abruna, H. D. Nano Lett. 2015, 15, 1343. doi: 10.1021/nl504597j  doi: 10.1021/nl504597j

    47. [47]

      Gong, M.; Zhu, J.; Liu, M.; Liu, P.; Deng, Z.; Shen, T.; Zhao, T.; Lin, R.; Lu, Y.; Yang, S.; et al. Nanoscale 2019, 11, 20301. doi: 10.1039/c9nr04975d  doi: 10.1039/c9nr04975d

    48. [48]

      Li, J.; Sun, S. Acc. Chem. Res. 2019, 52, 2015. doi: 10.1021/acs.accounts.9b00172  doi: 10.1021/acs.accounts.9b00172

    49. [49]

      Koh, S.; Toney, M. F.; Strasser, P. Electrochim. Acta 2007, 52, 2765. doi: 10.1016/j.electacta.2006.08.039  doi: 10.1016/j.electacta.2006.08.039

    50. [50]

      Liu, Z.; Jackson, G. S.; Eichhorn, B. W. Angew. Chem. Int. Ed. 2010, 49, 3173. doi: 10.1002/anie.200907019  doi: 10.1002/anie.200907019

    51. [51]

      Ji, X.; Lee, K. T.; Holden, R.; Zhang, L.; Zhang, J.; Botton, G. A.; Couillard, M.; Nazar, L. F. Nat. Chem. 2010, 2, 286. doi: 10.1038/nchem.553  doi: 10.1038/nchem.553

    52. [52]

      Ghosh, T.; Vukmirovic, M.; DiSalvo, F.; Adzic, R. J. Am. Chem. Soc. 2010, 132, 906. doi: 10.1021/ja905850c  doi: 10.1021/ja905850c

    53. [53]

      Xiao, W.; Lei, W.; Gong, M.; Xin, H. L.; Wang, D. ACS Catal. 2018, 8, 3237. doi: 10.1021/acscatal.7b04420  doi: 10.1021/acscatal.7b04420

    54. [54]

      Furukawa, S.; Komatsu, T. ACS Catal. 2016, 7, 735. doi: 10.1021/acscatal.6b02603  doi: 10.1021/acscatal.6b02603

    55. [55]

      Yoo, T. Y.; Yoo, J. M.; Sinha, A. K.; Bootharaju, M. S.; Jung, E.; Lee, H. S.; Lee, B. H.; Kim, J.; Antink, W. H.; Kim, Y. M.; et al. J. Am. Chem. Soc. 2020, 142, 14190. doi: 10.1021/jacs.0c05140  doi: 10.1021/jacs.0c05140

    56. [56]

      Lee, J.; Yoo, J. M.; Ye, Y.; Mun, Y.; Lee, S.; Kim, O. H.; Rhee, H. W.; Lee, H. I.; Sung, Y. E.; Lee, J. Adv. Energy Mater. 2015, 5, 1402093. doi: 10.1002/aenm.201402093  doi: 10.1002/aenm.201402093

    57. [57]

      Li, J.; Xi, Z.; Pan, Y. T.; Spendelow, J. S.; Duchesne, P. N.; Su, D.; Li, Q.; Yu, C.; Yin, Z.; Shen, B.; Kim, Y. S.; Zhang, P.; Sun, S. J. Am. Chem. Soc. 2018, 140, 2926. doi: 10.1021/jacs.7b12829  doi: 10.1021/jacs.7b12829

    58. [58]

      Li, J.; Sharma, S.; Liu, X.; Pan, Y. T.; Spendelow, J. S.; Chi, M.; Jia, Y.; Zhang, P.; Cullen, D. A.; Xi, Z.; et al. Joule 2019, 3, 124. doi: 10.1016/j.joule.2018.09.016  doi: 10.1016/j.joule.2018.09.016

    59. [59]

      Wang, H.; Shang, P.; Zhang, J.; Guo, M.; Mu, Y.; Li, Q.; Wang, H. Chem. Mater. 2013, 25, 2450. doi: 10.1021/cm4004678  doi: 10.1021/cm4004678

    60. [60]

      Lei, W.; Xu, J.; Yu, Y.; Yang, W.; Hou, Y.; Chen, D. Nano Lett. 2018, 18, 7839. doi: 10.1021/acs.nanolett.8b03603  doi: 10.1021/acs.nanolett.8b03603

    61. [61]

      Wang, C.; Chen, D. P.; Sang, X.; Unocic, R. R.; Skrabalak, S. E. ACS Nano 2016, 10, 6345. doi: 10.1021/acsnano.6b02669  doi: 10.1021/acsnano.6b02669

    62. [62]

      Pacchioni, G.; Freund, H. J. Chem. Soc. Rev. 2018, 47, 8474. doi: 10.1039/c8cs00152a  doi: 10.1039/c8cs00152a

    63. [63]

      van Deelen, T. W.; Hernández Mejía, C.; de Jong, K. P. Nat. Catal. 2019, 2, 955. doi: 10.1038/s41929-019-0364-x  doi: 10.1038/s41929-019-0364-x

    64. [64]

      Shim, J.; Lee, J.; Ye, Y.; Hwang, J.; Kim, S. K.; Lim, T. H. ACS Nano 2012, 6, 6870. doi: 10.1021/nn301692y  doi: 10.1021/nn301692y

    65. [65]

      Kang, E.; Jung, H.; Park, J. G.; Kwon, S.; Shim, J.; Sai, H. ACS Nano 2011, 5, 1018. doi: 10.1021/nn102451y  doi: 10.1021/nn102451y

    66. [66]

      Liu, Z.; Fu, G.; Li, J.; Liu, Z.; Xu, L.; Sun, D.; Tang, Y. Nano Res. 2018, 11, 4686. doi: 10.1007/s12274-018-2051-7  doi: 10.1007/s12274-018-2051-7

    67. [67]

      Liu, H.; Dou, M.; Wang, F.; Liu, J.; Ji, J.; Li, Z. RSC Adv. 2015, 5, 66471. doi: 10.1039/c5ra12291k  doi: 10.1039/c5ra12291k

    68. [68]

      Kumar, V. B.; Sanetuntikul, J.; Ganesan, P.; Porat, Z. E.; Shanmugam, S.; Gedanken, A. Electrochim. Acta 2016, 190, 659. doi: 10.1016/j.electacta.2015.12.193  doi: 10.1016/j.electacta.2015.12.193

    69. [69]

      Zhu, W.; Yuan, H.; Liao, F.; Shen, Y.; Shi, H.; Shi, Y.; Xu, L.; Ma, M.; Shao, M. Chem. Eng. J. 2020, 389, 124240. doi: 10.1016/j.cej.2020.124240  doi: 10.1016/j.cej.2020.124240

    70. [70]

      Wang, X. X.; Hwang, S.; Pan, Y. T.; Chen, K.; He, Y.; Karakalos, S.; Zhang, H.; Spendelow, J. S.; Su, D.; Wu, G. Nano Lett. 2018, 18, 4163. doi: 10.1021/acs.nanolett.8b00978  doi: 10.1021/acs.nanolett.8b00978

    71. [71]

      Chen, D.; Li, Z.; Zhou, Y.; Ma, X.; Lin, H.; Ying, W.; Peng, X. Chem. Comm. 2020, 56, 4898. doi: 10.1039/d0cc00895h  doi: 10.1039/d0cc00895h

    72. [72]

      Qi, Z.; Pei, Y.; Goh, T. W.; Wang, Z.; Li, X.; Lowe, M.; Maligal-Ganesh, R. V.; Huang, W. Nano Res. 2018, 11, 3469. doi: 10.1007/s12274-018-2016-x  doi: 10.1007/s12274-018-2016-x

    73. [73]

      Hu, M.; Zhao, S.; Liu, S.; Chen, C.; Chen, W.; Zhu, W.; Liang, C.; Cheong, W. C.; Wang, Y.; Yu, Y.; et al. Adv. Mater. 2018, 30, 1801878. doi: 10.1002/adma.201801878  doi: 10.1002/adma.201801878

    74. [74]

      Kwon, T.; Lim, S.; Jun, M.; Kang, M.; Joo, J.; Oh, A.; Baik, H.; Hong, C. S.; Lee, K. Nanoscale 2020, 12, 1118. doi: 10.1039/c9nr09318d  doi: 10.1039/c9nr09318d

    75. [75]

      Yan, Y.; Du, J. S.; Gilroy, K. D.; Yang, D.; Xia, Y.; Zhang, H. Adv. Mater. 2017, 29, 1605997. doi: 10.1002/adma.201605997  doi: 10.1002/adma.201605997

    76. [76]

      Bernal, S.; Calvino, J. J.; Gatica, J. M.; Larese, C.; López-Cartes, C.; Pérez-Omil, J. A. J. Catal. 1997, 169, 510. doi: 10.1006/jcat.1997.1707  doi: 10.1006/jcat.1997.1707

    77. [77]

      Maligal-Ganesh, R. V.; Xiao, C.; Goh, T. W.; Wang, L. L.; Gustafson, J.; Pei, Y.; Qi, Z.; Johnson, D. D.; Zhang, S.; Tao, F.; Huang, W. ACS Catal. 2016, 6, 1754. doi: 10.1021/acscatal.5b02281  doi: 10.1021/acscatal.5b02281

    78. [78]

      Hu, Y.; Shen, T.; Zhao, X.; Zhang, J.; Lu, Y.; Shen, J.; Lu, S.; Tu, Z.; Xin, H. L.; Wang, D. Appl. Catal. B 2020, 279, 119370. doi: 10.1016/j.apcatb.2020.119370  doi: 10.1016/j.apcatb.2020.119370

    79. [79]

      Takahashi, Y.; Kadono, T.; Yamamoto, S.; Singh, V. R.; Verma, V. K.; Ishigami, K.; Shibata, G.; Harano, T.; Takeda, Y.; Okane, T.; et al. Phys. Rev. B 2014, 90, 024423. doi: 10.1103/PhysRevB.90.024423  doi: 10.1103/PhysRevB.90.024423

    80. [80]

      Qi, Z.; Xiao, C.; Liu, C.; Goh, T. W.; Zhou, L.; Maligal-Ganesh, R.; Pei, Y.; Li, X.; Curtiss, L. A.; Huang, W. J. Am. Chem. Soc. 2017, 139, 4762. doi: 10.1021/jacs.6b12780  doi: 10.1021/jacs.6b12780

    81. [81]

      Xiao, W.; Liutheviciene Cordeiro, M. A.; Gong, M.; Han, L.; Wang, J.; Bian, C.; Zhu, J.; Xin, H. L.; Wang, D. J. Mater. Chem. A 2017, 5, 9867. doi: 10.1039/c7ta02479g  doi: 10.1039/c7ta02479g

    82. [82]

      Kim, J.; Rong, C.; Liu, J. P.; Sun, S. Adv. Mater. 2009, 21, 906. doi: 10.1002/adma.200801620  doi: 10.1002/adma.200801620

    83. [83]

      Chen, H.; Wang, D.; Yu, Y.; Newton, K. A.; Muller, D. A.; Abruna, H.; DiSalvo, F. J. J. Am. Chem. Soc. 2012, 134, 18453. doi: 10.1021/ja308674b  doi: 10.1021/ja308674b

    84. [84]

      Chen, H.; Yu, Y.; Xin, H. L.; Newton, K. A.; Holtz, M. E.; Wang, D.; Muller, D. A.; Abruña, H. D.; DiSalvo, F. J. Chem. Mater. 2013, 25, 1436. doi: 10.1021/cm303489z  doi: 10.1021/cm303489z

    85. [85]

      Cui, Z.; Chen, H.; Zhao, M.; DiSalvo, F. J. Nano Lett. 2016, 16, 2560. doi: 10.1021/acs.nanolett.6b00121  doi: 10.1021/acs.nanolett.6b00121

    86. [86]

      Nguyen, M. T.; Wakabayashi, R. H.; Yang, M.; Abruña, H. D.; DiSalvo, F. J. J. Power Sources 2015, 280, 459. doi: 10.1016/j.jpowsour.2015.01.076  doi: 10.1016/j.jpowsour.2015.01.076

    87. [87]

      Li, D.; Poudyal, N.; Nandwana, V.; Jin, Z.; Elkins, K.; Liu, J. P. J. Appl. Phys. 2006, 99, 08E911. doi: 10.1063/1.2166597  doi: 10.1063/1.2166597

    88. [88]

      Kim, J.; Rong, C.; Lee, Y.; Liu, J. P.; Sun, S. Chem. Mater. 2015, 20, 7242. doi: 10.1021/cm8024878  doi: 10.1021/cm8024878

    89. [89]

      Yu, Y.; Sun, K.; Tian, Y.; Li, X. Z.; Kramer, M. J.; Sellmyer, D. J.; Shield, J. E.; Sun, S. Nano Lett. 2013, 13, 4975. doi: 10.1021/nl403043d  doi: 10.1021/nl403043d

    90. [90]

      Wang, T.; Liang, J.; Zhao, Z.; Li, S.; Lu, G.; Xia, Z.; Wang, C.; Luo, J.; Han, J.; Ma, C.; Huang, Y.; Li, Q. Adv. Energy Mater. 2019, 9, 1803771. doi: 10.1002/aenm.201803771  doi: 10.1002/aenm.201803771

    91. [91]

      Zhang, S.; Guo, S.; Zhu, H.; Su, D.; Sun, S. J. Am. Chem. Soc. 2012, 134, 5060. doi: 10.1021/ja300708j  doi: 10.1021/ja300708j

    92. [92]

      Kuttiyiel, K. A.; Sasaki, K.; Su, D.; Wu, L.; Zhu, Y.; Adzic, R. R. Nat. Commun. 2014, 5, 5185. doi: 10.1038/ncomms6185  doi: 10.1038/ncomms6185

    93. [93]

      Yan, Q.; Kim, T.; Purkayastha, A.; Ganesan, P. G.; Shima, M.; Ramanath, G. Phys. Inorg. Chem. 2005, 17, 2233. doi: 10.1002/chin.200546012  doi: 10.1002/chin.200546012

    94. [94]

      Takahashi, Y. K.; Ohnuma, M.; Hono, K. J. Magn. Magn. Mater. 2002, 246, 259. doi: 10.1016/S0304-8853(02)00065-3  doi: 10.1016/S0304-8853(02)00065-3

    95. [95]

      Kang, S.; Harrell, J. W.; Nikles, D. E. Nano Lett. 2002, 2, 1033. doi: 10.1021/nl025614b  doi: 10.1021/nl025614b

    96. [96]

      Rong, H.; Mao, J.; Xin, P.; He, D.; Chen, Y.; Wang, D.; Niu, Z.; Wu, Y.; Li, Y. Adv. Mater. 2016, 28, 2540. doi: 10.1002/adma.201504831  doi: 10.1002/adma.201504831

    97. [97]

      Cheong, S.; Watt, J.; Ingham, B.; Toney, M. F.; Tilley, R. D. J. Am. Chem. Soc. 2009, 131, 14590. doi: 10.1021/ja9065688  doi: 10.1021/ja9065688

    98. [98]

      Chen, W.; Yu, R.; Li, L.; Wang, A.; Peng, Q.; Li, Y. Angew. Chem. Int. Ed. 2010, 49, 2917. doi: 10.1002/anie.200906835  doi: 10.1002/anie.200906835

    99. [99]

      Bu, L.; Zhang, N.; Guo, S.; Zhang, X.; Li, J.; Yao, J. Science 2016, 354, 1410. doi: 10.1126/science.aah6133  doi: 10.1126/science.aah6133

    100. [100]

      Qin, Y.; Luo, M.; Sun, Y.; Li, C.; Huang, B.; Yang, Y.; Li, Y.; Wang, L.; Guo, S. ACS Catal. 2018, 8, 5581. doi: 10.1021/acscatal.7b04406  doi: 10.1021/acscatal.7b04406

    101. [101]

      Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A. Science 2007, 315, 493. doi: 10.1126/science.1135941  doi: 10.1126/science.1135941

    102. [102]

      Zhang, X.; Tian, S.; Yu, W.; Lu, B.; Shen, T.; Xu, L.; Sun, D.; Zhang, S.; Tang, Y. CrystEngComm 2018, 20, 4277. doi: 10.1039/c8ce00601f  doi: 10.1039/c8ce00601f

    103. [103]

      Liu, S.; Han, L.; Zhu, J.; Xiao, W.; Wang, J.; Liu, H.; Xin, H.; Wang, D. J. Mater. Chem. A 2015, 3, 20966. doi: 10.1039/c5ta05202e  doi: 10.1039/c5ta05202e

    104. [104]

      Bu, L.; Shao, Q.; E, B.; Guo, J.; Yao, J.; Huang, X. J. Am. Chem. Soc. 2017, 139, 9576. doi: 10.1021/jacs.7b03510  doi: 10.1021/jacs.7b03510

    105. [105]

      Wang, C.; Sang, X.; Gamler, J. T. L.; Chen, D. P.; Unocic, R. R.; Skrabalak, S. E. Nano Lett. 2017, 17, 5526. doi: 10.1021/acs.nanolett.7b02239  doi: 10.1021/acs.nanolett.7b02239

    106. [106]

      Wang, G.; Huang, B.; Xiao, L.; Ren, Z.; Chen, H.; Wang, D.; Abruna, H. D.; Lu, J.; Zhuang, L. J. Am. Chem. Soc. 2014, 136, 9643. doi: 10.1021/ja503315s  doi: 10.1021/ja503315s

    107. [107]

      Guo, S.; Zhang, X.; Zhu, W.; He, K.; Su, D.; Mendoza-Garcia, A.; Ho, S. F.; Lu, G.; Sun, S. J. Am. Chem. Soc. 2014, 136, 15026. doi: 10.1021/ja508256g  doi: 10.1021/ja508256g

    108. [108]

      Jiang G.; Zhu H.; Zhang X.; Shen B.; Wu L.; Zhang S.; Lu G.; Wu Z.; Sun S. ACS Nano 2015, 9, 11014. doi: 10.1021/acsnano.5b04361  doi: 10.1021/acsnano.5b04361

    109. [109]

      Zhao, X.; Xi, C.; Zhang, R.; Song, L.; Wang, C.; Spendelow, J. S.; Frenkel, A. I.; Yang, J.; Xin, H. L.; Sasaki, K. ACS Catal. 2020, 10637. doi: 10.1021/acscatal.0c03036  doi: 10.1021/acscatal.0c03036

    110. [110]

      Wang, D.; Yu, Y.; Zhu, J.; Liu, S.; Muller, D. A.; Abruna, H. D. Nano Lett. 2015, 15, 1343. doi: 10.1021/nl504597j  doi: 10.1021/nl504597j

    111. [111]

      Li, L.; Larsen, A. H.; Romero, N. A.; Morozov, V. A.; Glinsvad, C.; Abild-Pedersen, F.; Greeley, J.; Jacobsen, K. W.; Norskov, J. K. J. Phys. Chem. Lett. 2013, 4, 222. doi: 10.1021/jz3018286  doi: 10.1021/jz3018286

    112. [112]

      Yang, Y.; Xiao, W.; Feng, X.; Xiong, Y.; Gong, M.; Shen, T.; Lu, Y.; Abruna, H. D.; Wang, D. ACS Nano 2019, 13, 5968. doi: 10.1021/acsnano.9b01961  doi: 10.1021/acsnano.9b01961

    113. [113]

      Kuttiyiel, K. A.; Kattel, S.; Cheng, S.; Lee, J. H.; Wu, L.; Zhu, Y.; Park, G. G.; Liu, P.; Sasaki, K.; Chen, J. G.; Adzic, R. R. ACS Appl. Energy Mater. 2018, 1, 3771. doi: 10.1021/acsaem.8b00555  doi: 10.1021/acsaem.8b00555

    114. [114]

      He, Y.; Wu, Y. L.; Zhu, X. X.; Wang, J. N. ACS Appl. Mater. Interfaces 2019, 11, 11527. doi: 10.1021/acsami.9b01810  doi: 10.1021/acsami.9b01810

    115. [115]

      Liang, J.; Li, N.; Zhao, Z.; Ma, L.; Wang, X.; Li, S.; Liu, X.; Wang, T.; Du, Y.; Lu, G.; Han, J.; Huang, Y.; Su, D.; Li, Q. Angew. Chem. Int. Ed. 2019, 58, 15471. doi: 10.1002/anie.201908824  doi: 10.1002/anie.201908824

    116. [116]

      Dhavale, V. M.; Kurungot, S. ACS Catal. 2015, 5, 1445. doi: 10.1021/cs501571e  doi: 10.1021/cs501571e

    117. [117]

      Gong, M.; Xiao, D.; Deng, Z.; Zhang, R.; Xia, W.; Zhao, T.; Liu, X.; Shen, T.; Hu, Y.; Lu, Y.; et al. Appl. Catal. B 2021, 282, 119617. doi: 10.1016/j.apcatb.2020.119617  doi: 10.1016/j.apcatb.2020.119617

    118. [118]

      Ao, X, Zhang, W, Zhao, B.; Ding, Y.; Liu, M. Energy Environ. Sci. 2020, 13, 3032.doi: 10.1039/D0EE00832J  doi: 10.1039/D0EE00832J

    119. [119]

      Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C.; Liao, J.; Lu, T.; Xing, W. Energy Environ. Sci. 2011, 4, 2736. doi: 10.1039/c1ee01307f  doi: 10.1039/c1ee01307f

    120. [120]

      Rossmeisl, J.; Ferrin, P.; Tritsaris, G. A.; Nilekar, A. U.; Koh, S.; Bae, S. E.; Brankovic, S. R.; Strasser, P.; Mavrikakis, M. Energy Environ. Sci. 2012, 5, 8335. doi: 10.1039/c2ee21455e  doi: 10.1039/c2ee21455e

    121. [121]

      Scofield, M. E.; Zhou, Y.; Yue, S.; Wang, L.; Su, D.; Tong, X.; Vukmirovic, M. B.; Adzic, R. R.; Wong, S. S. ACS Catal. 2016, 6, 3895. doi: 10.1021/acscatal.6b00350  doi: 10.1021/acscatal.6b00350

    122. [122]

      Wang, Y.; Wang, G.; Li, G.; Huang, B.; Pan, J.; Liu, Q.; Han, J.; Xiao, L.; Lu, J.; Zhuang, L. Energy Environ. Sci. 2015, 8, 177. doi: 10.1039/c4ee02564d  doi: 10.1039/c4ee02564d

    123. [123]

      Innocente, A. F.; Ângelo, A. C. D. J. Power Sources 2006, 162, 151. doi: 10.1016/j.jpowsour.2006.06.057  doi: 10.1016/j.jpowsour.2006.06.057

    124. [124]

      Santos, E.; Pinto, L. M. C.; Soldano, G.; Innocente, A. F.; Ângelo, A. C. D.; Schmickler, W. Catal. Today 2013, 202, 191. doi: 10.1016/j.cattod.2012.07.044  doi: 10.1016/j.cattod.2012.07.044

    125. [125]

      Bortoloti, F.; Garcia, A. C.; Angelo, A. C. D. Int. J. Hydrogen Energy 2015, 40, 10816. doi: 10.1016/j.ijhydene.2015.06.145  doi: 10.1016/j.ijhydene.2015.06.145

    126. [126]

      Zhao, T.; Hu, Y.; Gong, M.; Lin, R.; Deng, S.; Lu, Y.; Liu, X.; Chen, Y.; Shen, T.; Hu, Y.; et al. Nano Energy 2020, 74, 104877. doi: 10.1016/j.nanoen.2020.104877  doi: 10.1016/j.nanoen.2020.104877

    127. [127]

      Kang, Y.; Qi, L.; Li, M.; Diaz, R. E.; Su, D.; Adzic, R. R. ACS Nano 2012, 6, 2818. doi: 10.1016/j.ijhydene.2015.06.145  doi: 10.1016/j.ijhydene.2015.06.145

    128. [128]

      Vidal-Iglesias, F. J.; Lopez-Cudero, A.; Solla-Gullon, J.; Feliu, J. M. Angew. Chem. Int. Ed. 2013, 52, 964. doi: 10.1002/anie.201207517  doi: 10.1002/anie.201207517

    129. [129]

      Alden, L. R.; Han, D. K.; Matsumoto, F.; Héctor D. Abruña.; Disalvo, F. J. Chem. Mater. 2006, 18, 5591. doi: 10.1021/cm060927j  doi: 10.1021/cm060927j

    130. [130]

      Luo, S.; Chen, W.; Cheng, Y.; Song, X.; Wu, Q.; Li, L.; Wu, X.; Wu, T.; Li, M.; Yang, Q.; Deng, K.; Quan, Z. Adv. Mater. 2019, 31, e1903683. doi: 10.1002/adma.201903683  doi: 10.1002/adma.201903683

    131. [131]

      Shen, T.; Zhang, J.; Chen, K.; Deng, S.; Wang, D. Energy Fuels 2020, 34, 9137. doi: 10.1021/acs.energyfuels.0c01820  doi: 10.1021/acs.energyfuels.0c01820

    132. [132]

      Roychowdhury, C.; Matsumoto, F.; Zeldovich, V. B.; Warren, S. C.; Mutolo, P. F.; Ballesteros, M. J. Chem. Mater. 2006, 18, 3365. doi: 10.1021/cm060480e  doi: 10.1021/cm060480e

    133. [133]

      Liu, Y.; Lowe, M. A.; Finkelstein, K. D.; Dale, D. S.; DiSalvo, F. J.; Abruna, H. D. Chem 2010, 16, 13689. doi: 10.1002/chem.201001211  doi: 10.1002/chem.201001211

    134. [134]

      Wang, C. Y.; Yu, Z. Y.; Li, G.; Song, Q. T.; Li, G.; Luo, C. X.; Yin, S. H.; Lu, B. A.; Xiao, C.; Xu, B. B.; et al. ChemElectroChem 2020, 7, 239. doi: 10.1002/celc.201901818  doi: 10.1002/celc.201901818

    135. [135]

      Zhu, J.; Zheng, X.; Wang, J.; Wu, Z.; Han, L.; Lin, R.; Xin, H. L.; Wang, D. J. Mater. Chem. A 2015, 3, 22129. doi: 10.1039/c5ta05699c  doi: 10.1039/c5ta05699c

    136. [136]

      Chen, L.; Zhu, J.; Xuan, C.; Xiao, W.; Xia, K.; Xia, W.; Lai, C.; Xin, H. L.; Wang, D. J. Mater. Chem. A 2018, 6, 5848. doi: 10.1039/c7ta11051k  doi: 10.1039/c7ta11051k

    137. [137]

      Wang, J. Y.; Zhang, H. X.; Jiang, K.; Cai, W. B. J. Am. Chem. Soc. 2011, 133, 14876. doi: 10.1021/ja205747j  doi: 10.1021/ja205747j

    138. [138]

      Sun, D.; Si, L.; Fu, G.; Liu, C.; Sun, D.; Chen, Y.; Tang, Y.; Lu, T. J. Power Sources 2015, 280, 141. doi: 10.1016/j.jpowsour.2015.01.100  doi: 10.1016/j.jpowsour.2015.01.100

    139. [139]

      Shen, T.; Lu, Y.; Gong, M.; Zhao, T.; Hu, Y.; Wang, D. ACS Sustain. Chem. Eng. 2020, 8, 12239. doi: 10.1021/acssuschemeng.0c03881  doi: 10.1021/acssuschemeng.0c03881

    140. [140]

      Jana, R.; Subbarao, U.; Peter, S. C. J. Power Sources 2016, 301, 160. doi: 10.1016/j.jpowsour.2015.09.114  doi: 10.1016/j.jpowsour.2015.09.114

    141. [141]

      Kang, Y.; Qi, L.; Li, M.; Diaz, R. E.; Su, D.; Adzic, R. R.Stach, E.; Li, J.; Murray, C. B. ACS Nano 2012, 6, 2818. doi: 10.1016/j.ijhydene.2015.06.145  doi: 10.1016/j.ijhydene.2015.06.145

    142. [142]

      Mun, Y.; Shim, J.; Kim, K.; Han, J. W.; Kim, S. K.; Ye, Y.; Hwang, J.; Lee, S.; Jang, J.; Kim, Y. T.; Lee, J. RSC Adv. 2016, 6, 88255. doi: 10.1039/c6ra14861a  doi: 10.1039/c6ra14861a

    143. [143]

      An, L.; Yan, H.; Li, B.; Ma, J.; Wei, H.; Xia, D. Nano Energy 2015, 15, 24. doi: 10.1016/j.nanoen.2015.03.031  doi: 10.1016/j.nanoen.2015.03.031

    144. [144]

      Zhu, J.; Yang, Y.; Chen, L.; Xiao, W.; Liu, H.; Abruña, H. D.; Wang, D. Chem. Mater. 2018, 30, 5987. doi: 10.1021/acs.chemmater.8b02172  doi: 10.1021/acs.chemmater.8b02172

    145. [145]

      Zeng, R.; Yang, Y.; Shen, T.; Wang, H.; Xiong, Y.; Zhu, J.; Wang, D.; Abruña, H. D. ACS Catal. 2019, 10, 770. doi: 10.1021/acscatal.9b04344  doi: 10.1021/acscatal.9b04344

    146. [146]

      Chen, Q.; Zhang, J.; Jia, Y.; Jiang, Z.; Xie, Z.; Zheng, L. Nanoscale 2014, 6, 7019. doi: 10.1039/c4nr00313f  doi: 10.1039/c4nr00313f

    147. [147]

      Feng, Q.; Zhao, S.; He, D.; Tian, S.; Gu, L.; Wen, X.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. J. Am. Chem. Soc. 2018, 140, 2773. doi: 10.1021/jacs.7b13612  doi: 10.1021/jacs.7b13612

    148. [148]

      Yuan, X.; Jiang, X.; Cao, M.; Chen, L.; Nie, K.; Zhang, Y.; Xu, Y.; Sun, X.; Li, Y.; Zhang, Q. Nano Res. 2018, 12, 429. doi: 10.1007/s12274-018-2234-2  doi: 10.1007/s12274-018-2234-2

    149. [149]

      Kang, Y.; Murray, C. B. J. Am. Chem. Soc. 2010, 132, 7568. doi: 10.1021/ja100705j  doi: 10.1021/ja100705j

    150. [150]

      Farias, M. J. S.; Cheuquepan, W.; Tanaka, A. A.; Feliu, J. M. J. Phys. Chem. Lett. 2018, 9, 1206. doi: 10.1021/acs.jpclett.8b00030  doi: 10.1021/acs.jpclett.8b00030

    151. [151]

      Kodiyath, R.; Ramesh, G. V.; Koudelkova, E.; Tanabe, T.; Ito, M.; Manikandan, M.; Ueda, S.; Fujita, T.; Umezawa, N.; Noguchi, H.; et al. Energy Environ. Sci. 2015, 8, 1685. doi: 10.1039/c4ee03746d  doi: 10.1039/c4ee03746d

    152. [152]

      Sarkar, S.; Jana, R.; Suchitra; Waghmare, U. V.; Kuppan, B.; Sampath, S.; Peter, S. C. Chem. Mater. 2015, 27, 7459. doi: 10.1021/acs.chemmater.5b03546  doi: 10.1021/acs.chemmater.5b03546

    153. [153]

      Wang, C.; Wu, Y.; Wang, X.; Zou, L.; Zou, Z.; Yang, H. Electrochim. Acta 2016, 220, 628. doi: 10.1016/j.electacta.2016.10.094  doi: 10.1016/j.electacta.2016.10.094

    154. [154]

      Zhang, W.; Wang, R.; Wang, H.; Lei, Z. Fuel Cells 2010, 10, 734. doi: 10.1002/fuce.200900184  doi: 10.1002/fuce.200900184

    155. [155]

      Singh, R. N.; Singh, A.; Anindita, Int. J. Hydrogen Energy 2009, 34, 2052. doi: 10.1016/j.ijhydene.2008.12.047  doi: 10.1016/j.ijhydene.2008.12.047

    156. [156]

      Pattabiraman, R. Appl. Catal. A 1997, 153, 9. doi: 10.1016/j.ijhydene.2008.12.047  doi: 10.1016/j.ijhydene.2008.12.047

    157. [157]

      Jiang, K.; Wang, P.; Guo, S.; Zhang, X.; Shen, X.; Lu, G.; Su, D.; Huang, X. Angew. Chem. 2016, 128, 9176. doi: 10.1002/ange.201603022  doi: 10.1002/ange.201603022

    158. [158]

      Serov, A.; Martinez, U.; Atanassov, P. Electrochem. Commun. 2013, 34, 185. doi: 10.1016/j.elecom.2013.06.003  doi: 10.1016/j.elecom.2013.06.003

    159. [159]

      Shi, Q.; Zhu, C.; Bi, C.; Xia, H.; Engelhard, M. H.; Du, D.; Lin, Y. J. Mater. Chem. A 2017, 5, 23952. doi: 10.1039/c7ta08407b  doi: 10.1039/c7ta08407b

    160. [160]

      Zhu, Y.; Bu, L.; Shao, Q.; Huang, X. ACS Catal. 2020, 10, 3455. doi: 10.1021/acscatal.9b04313  doi: 10.1021/acscatal.9b04313

    161. [161]

      Yun, Q.; Lu, Q.; Li, C.; Chen, B.; Zhang, Q.; He, Q.; Hu, Z.; Zhang, Z.; Ge, Y.; Yang, N.; et al. ACS Nano 2019, 13, 14329. doi: 10.1021/acsnano.9b07775  doi: 10.1021/acsnano.9b07775

  • 加载中
    1. [1]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    5. [5]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    6. [6]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    7. [7]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    12. [12]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    13. [13]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    17. [17]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    18. [18]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    19. [19]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(40)
  • Abstract views(1674)
  • HTML views(707)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return