Citation: Xingang Fei, Haiyan Tan, Bei Cheng, Bicheng Zhu, Liuyang Zhang. 2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations[J]. Acta Physico-Chimica Sinica, ;2021, 37(6): 201002. doi: 10.3866/PKU.WHXB202010027 shu

2D/2D Black Phosphorus/g-C3N4 S-Scheme Heterojunction Photocatalysts for CO2 Reduction Investigated using DFT Calculations

  • Corresponding author: Haiyan Tan, Jftanhaiyan@sina.com Bicheng Zhu, zhubicheng1991@whut.edu.cn Liuyang Zhang, zly2017@whut.edu.cn
  • Received Date: 13 October 2020
    Revised Date: 4 November 2020
    Accepted Date: 4 November 2020
    Available Online: 12 November 2020

    Fund Project: the National Key Research and Development Program of China 2018YFB1502001the National Natural Science Foundation of China 51872220the National Natural Science Foundation of China 21905219the National Natural Science Foundation of China 51932007the National Natural Science Foundation of China U1905215the National Natural Science Foundation of China 21871217the National Natural Science Foundation of China U1705251National Postdoctoral Program for Innovative Talents BX20180231China Postdoctoral Science Foundation 2020M672432

  • Photocatalytic reduction of CO2 to hydrocarbon compounds is a promising method for addressing energy shortages and environmental pollution. Considerable efforts have been devoted to exploring valid strategies to enhance photocatalytic efficiency. Among various modification methods, the hybridization of different photocatalysts is effective for addressing the shortcomings of a single photocatalyst and enhancing its CO2 reduction performance. In addition, metal-free materials such as g-C3N4 and black phosphorus (BP) are attractive because of their unique structures and electronic properties. Many experimental results have verified the superior photocatalytic activity of a BP/g-C3N4 composite. However, theoretical understanding of the intrinsic mechanism of the activity enhancement is still lacking. Herein, the geometric structures, optical absorption, electronic properties, and CO2 reduction reaction processes of 2D/2D BP/g-C3N4 composite models are investigated using density functional theory calculations. The composite model consists of a monolayer of BP and a tri-s-triazine-based monolayer of g-C3N4. Based on the calculated work function, it is inferred that electrons transfer from g-C3N4 to BP owing to the higher Fermi level of g-C3N4 compared with that of BP. Furthermore, the charge density difference suggests the formation of a built-in electric field at the interface, which is conducive to the separation of photogenerated electron-hole pairs. The optical absorption coefficient demonstrates that the light absorption of the composite is significantly higher than that of its single-component counterpart. Integrated analysis of the band edge potential and interfacial electronic interaction indicates that the migration of photogenerated charge carriers in the BP/g-C3N4 hybrid follows the S-scheme photocatalytic mechanism. Under visible-light irradiation, the photogenerated electrons on BP recombine with the photogenerated holes on g-C3N4, leaving photogenerated electrons and holes in the conduction band of g-C3N4 and the valence band of BP, respectively. Compared with pristine g-C3N4, this S-scheme heterojunction allows efficient separation of photogenerated charge carriers while effectively preserving strong redox abilities. Additionally, the possible reaction path for CO2 reduction on g-C3N4 and BP/g-C3N4 is discussed by computing the free energy of each step. It was found that CO2 reduction on the composite occurs most readily on the g-C3N4 side. The reaction path on the composite is different from that on g-C3N4. The heterojunction reduces the maximum energy barrier for CO2 reduction from 1.48 to 1.22 eV, following the optimal reaction path. Consequently, the BP/g-C3N4 heterojunction is theoretically proven to be an excellent CO2 reduction photocatalyst. This work is helpful for understanding the effect of BP modification on the photocatalytic activity of g-C3N4. It also provides a theoretical basis for the design of other high-performance CO2 reduction photocatalysts.
  • 加载中
    1. [1]

      Usubharatana, P.; McMartin, D.; Veawab, A.; Tontiwachwuthikul, P. Ind. Eng. Chem. Res. 2006, 45, 2558. doi: 10.1021/ie0505763  doi: 10.1021/ie0505763

    2. [2]

      Tahir, M.; Amin, N. S. Renewable Sustainable Energy Rev. 2013, 25, 560. doi: 10.1016/j.rser.2013.05.027  doi: 10.1016/j.rser.2013.05.027

    3. [3]

      Lan, B. -Y.; Shi, H. -F. Acta Phys. -Chim. Sin. 2014, 30, 2177.  doi: 10.3866/PKU.WHXB201409303

    4. [4]

      Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Nat. Commun. 2020, 11, 4613. doi: 10.1038/s41467-020-18350-7  doi: 10.1038/s41467-020-18350-7

    5. [5]

      Xia, Y.; Yu, J. Chem 2020, 6, 1039. doi: 10.1016/j.chempr.2020.02.015  doi: 10.1016/j.chempr.2020.02.015

    6. [6]

      Wang, Z.; Chen, Y.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. J. Mater. Sci. Technol. 2020, 56, 143. doi: 10.1016/j.jmst.2020.02.062  doi: 10.1016/j.jmst.2020.02.062

    7. [7]

      He, F.; Zhu, B.; Cheng, B.; Yu, J.; Ho, W.; Macyk, W. Appl. Catal. B 2020, 272, 119006. doi: 10.1016/j.apcatb.2020.119006  doi: 10.1016/j.apcatb.2020.119006

    8. [8]

      Liang, M.; Borjigin, T.; Zhang, Y.; Liu, B.; Liu, H.; Guo, H. Appl. Catal. B 2019, 243, 566. doi: 10.1016/j.apcatb.2018.11.010  doi: 10.1016/j.apcatb.2018.11.010

    9. [9]

      Li, X. W.; Wang, B.; Yin, W. X.; Di, J.; Xia, J. X.; Zhu, W. S.; Li, H. M. Acta Phys. -Chim. Sin. 2020, 36, 1902001.  doi: 10.3866/PKU.WHXB201902001

    10. [10]

      Wang, L.; Zhu, C. L.; Yin, L. S.; Huang, W. Acta Phys. -Chim. Sin. 2020, 36, 1907001.  doi: 10.3866/PKU.WHXB201907001

    11. [11]

      Wang, Y. Q.; Shen, S. H. Acta Phys. -Chim. Sin. 2020, 36, 1905080.  doi: 10.3866/PKU.WHXB201905080

    12. [12]

      Li, Y.; Zhou, M.; Cheng, B.; Shao, Y. J. Mater. Sci. Technol. 2020, 56, 1. doi: 10.1016/j.jmst.2020.04.028  doi: 10.1016/j.jmst.2020.04.028

    13. [13]

      Xia, P.; Cao, S.; Zhu, B.; Liu, M.; Shi, M.; Yu, J.; Zhang, Y. Angew. Chem. Int. Ed. 2020, 59, 5218. doi: 10.1002/anie.201916012  doi: 10.1002/anie.201916012

    14. [14]

      Ren, Y. J.; Zeng, D. Q.; Ong, W. J. Chin. J. Catal. 2019, 40, 289. doi: 10.1016/s1872-2067(19)63293-6  doi: 10.1016/s1872-2067(19)63293-6

    15. [15]

      Qi, K. Z.; Lv, W. X.; Khan, I.; Liu, S. Y. Chin. J. Catal. 2020, 41, 114. doi: 10.1016/s1872-2067(19)63459-5  doi: 10.1016/s1872-2067(19)63459-5

    16. [16]

      Chai, B.; Yan, J. T.; Fan, G. Z.; Song, G. S.; Wang, C. L. Chin. J. Catal. 2020, 41, 170. doi: 10.1016/s1872-2067(19)63383-8  doi: 10.1016/s1872-2067(19)63383-8

    17. [17]

      Xie, Q.; He, W. M.; Liu, S. W.; Li, C. H.; Zhang, J. F.; Wong, P. K. Chin. J. Catal. 2020, 41, 140. doi: 10.1016/s1872-2067(19)63481-9  doi: 10.1016/s1872-2067(19)63481-9

    18. [18]

      Li, Q.; Zhao, W.; Zhai, Z.; Ren, K.; Wang, T.; Guan, H.; Shi, H. J. Mater. Sci. Technol. 2020, 56, 216. doi: 10.1016/j.jmst.2020.03.038  doi: 10.1016/j.jmst.2020.03.038

    19. [19]

      Qin, D.; Xia, Y.; Li, Q.; Yang, C.; Qin, Y.; Lv, K. J. Mater. Sci. Technol. 2020, 56, 206. doi: 10.1016/j.jmst.2020.03.034  doi: 10.1016/j.jmst.2020.03.034

    20. [20]

      Ong, W. -J.; Tan, L. -L.; Chai, S. -P.; Yong, S. -T. Chem. Commun. 2015, 51, 858. doi: 10.1039/c4cc08996k  doi: 10.1039/c4cc08996k

    21. [21]

      Su, T.; Hood, Z. D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C. M.; Ivanov, I. N.; Ji, H.; Qin, Z.; Wu, Z. Nanoscale 2019, 11, 8138. doi: 10.1039/c9nr00168a  doi: 10.1039/c9nr00168a

    22. [22]

      Wang, H.; Zhu, X.; Yang, Y.; Chen, C.; Lin, Q.; He, Y.; Yin, X.; Lu, C.; Yang, H. Mater. Chem. Front. 2020, 4, 2646. doi: 10.1039/D0QM00286K  doi: 10.1039/D0QM00286K

    23. [23]

      Xiong, J.; Li, X.; Huang, J.; Gao, X.; Chen, Z.; Liu, J.; Li, H.; Kang, B.; Yao, W.; Zhu, Y. Appl. Catal. B 2020, 266, 118602. doi: 10.1016/j.apcatb.2020.118602  doi: 10.1016/j.apcatb.2020.118602

    24. [24]

      Qiu, P.; Xu, C.; Zhou, N.; Chen, H.; Jiang, F. Appl. Catal. B 2018, 221, 27. doi: 10.1016/j.apcatb.2017.09.010  doi: 10.1016/j.apcatb.2017.09.010

    25. [25]

      Kong, L.; Ji, Y.; Dang, Z.; Yan, J.; Li, P.; Li, Y.; Liu, S. Adv. Funct. Mater. 2018, 28, 1800668. doi: 10.1002/adfm.201800668  doi: 10.1002/adfm.201800668

    26. [26]

      Wang, W.; Niu, Q.; Zeng, G.; Zhang, C.; Huang, D.; Shao, B.; Zhou, C.; Yang, Y.; Liu, Y.; Guo, H.; et al. Appl. Catal. B 2020, 273, 119051. doi: 10.1016/j.apcatb.2020.119051  doi: 10.1016/j.apcatb.2020.119051

    27. [27]

      Han, C.; Li, J.; Ma, Z.; Xie, H.; Waterhouse, G. I. N.; Ye, L.; Zhang, T. Sci. China Mater. 2018, 61, 1159. doi: 10.1007/s40843-018-9245-y  doi: 10.1007/s40843-018-9245-y

    28. [28]

      Zhang, Q.; Huang, S.; Deng, J.; Gangadharan, D. T.; Yang, F.; Xu, Z.; Giorgi, G.; Palummo, M.; Chaker, M.; Ma, D. Adv. Funct. Mater. 2019, 29, 1902486. doi: 10.1002/adfm.201902486  doi: 10.1002/adfm.201902486

    29. [29]

      Hu, J.; Ji, Y.; Mo, Z.; Li, N.; Xu, Q.; Li, Y.; Xu, H.; Chen, D.; Lu, J. J. Mater. Chem. A 2019, 7, 4408. doi: 10.1039/C8TA12309H  doi: 10.1039/C8TA12309H

    30. [30]

      Song, T.; Zeng, G.; Zhang, P.; Wang, T.; Ali, A.; Huang, S.; Zeng, H. J. Mater. Chem. A 2019, 7, 503. doi: 10.1039/C8TA09647C  doi: 10.1039/C8TA09647C

    31. [31]

      Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169  doi: 10.1103/PhysRevB.54.11169

    32. [32]

      Hafner, J. J. Comput. Chem. 2008, 29, 2044. doi: 10.1002/jcc.21057  doi: 10.1002/jcc.21057

    33. [33]

      Blöchl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953  doi: 10.1103/PhysRevB.50.17953

    34. [34]

      Wu, Z.; Cohen, R. E. Phys. Rev. B 2006, 73, 235116. doi: 10.1103/PhysRevB.73.235116  doi: 10.1103/PhysRevB.73.235116

    35. [35]

      Zhu, B.; Zhang, L.; Cheng, B.; Yu, Y.; Yu, J. Chin. J. Catal. 2021, 42, 115. doi: 10.1016/S1872-2067(20)63598-7  doi: 10.1016/S1872-2067(20)63598-7

    36. [36]

      Grimme, S. J. Comput. Chem. 2006, 27, 1787. doi: 10.1002/jcc.20495  doi: 10.1002/jcc.20495

    37. [37]

      Zhu, B.; Wageh, S.; Al-Ghamdi, A.; Yang, S.; Tian, Z.; Yu, J. Catal. Today 2019, 335, 117. doi: 10.1016/j.cattod.2018.09.038  doi: 10.1016/j.cattod.2018.09.038

    38. [38]

      Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2006, 124, 219906. doi: 10.1063/1.2204597  doi: 10.1063/1.2204597

    39. [39]

      Dieterich, J. M.; Werner, H. -J.; Mata, R. A.; Metz, S.; Thiel, W. J. Chem. Phys. 2010, 132, 035101. doi: 10.1063/1.3280164  doi: 10.1063/1.3280164

    40. [40]

      Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. J. Phys. Chem. B 2004, 108, 17886. doi: 10.1021/jp047349j  doi: 10.1021/jp047349j

    41. [41]

      Ong, W. -J.; Tan, L. -L.; Ng, Y. H.; Yong, S. -T.; Chai, S. -P. Chem. Rev. 2016, 116, 7159. doi: 10.1021/acs.chemrev.6b00075  doi: 10.1021/acs.chemrev.6b00075

    42. [42]

      Kong, Z.; Chen, X.; Ong, W. -J.; Zhao, X.; Li, N. Appl. Surf. Sci. 2019, 463, 1148. doi: 10.1016/j.apsusc.2018.09.026  doi: 10.1016/j.apsusc.2018.09.026

    43. [43]

      Zhao, Y.; Lin, Y.; Wang, G.; Jiang, Z.; Zhang, R.; Zhu, C. Appl. Surf. Sci. 2019, 463, 809. doi: 10.1016/j.apsusc.2018.08.013  doi: 10.1016/j.apsusc.2018.08.013

    44. [44]

      Zhu, B.; Zhang, L.; Cheng, B.; Yu, J. Appl. Catal. B: Environ. 2018, 224, 983. doi: 10.1016/j.apcatb.2017.11.025  doi: 10.1016/j.apcatb.2017.11.025

    45. [45]

      Zheng, Y.; Yu, Z.; Ou, H.; Asiri, A. M.; Chen, Y.; Wang, X. Adv. Funct. Mater. 2018, 28, 1705407. doi: 10.1002/adfm.201705407  doi: 10.1002/adfm.201705407

    46. [46]

      Zhu, B.; Cheng, B.; Zhang, L.; Yu, J. Carbon Energy 2019, 1, 32. doi: 10.1002/cey2.1  doi: 10.1002/cey2.1

    47. [47]

      Zhang, J.; Fu, J.; Wang, Z.; Cheng, B.; Dai, K.; Ho, W. J. Alloys Compd. 2018, 766, 841. doi: 10.1016/j.jallcom.2018.07.041  doi: 10.1016/j.jallcom.2018.07.041

    48. [48]

      Liu, J. J. Phys. Chem. C 2015, 119, 28417. doi: 10.1021/acs.jpcc.5b09092  doi: 10.1021/acs.jpcc.5b09092

    49. [49]

      Dai, W. -W.; Zhao, Z. -Y. Appl. Surf. Sci. 2017, 406, 8. doi: 10.1016/j.apsusc.2017.02.079  doi: 10.1016/j.apsusc.2017.02.079

    50. [50]

      Pearson, R. G. Inorg. Chem. 1988, 27, 734. doi: 10.1021/ic00277a030  doi: 10.1021/ic00277a030

    51. [51]

      Yao, Z.; Liu, X.; Sui, H.; Sun, H. Mater. Lett. 2020, 275, 128007. doi: 10.1016/j.matlet.2020.128007  doi: 10.1016/j.matlet.2020.128007

    52. [52]

      Zhang, X. N.; Deng, J. J.; Yan, J.; Song, Y. H.; Mo, Z.; Qian, J. C.; Wu, X. Y.; Yuan, S. Q.; Li, H. M.; Xu, H. Appl. Surf. Sci. 2019, 490, 117. doi: 10.1016/j.apsusc.2019.05.246  doi: 10.1016/j.apsusc.2019.05.246

    53. [53]

      He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J. Chin. J. Catal. 2020, 41, 9. doi: 10.1016/S1872-2067(19)63382-6  doi: 10.1016/S1872-2067(19)63382-6

    54. [54]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    55. [55]

      Fu, J.; Zhu, B.; Jiang, C.; Cheng, B.; You, W.; Yu, J. Small 2017, 13, 1603938. doi: 10.1002/smll.201603938  doi: 10.1002/smll.201603938

    56. [56]

      Cao, S.; Li, Y.; Zhu, B.; Jaroniec, M.; Yu, J. J. Catal. 2017, 149, 208. doi: 10.1016/j.jcat.2017.02.005  doi: 10.1016/j.jcat.2017.02.005

    57. [57]

      Azofra, L. M.; MacFarlane, D. R.; Sun, C. Phys. Chem. Chem. Phys. 2016, 18, 18507. doi: 10.1039/C6CP02453J  doi: 10.1039/C6CP02453J

    58. [58]

      Wang, Y.; Tian, Y.; Yan, L.; Su, Z. J. Phys. Chem. C 2018, 122, 7712. doi: 10.1021/acs.jpcc.8b00098  doi: 10.1021/acs.jpcc.8b00098

    59. [59]

      Zhi, X.; Jiao, Y.; Zheng, Y.; Qiao, S. -Z. Small 2019, 15, 1804224. doi: 10.1002/smll.201804224  doi: 10.1002/smll.201804224

  • 加载中
    1. [1]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    2. [2]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    3. [3]

      Yuhao MaYufei ZhouMingchuan YuCheng FangShaoxia YangJunfeng Niu . Covalently bonded ternary photocatalyst comprising MoSe2/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation. Chinese Chemical Letters, 2024, 35(9): 109453-. doi: 10.1016/j.cclet.2023.109453

    4. [4]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    5. [5]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    6. [6]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    7. [7]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    8. [8]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    9. [9]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    10. [10]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    11. [11]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    12. [12]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    13. [13]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    14. [14]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    15. [15]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    17. [17]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    18. [18]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    19. [19]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    20. [20]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

Metrics
  • PDF Downloads(159)
  • Abstract views(1334)
  • HTML views(471)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return