Citation: Gao Zengqiang, Wang Congyong, Li Junjun, Zhu Yating, Zhang Zhicheng, Hu Wenping. Conductive Metal-Organic Frameworks for Electrocatalysis:Achievements, Challenges, and Opportunities[J]. Acta Physico-Chimica Sinica, ;2021, 37(7): 201002. doi: 10.3866/PKU.WHXB202010025 shu

Conductive Metal-Organic Frameworks for Electrocatalysis:Achievements, Challenges, and Opportunities



  • Author Bio:



    Zhicheng Zhang is a Professor in the Department of Chemistry, School of Science, Tianjin University. He received his Ph.D. degree from the College of Chemical Engineering, China University of Petroleum (Beijing) in 2012. Then, he worked as a Postdoctoral Researcher in the Department of Chemistry, Tsinghua University. Since 2014, he worked as a Research Fellow in the School of Materials Science and Engineering, Nanyang Technological University, Singapore. In 2019, he joined Tianjin University as a Full Professor. His research interests include the design and synthesis of functional nanomaterials and their applications in energy conversion, catalysis, and organic optoelectronics
    Wenping Hu is a Professor at Tianjin University and a Cheung Kong Professor of the Ministry of Education, China. He received his Ph.D. from ICCAS in 1999. Then, he joined Osaka University and Stuttgart University as a Research Fellow of the Japan Society for the Promotion of Sciences and an Alexander von Humboldt fellow, respectively. In 2003, he worked with Nippon Telephone and Telegraph and then joined ICCAS as a Full Professor. He worked for Tianjin University in 2013. His research focuses on organic optoelectronics
  • Corresponding author: Zhang Zhicheng, zczhang19@tju.edu.cn Hu Wenping, huwp@tju.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 13 October 2020
    Revised Date: 25 November 2020
    Accepted Date: 25 November 2020
    Available Online: 30 November 2020

    Fund Project: the National Natural Science Foundation of China 22071172This work was supported by the National Key R & D Program (2017YFA0204503), and the National Natural Science Foundation of China (22071172, 91833306, 21875158, 51633006, 51733004)the National Key R & D Program 2017YFA0204503the National Natural Science Foundation of China 51733004the National Natural Science Foundation of China 91833306the National Natural Science Foundation of China 21875158the National Natural Science Foundation of China 51633006

  • To fulfill the demands of green and sustainable energy, the production of novel catalysts for different energy conversion processes is critical. Owing to the intriguing advantages of the intrinsic active species, tunable crystal structure, remarkable chemical and physical properties, and good stability, metal-organic frameworks (MOFs) have been extensively investigated in various electrochemical energy conversions, such as the CO2 reduction reaction, N2 reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and oxygen reduction reaction. More importantly, it is feasible to change the chemical environments, pore sizes, and porosity of MOFs, which will theoretically facilitate the diffusion of reactants across the open porous networks, thereby improving the electrocatalytic performance. However, owing to the high energy barriers of charge transfer and limited free charge carriers, most MOFs show poor electrical conductivity, thus limiting their diverse applications. As reported previously, MOFs were used as a porous substrate to confine the growth of nanoparticles or co-doped electrocatalysts after annealing. The conductive MOFs can combine the advantages of conventional MOFs with electronic conductivity, which significantly enhance the electrocatalytic performance. In addition, conductive MOFs can achieve conductivity via electronic or ionic routes without post-annealing treatment, thereby extending their potential applications. Different synthesis strategies have recently been developed to endow MOFs with electrical conductivity, such as post-synthesis modification, guest molecule introduction, and composite formatting. The performance of conductive MOFs can even outperform those of commercial RuO2 catalysts or Pt-group catalysts. However, it is difficult to endow most MOFs with high conductivity. This review summarizes the mechanisms of constructing conductive MOFs, such as redox hopping, through-bond pathways, through-space pathways, extended conjugation, and guest-promoted transport. Synthetic methods, including hydro/solvothermal synthesis and interface-assisted synthesis, are introduced. Recent advances in the use of conductive MOFs as heterogeneous catalysts in electrocatalysis have been comprehensively elucidated. It has been reported that conductive MOFs can demonstrate considerable catalytic activity, selectivity, and stability in different electrochemical reactions, revealing the immense potential for future displacement of Pt-group catalysts. Finally, the challenges and opportunities of conductive MOFs in electrocatalysis are discussed. Based on systematic synthesis strategies, more conductive MOFs can be constructed for electrocatalytic reactions. In addition, the morphology and structure of conductive MOFs, which can change the electrochemical accessibility between substrates and MOFs, are also crucial for catalysis, and thus, they should be extensively studied in the future. It is believed that a breakthrough for high-performance conductive MOF-based electrocatalysts could be achieved.
  • 加载中
    1. [1]

      Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276. doi: 10.1038/46248  doi: 10.1038/46248

    2. [2]

      Tranchemontagne, D. J.; Mendoza-Cortés, J. L.; O'Keeffe, M.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1257. doi: 10.1039/B817735J  doi: 10.1039/B817735J

    3. [3]

      Zhang, Z.; Chen, Y.; Xu, X.; Zhang, J.; Xiang, G.; He, W.; Wang, X. Angew. Chem. Int. Ed. 2014, 53, 429. doi: 10.1002/anie.201308589  doi: 10.1002/anie.201308589

    4. [4]

      Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673. doi: 10.1021/cr300014x  doi: 10.1021/cr300014x

    5. [5]

      Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444. doi: 10.1126/science.1230444  doi: 10.1126/science.1230444

    6. [6]

      Chen, X.-H.; Wei, Q.; Hong, J.-D.; Xu, R.; Zhou, T.-H. Rare Met. 2019, 38, 413. doi: 10.1007/s12598-019-01259-6  doi: 10.1007/s12598-019-01259-6

    7. [7]

      Bavykina, A.; Kolobov, N.; Khan, I. S.; Bau, J. A.; Ramirez, A.; Gascon, J. Chem. Rev. 2020, 120, 8468. doi: 10.1021/acs.chemrev.9b00685  doi: 10.1021/acs.chemrev.9b00685

    8. [8]

      Wang, Y.; Li, Q.; Shi, W.; Cheng, P. Chin. Chem. Lett. 2020, 31, 1768. doi: 10.1016/j.cclet.2020.01.010  doi: 10.1016/j.cclet.2020.01.010

    9. [9]

      Zhang, K.; Liang, Z.; Zou, R. Sci. China Mater. 2020, 63, 7. doi: 10.1007/s11426-019-9613-1  doi: 10.1007/s11426-019-9613-1

    10. [10]

      Song, Z.; Zhang, L.; Doyle-Davis, K.; Fu, X.; Luo, J.-L.; Sun, X. Adv. Energy Mater. 2020, 10, 2001561. doi: 10.1002/aenm.202001561  doi: 10.1002/aenm.202001561

    11. [11]

      Zhao, M.; Huang, Y.; Peng, Y.; Huang, Z.; Ma, Q.; Zhang, H. Chem. Soc. Rev. 2018, 47, 6267. doi: 10.1039/C8CS00268A  doi: 10.1039/C8CS00268A

    12. [12]

      Liu, J.; Wöll, C. Chem. Soc. Rev. 2017, 46, 5730. doi: 10.1039/C7CS00315C  doi: 10.1039/C7CS00315C

    13. [13]

      Li, B.; Wen, H.-M.; Cui, Y.; Zhou, W.; Qian, G.; Chen, B. Adv. Mater. 2016, 28, 8819. doi: 10.1002/adma.201601133  doi: 10.1002/adma.201601133

    14. [14]

      Ding, M.; Flaig, R. W.; Jiang, H.-L.; Yaghi, O. M. Chem. Soc. Rev. 2019, 48, 2783. doi: 10.1039/C8CS00829A  doi: 10.1039/C8CS00829A

    15. [15]

      Li, J.-R.; Sculley, J.; Zhou, H.-C. Chem. Rev. 2012, 112, 869. doi: 10.1021/cr200190s  doi: 10.1021/cr200190s

    16. [16]

      Zhang, Z.; Chen, Y.; He, S.; Zhang, J.; Xu, X.; Yang, Y.; Nosheen, F.; Saleem, F.; He, W.; Wang, X. Angew. Chem. Int. Ed. 2014, 53, 12517. doi: 10.1002/anie.201406484  doi: 10.1002/anie.201406484

    17. [17]

      Dhakshinamoorthy, A.; Asiri, A. M.; Garcia, H. Adv. Mater. 2019, 31, 1900617. doi: 10.1002/adma.201900617  doi: 10.1002/adma.201900617

    18. [18]

      Sun, L.; Campbell, M. G.; Dincă, M. Angew. Chem. Int. Ed. 2016, 55, 3566. doi: 10.1002/anie.201506219  doi: 10.1002/anie.201506219

    19. [19]

      Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P.; et al. Science 2014, 343, 66. doi: 10.1126/science.1246738  doi: 10.1126/science.1246738

    20. [20]

      Li, W.-H.; Deng, W.-H.; Wang, G.-E.; Xu, G. Energy Chem. 2020, 2, 100029. doi: 10.1016/j.enchem.2020.100029  doi: 10.1016/j.enchem.2020.100029

    21. [21]

      Li, W. H.; Ding, K.; Tian, H. R.; Yao, M.-S.; Nath, B.; Deng, W.-H.; Wang, Y.; Xu, G. Adv. Funct. Mater. 2017, 27, 1702067. doi: 10.1002/adfm.201702067  doi: 10.1002/adfm.201702067

    22. [22]

      Ko, M.; Mendecki, L.; Mirica, K. A. Chem. Commun. 2018, 54, 7873. doi: 10.1039/C8CC02871K  doi: 10.1039/C8CC02871K

    23. [23]

      Li, P.; Wang, B. Isr. J. Chem. 2018, 58, 1010. doi: 10.1002/ijch.201800078  doi: 10.1002/ijch.201800078

    24. [24]

      Stavila, V.; Talin, A. A.; Allendorf, M. D. Chem. Soc. Rev. 2014, 43, 5994. doi: 10.1039/C4CS00096J  doi: 10.1039/C4CS00096J

    25. [25]

      Bhardwaj, S. K.; Bhardwaj, N.; Kaur, R.; Mehta, J.; Sharma, A. L.; Kim, K.-H.; Deep, A. J. Mater. Chem. A 2018, 6, 14992. doi: 10.1039/C8TA04220A  doi: 10.1039/C8TA04220A

    26. [26]

      Clough, A. J.; Yoo, J. W.; Mecklenburg, M. H.; Marinescu, S. C. J. Am. Chem. Soc. 2015, 137, 118. doi: 10.1021/ja5116937  doi: 10.1021/ja5116937

    27. [27]

      Miner, E. M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dincă, M. Nat. Commun. 2016, 7, 10942. doi: 10.1038/ncomms10942  doi: 10.1038/ncomms10942

    28. [28]

      Miner, E. M.; Wang, L.; Dincă, M. Chem. Sci. 2018, 9, 6286. doi: 10.1039/C8SC02049C  doi: 10.1039/C8SC02049C

    29. [29]

      Cheng, W.-Z.; Liang, J.-L.; Yin, H.-B.; Wang, Y.-J.; Yan, W.-F.; Zhang, J.-N. Rare Met. 2020, 39, 815. doi: 10.1007/s12598-020-01440-2  doi: 10.1007/s12598-020-01440-2

    30. [30]

      Liu, X.; Yue, T.; Qi, K.; Qiu, Y.; Xia, B. Y.; Guo, X. Chin. Chem. Lett. 2020, 31, 2189. doi: 10.1016/j.cclet.2019.12.009  doi: 10.1016/j.cclet.2019.12.009

    31. [31]

      Zhao, R.; Liang, Z.; Zou, R.; Xu, Q. Joule 2018, 2, 2235. doi: 10.1016/j.joule.2018.09.019  doi: 10.1016/j.joule.2018.09.019

    32. [32]

      Shinde, S. S.; Lee, C. H.; Jung, J.-Y.; Wagh, N. K.; Kim, S.-H.; Kim, D.-H.; Lin, C.; Lee, S. U.; Lee, J.-H. Energy Environ. Sci. 2019, 12, 727. doi: 10.1039/C8EE02679C  doi: 10.1039/C8EE02679C

    33. [33]

      Liu, J.; Song, X.; Zhang, T.; Liu, S.; Wen, H.; Chen, L. Angew. Chem. Int. Ed. 2020, 59, 2. doi: 10.1002/anie.202006102  doi: 10.1002/anie.202006102

    34. [34]

      Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C.-J.; Shao-Horn, Y.; Dincă, M. Nat. Mater. 2017, 16, 220. doi: 10.1038/nmat4766  doi: 10.1038/nmat4766

    35. [35]

      Du, W.; Bai, Y.-L.; Yang, Z.; Li, R.; Zhang, D.; Ma, Z.; Yuan, A.; Xu, J. Chin. Chem. Lett. 2020, 31, 2309. doi: 10.1016/j.cclet.2020.04.017  doi: 10.1016/j.cclet.2020.04.017

    36. [36]

      Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M. Angew. Chem. Int. Ed. 2015, 54, 4349. doi: 10.1002/anie.201411854  doi: 10.1002/anie.201411854

    37. [37]

      Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dincă, M. J. Am. Chem. Soc. 2015, 137, 13780. doi: 10.1021/jacs.5b09600  doi: 10.1021/jacs.5b09600

    38. [38]

      Aubrey, M. L.; Kapelewski, M. T.; Melville, J. F.; Oktawiec, J.; Presti, D.; Gagliardi, L.; Long, J. R. J. Am. Chem. Soc. 2019, 141, 5005. doi: 10.1021/jacs.9b00654  doi: 10.1021/jacs.9b00654

    39. [39]

      Meng, Z.; Aykanat, A.; Mirica, K. A. J. Am. Chem. Soc. 2019, 141, 2046. doi: 10.1021/jacs.8b11257  doi: 10.1021/jacs.8b11257

    40. [40]

      Wu, G.; Huang, J.; Zang, Y.; He, J.; Xu, G. J. Am. Chem. Soc. 2017, 139, 1360. doi: 10.1021/jacs.6b08511  doi: 10.1021/jacs.6b08511

    41. [41]

      Huang, X.; Sheng, P.; Tu, Z.; Zhang, F.; Wang, J.; Geng, H.; Zou, Y.; Di, C.-A.; Yi, Y.; Sun, Y.; Xu, W.; Zhu, D. Nat. Commun. 2015, 6, 7408. doi: 10.1038/ncomms8408  doi: 10.1038/ncomms8408

    42. [42]

      Lahiri, N.; Lotfizadeh, N.; Tsuchikawa, R.; Deshpande, V. V.; Louie, J. J. Am. Chem. Soc. 2017, 139, 19. doi: 10.1021/jacs.6b09889  doi: 10.1021/jacs.6b09889

    43. [43]

      Wang, B.; Luo, Y.; Liu, B.; Duan, G. ACS Appl. Mater. Interfaces 2019, 11, 35935. doi: 10.1021/acsami.9b14319  doi: 10.1021/acsami.9b14319

    44. [44]

      Song, X.; Wang, X.; Li, Y.; Zheng, C.; Zhang, B.; Di, C.-A.; Li, F.; Jin, C.; Mi, W.; Chen, L.; Hu, W. Angew. Chem. Int. Ed. 2020, 59, 1118. doi: 10.1002/anie.201911543  doi: 10.1002/anie.201911543

    45. [45]

      Zhao, W.; Peng, J.; Wang, W.; Liu, S.; Zhao, Q.; Huang, W. Coordin. Chem. Rev. 2018, 377, 44. doi: 10.1016/j.ccr.2018.08.023  doi: 10.1016/j.ccr.2018.08.023

    46. [46]

      Dong, R.; Zhang, Z.; Tranca, D. C.; Zhou, S.; Wang, M.; Adler, P.; Liao, Z.; Liu, F.; Sun, Y.; Shi, W.; et al. Nat. Commun. 2018, 9, 2637. doi: 10.1038/s41467-018-05141-4  doi: 10.1038/s41467-018-05141-4

    47. [47]

      Yang, C.; Dong, R.; Wang, M.; Petkov, P. S.; Zhang, Z.; Wang, M.; Han, P.; Ballabio, M.; Bräuninger, S. A.; Liao, Z.; et al. Nat. Commun. 2019, 10, 3260. doi: 10.1038/s41467-019-11267-w  doi: 10.1038/s41467-019-11267-w

    48. [48]

      Qiu, T.; Liang, Z.; Guo, W.; Tabassum, H.; Gao, S.; Zou, R. ACS Energy Lett. 2020, 5, 520. doi: 10.1021/acsenergylett.9b02625  doi: 10.1021/acsenergylett.9b02625

    49. [49]

      Chu, S.; Majumdar, A. Nature 2012, 488, 294. doi: 10.1038/nature11475  doi: 10.1038/nature11475

    50. [50]

      Liu, J.; Zhu, D.; Guo, C.; Vasileff, A.; Qiao, S.-Z. Adv. Energy Mater. 2017, 7, 1700518. doi: 10.1002/aenm.201700518  doi: 10.1002/aenm.201700518

    51. [51]

      Wang, H.-F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. Chem. Soc. Rev. 2020, 49, 1414. doi: 10.1039/C9CS00906J  doi: 10.1039/C9CS00906J

    52. [52]

      Xie, L.; Skorupskii, G.; Dincă, M. Chem. Rev. 2020, 120, 8536. doi: 10.1021/acs.chemrev.9b00766  doi: 10.1021/acs.chemrev.9b00766

    53. [53]

      Sheberla, D.; Sun, L.; Blood-Forsythe, M. A.; Er, S.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A.; Dincă, M. J. Am. Chem. Soc. 2014, 136, 8859. doi: 10.1021/ja502765n  doi: 10.1021/ja502765n

    54. [54]

      Narayan, T. C.; Miyakai, T.; Seki, S.; Dincă, M. J. Am. Chem. Soc. 2012, 134, 12932. doi: 10.1021/ja3059827  doi: 10.1021/ja3059827

    55. [55]

      Park, S. S.; Hontz, E. R.; Sun, L.; Hendon, C. H.; Walsh, A.; Van Voorhis, T.; Dincă, M. J. Am. Chem. Soc. 2015, 137, 1774. doi: 10.1021/ja512437u  doi: 10.1021/ja512437u

    56. [56]

      Xie, L. S.; Alexandrov, E. V.; Skorupskii, G.; Proserpio, D. M.; Dincă, M. Chem. Sci. 2019, 10, 8558. doi: 10.1039/C9SC03348C  doi: 10.1039/C9SC03348C

    57. [57]

      Pathak, A.; Shen, J.-W.; Usman, M.; Wei, L.-F.; Mendiratta, S.; Chang, Y.-S.; Sainbileg, B.; Ngue, C.-M.; Chen, R.-S.; Hayashi, M.; et al. Nat. Commun. 2019, 10, 1721. doi: 10.1038/s41467-019-09682-0  doi: 10.1038/s41467-019-09682-0

    58. [58]

      Xie, L.; Skorupskii, G.; Dincă, M. Chem. Rev. 2020, 120, 8536. doi: 10.1021/acs.chemrev.9b00766  doi: 10.1021/acs.chemrev.9b00766

    59. [59]

      Makiura, R.; Motoyama, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, H. Nat. Mater. 2010, 9, 565. doi: 10.1038/nmat2769  doi: 10.1038/nmat2769

    60. [60]

      Dong, R.; Pfeffermann, M.; Liang, H.; Zheng, Z.; Zhu, X.; Zhang, J.; Feng, X. Angew. Chem. Int. Ed. 2015, 54, 12058. doi: 10.1002/anie.201506048  doi: 10.1002/anie.201506048

    61. [61]

      Kambe, T.; Sakamoto, R.; Hoshiko, K.; Takada, K.; Miyachi, M.; Ryu, J.-H.; Sasaki, S.; Kim, J.; Nakazato, K.; Takata, M.; et al. J. Am. Chem. Soc. 2013, 135, 2462. doi: 10.1021/ja312380b  doi: 10.1021/ja312380b

    62. [62]

      Pal, T.; Kambe, T.; Kusamoto, T.; Foo, M. L.; Matsuoka, R.; Sakamoto, R.; Nishihara, H. ChemPlusChem 2015, 80, 1255. doi: 10.1002/cplu.201500206  doi: 10.1002/cplu.201500206

    63. [63]

      Sun, X.; Wu, K.-H.; Sakamoto, R.; Kusamoto, T.; Maeda, H.; Ni, X.; Jiang, W.; Liu, F.; Sasaki, S.; Masunaga, H.; et al. Chem. Sci. 2017, 8, 8078. doi: 10.1039/C7SC02688A  doi: 10.1039/C7SC02688A

    64. [64]

      Pal, T.; Doi, S.; Maeda, H.; Wada, K.; Tan, C. M.; Fukui, N.; Sakamoto, R.; Tsuneyuki, S.; Sasaki, S.; Nishihara, H. Chem. Sci. 2019, 10, 5218. doi: 10.1039/C9SC01144G  doi: 10.1039/C9SC01144G

    65. [65]

      Huang, X.; Li, H.; Tu, Z.; Liu, L.; Wu, X.; Chen, J.; Liang, Y.; Zou, Y.; Yi, Y.; Sun, J.; et al. J. Am. Chem. Soc. 2018, 140, 15153. doi: 10.1021/jacs.8b07921  doi: 10.1021/jacs.8b07921

    66. [66]

      Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C.-J.; Shao-Horn, Y.; Dincă, M. Nat. Mater. 2017, 16, 220. doi: 10.1038/nmat4766  doi: 10.1038/nmat4766

    67. [67]

      Du, W.; Bai, Y.-L.; Yang, Z.; Li, R.; Zhang, D.; Ma, Z.; Yuan, A.; Xu, J. Chin. Chem. Lett. 2020, 31, 2309. doi: 10.1016/j.cclet.2020.04.017  doi: 10.1016/j.cclet.2020.04.017

    68. [68]

      Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dincă, M. Angew. Chem. Int. Ed. 2015, 54, 4349. doi: 10.1002/anie.201411854  doi: 10.1002/anie.201411854

    69. [69]

      Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dincă, M. J. Am. Chem. Soc. 2015, 137, 13780. doi: 10.1021/jacs.5b09600  doi: 10.1021/jacs.5b09600

    70. [70]

      Dunwell, M.; Lu, Q.; Heyes, J. M.; Rosen, J.; Chen, J. G.; Yan, Y.; Jiao, F.; Xu, B. J. Am. Chem. Soc. 2017, 139, 3774. doi: 10.1021/jacs.6b13287  doi: 10.1021/jacs.6b13287

    71. [71]

      Zhao, C.; Dai, X.; Yao, T.; Chen, W.; Wang, X.; Wang, J.; Yang, J.; Wei, S.; Wu, Y.; Li, Y. J. Am. Chem. Soc. 2017, 139, 8078. doi: 10.1021/jacs.7b02736  doi: 10.1021/jacs.7b02736

    72. [72]

      Lu, Y.; Zhang, J.; Wei, W.; Ma, D. D.; Wu, X. T.; Zhu, Q. L. ACS Appl. Mater. Interfaces 2020, 12, 37986. doi: 10.1021/acsami.0c06537  doi: 10.1021/acsami.0c06537

    73. [73]

      Li, X; Zhu, Q. L. EnergyChem 2020, 2, 100033. doi: 10.1016/j.enchem.2020.100033  doi: 10.1016/j.enchem.2020.100033

    74. [74]

      Ma, D. D.; Zhu, Q. L. Coord. Chem. Rev. 2020, 422, 213483. doi: 10.1016/j.ccr.2020.213483  doi: 10.1016/j.ccr.2020.213483

    75. [75]

      Aubrey, M. L.; Kapelewski, M. T.; Melville, J. F.; Oktawiec, J.; Presti, D.; Gagliardi, L.; Long, J. R. J. Am. Chem. Soc. 2019, 141, 5005. doi: 10.1021/jacs.9b00654  doi: 10.1021/jacs.9b00654

    76. [76]

      Meng, Z.; Aykanat, A.; Mirica, K. A. J. Am. Chem. Soc. 2019, 141, 2046. doi: 10.1021/jacs.8b11257  doi: 10.1021/jacs.8b11257

    77. [77]

      Hod, I.; Sampson, M. D.; Deria, P.; Kubiak, C. P.; Farha, O. K.; Hupp, J. T. ACS Catal. 2015, 5, 6302. doi: 10.1021/acscatal.5b01767  doi: 10.1021/acscatal.5b01767

    78. [78]

      Albo, J.; Vallejo, D.; Beobide, G.; Castillo, O.; Castaño, P.; Irabien, A. ChemSusChem 2017, 10, 1100. doi: 10.1002/cssc.201600693  doi: 10.1002/cssc.201600693

    79. [79]

      Dong, B.-X.; Qian, S.-L.; Bu, F.-Y.; Wu, Y.-C.; Feng, L.-G.; Teng, Y.-L.; Liu, W.-L.; Li, Z.-W. ACS Appl. Energy Mater. 2018, 1, 4662. doi: 10.1021/acsaem.8b00797  doi: 10.1021/acsaem.8b00797

    80. [80]

      Perfecto-Irigaray, M.; Albo, J.; Beobide, G.; Castillo, O.; Irabien, A.; Pérez-Yáñez, S. RSC Adv. 2018, 8, 21092. doi: 10.1039/C8RA02676A  doi: 10.1039/C8RA02676A

    81. [81]

      Qiu, Y.-L.; Zhong, H.-X.; Zhang, T.-T.; Xu, W.-B.; Su, P.-P.; Li, X.-F.; Zhang, H.-M. ACS Appl. Mater. Interfaces 2018, 10, 2480. doi: 10.1021/acsami.7b15255  doi: 10.1021/acsami.7b15255

    82. [82]

      Kornienko, N.; Zhao, Y.; Kley, C. S.; Zhu, C.; Kim, D.; Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P. J. Am. Chem. Soc. 2015, 137, 14129. doi: 10.1021/jacs.5b08212  doi: 10.1021/jacs.5b08212

    83. [83]

      Guntern, Y. T.; Pankhurst, J. R.; Vávra, J.; Mensi, M.; Mantella, V.; Schouwink, P.; Buonsanti, R. Angew. Chem. Int. Ed. 2019, 58, 12632. doi: 10.1002/anie.201905172  doi: 10.1002/anie.201905172

    84. [84]

      Wu, J.-X.; Hou, S.-Z.; Zhang, X.-D.; Xu, M.; Yang, H.-F.; Cao, P.-S.; Gu, Z.-Y. Chem. Sci. 2019, 10, 2199. doi: 10.1039/C8SC04344B  doi: 10.1039/C8SC04344B

    85. [85]

      Cao, C.; Ma, D. D.; Gu, J. F.; Xie, X.; Zeng, G.; Li, X.; Han, S. G.; Zhu, Q. L.; Wu, X. T.; Xu, Q. Angew. Chem. Int. Ed. 2020, 59, 15014. doi: 10.1002/anie.202005577  doi: 10.1002/anie.202005577

    86. [86]

      Brezny, A. C.; Johnson, S. I.; Raugei, S.; Mayer, J. M. J. Am. Chem. Soc. 2020, 142, 4108. doi: 10.1021/jacs.9b13654  doi: 10.1021/jacs.9b13654

    87. [87]

      Pegis, M. L.; Wise, C. F.; Martin, D. J.; Mayer, J. M. Chem. Rev. 2018, 118, 2340. doi: 10.1021/acs.chemrev.7b00542  doi: 10.1021/acs.chemrev.7b00542

    88. [88]

      Zhao, S.; Yin, H.; Du, L.; He, L.; Zhao, K.; Chang, L.; Yin, G.; Zhao, H.; Liu, S.; Tang, Z. ACS Nano 2014, 8, 12660. doi: 10.1021/nn505582e  doi: 10.1021/nn505582e

    89. [89]

      Lai, Q.; Zheng, L.; Liang, Y.; He, J.; Zhao, J.; Chen, J. ACS Catal. 2017, 7, 1655. doi: 10.1021/acscatal.6b02966  doi: 10.1021/acscatal.6b02966

    90. [90]

      Guo, J.; Li, Y.; Cheng, Y.; Dai, L.; Xiang, Z. ACS Nano 2017, 11, 8379. doi: 10.1021/acsnano.7b03807  doi: 10.1021/acsnano.7b03807

    91. [91]

      Yin, P.; Yao, T.; Wu, Y.; Zheng, L.; Lin, Y.; Liu, W.; Ju, H.; Zhu, J.; Hong, X.; Deng, Z.; et al. Angew. Chem. Int. Ed. 2016, 55, 10800. doi: 10.1002/anie.201604802  doi: 10.1002/anie.201604802

    92. [92]

      Liu, X.-H.; Hu, W.-L.; Jiang, W.-J.; Yang, Y.-W.; Niu, S.; Sun, B.; Wu, J.; Hu, J.-S. ACS Appl. Mater. Interfaces 2017, 9, 28473. doi: 10.1021/acsami.7b07410  doi: 10.1021/acsami.7b07410

    93. [93]

      Yoon, H.; Lee, S.; Oh, S.; Park, H.; Choi, S.; Oh, M. Small 2019, 15, 1805232. doi: 10.1002/smll.201805232  doi: 10.1002/smll.201805232

    94. [94]

      Chen, G.; Stevens, M. B.; Liu, Y.; King, L. A.; Park, J.; Kim, T. R.; Bao, Z.; Sinclair, R.; Jaramillo, T. F.; Bao, Z. Small Methods 2020, 4, 2000085. doi: 10.1002/smtd.202000085  doi: 10.1002/smtd.202000085

    95. [95]

      Roger, I.; Shipman, M. A.; Symes, M. D. Nat. Rev. Chem. 2017, 1, 1. doi: 10.1038/s41570-016-0003  doi: 10.1038/s41570-016-0003

    96. [96]

      Chen, W.; Pei, J.; He, C.-T.; Wan, J.; Ren, H.; Wang, Y.; Dong, J.; Wu, K.; Cheong, W.-C.; Mao, J.; et al. Adv. Mater. 2018, 30, 1800396. doi: 10.1002/adma.201800396  doi: 10.1002/adma.201800396

    97. [97]

      Liu, T.; Li, P.; Yao, N.; Cheng, G.; Chen, S.; Luo, W.; Yin, Y. Angew. Chem. Int. Ed. 2019, 306, 627. doi: 10.1002/anie.201901409  doi: 10.1002/anie.201901409

    98. [98]

      Duan, J.; Chen, S.; Zhao, C. Nat. Commun. 2017, 8, 15341. doi: 10.1038/ncomms15341  doi: 10.1038/ncomms15341

    99. [99]

      Zheng, F.; Zheng, C.; Gao, X.; Du, C.; Zhang, Z.; Chen, W. Electrochim. Acta 2019, 7, 9743. doi: 10.1016/j.electacta.2019.03.175  doi: 10.1016/j.electacta.2019.03.175

    100. [100]

      Huang, H.; Zhao, Y.; Bai, Y.; Li, F.; Zhang, Y.; Chen, Y. Adv. Sci. 2020, 7, 2000012. doi: 10.1002/advs.202000012  doi: 10.1002/advs.202000012

    101. [101]

      Yang, C.; Zhu, Y.; Liu, J.; Qin, Y.; Wang, H.; Liu, H.; Chen, Y.; Zhang, Z.; Hu, W. Nano Energy 2020, 77, 105126. doi: 10.1016/j.nanoen.2020.105126  doi: 10.1016/j.nanoen.2020.105126

    102. [102]

      Geng, Z.; Liu, Y.; Kong, X.; Li, P.; Li, K.; Liu, Z.; Du, J.; Shu, M.; Si, R.; Zeng, J. Adv. Mater. 2018, 30, 1803498. doi: 10.1002/adma.201803498  doi: 10.1002/adma.201803498

    103. [103]

      Guo, C.; Ran, J.; Vasileff, A.; Qiao, S.-Z. Energy Environ. Sci. 2018, 11, 45. doi: 10.1039/C7EE02220D  doi: 10.1039/C7EE02220D

    104. [104]

      Yuan, L.; Wu, Z.; Jiang, W. Tang, T.; Niu, S.; Hu J.-S. Nano Res. 2020, 13, 1376. doi: 10.1007/s12274-020-2637-8  doi: 10.1007/s12274-020-2637-8

    105. [105]

      Abghoui, Y.; Garden, A. L.; Howalt, J. G.; Vegge, T.; Skúlason, E. ACS Catal. 2016, 6, 635. doi: 10.1021/acscatal.5b01918  doi: 10.1021/acscatal.5b01918

    106. [106]

      Fukushima, T.; Drisdell, W.; Yano, J.; Surendranath, Y. J. Am. Chem. Soc. 2015, 137, 10926. doi: 10.1021/jacs.5b06737  doi: 10.1021/jacs.5b06737

    107. [107]

      Cui, Q.; Qin, G.; Wang, W.; K. R, G.; Du, A.; Sun, Q. J. Mater. Chem. A 2019, 7, 14510. doi: 10.1039/C9TA02926E  doi: 10.1039/C9TA02926E

    108. [108]

      Xiong, W.; Cheng, X.; Wang, T.; Luo, Y.; Feng, J.; Lu, S.; Asiri, A. M.; Li, W.; Jiang, Z.; Sun, X. Nano Res. 2020, 13, 1008. doi: 10.1007/s12274-020-2733-9  doi: 10.1007/s12274-020-2733-9

    109. [109]

      Zhou, J.; Dou, Y.; Zhou, A.; Guo, R.-M.; Zhao, M.-J.; Li, J.-R. Adv. Energy Mater. 2017, 7, 1602643. doi: 10.1002/aenm.201602643  doi: 10.1002/aenm.201602643

    110. [110]

      Li, M.; Xia, Z.; Huang, Y.; Tao, L.; Chao, Y.; Yin, K.; Yang, W.; Yang, W.; Yu, Y.; Guo, S. Acta Phys. -Chim. Sin. 2020, 36, 1912049.  doi: 10.3866/PKU.WHXB201912049

    111. [111]

      Zheng, F.; Zhang, Z.; Xiang, D.; Li, P.; Du, C.; Zhuang, Z.; Li, X.; Chen, W. J. Colloid Interf. Sci. 2019, 555, 541. doi: 10.1016/j.jcis.2019.08.005  doi: 10.1016/j.jcis.2019.08.005

    112. [112]

      Shen, J.-Q.; Liao, P.-Q.; Zhou, D.-D.; He, C.-T.; Wu, J.-X.; Zhang, W.-X.; Zhang, J.-P.; Chen, X.-M. J. Am. Chem. Soc. 2017, 139, 1778. doi: 10.1021/jacs.6b12353  doi: 10.1021/jacs.6b12353

    113. [113]

      Wang, L.; Wu, Y.; Cao, R.; Ren, L.; Chen, M.; Feng, X.; Zhou, J.; Wang, B. ACS Appl. Mater. Interfaces 2016, 8, 16736. doi: 10.1021/acsami.6b05375  doi: 10.1021/acsami.6b05375

    114. [114]

      Zhao, S.; Wang, Y.; Dong, J.; He, C.-T.; Yin, H.; An, P.; Zhao, K.; Zhang, X.; Gao, C.; Zhang, L.; et al. Nat. Energy 2016, 1, 16184. doi: 10.1038/nenergy.2016.184  doi: 10.1038/nenergy.2016.184

    115. [115]

      Lu, X.-F.; Liao, P.-Q.; Wang, J.-W.; Wu, J.-X.; Chen, X.-W.; He, C.-T.; Zhang, J.-P.; Li, G.-R.; Chen, X.-M. J. Am. Chem. Soc. 2016, 138, 8336. doi: 10.1021/jacs.6b03125  doi: 10.1021/jacs.6b03125

    116. [116]

      Cao, C.; Ma, D. D.; Xu, Q.; Wu, X. T.; Zhu, Q. L. Adv. Funct. Mater. 2019, 29, 1807418. doi: 10.1002/adfm.201807418  doi: 10.1002/adfm.201807418

    117. [117]

      Li, X.; Ma, D. D.; Cao, C.; Zou, R.; Xu, Q.; Wu, X. T.; Zhu, Q. L. Small 2019, 15, 1902218. doi: 10.1002/smll.201902218  doi: 10.1002/smll.201902218

    118. [118]

      Zheng, F.; Zhang, C.; Gao, X.; Du, C.; Zhuang, Z.; Chen, W. Electrochim. Acta 2019, 306, 627. doi: 10.1016/j.electacta.2019.03.175  doi: 10.1016/j.electacta.2019.03.175

    119. [119]

      Liu, J.; Zhu, D.; Guo, C.; Vasileff, A.; Qiao, S.-Z. Adv. Energy Mater. 2017, 7, 1700518. doi: 10.1002/aenm.201700518  doi: 10.1002/aenm.201700518

    120. [120]

      Zheng, F.; Zhang, Z.; Zhang, C.; Zhang, C.; Chen, W. ACS Omega 2020, 5, 2495. doi: 10.1021/acsomega.9b03295  doi: 10.1021/acsomega.9b03295

    121. [121]

      Centi, G. SmartMat 2020, e1005. doi: 10.1002/smm2.1005  doi: 10.1002/smm2.1005

  • 加载中
    1. [1]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    2. [2]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    3. [3]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    4. [4]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    5. [5]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    6. [6]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    7. [7]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    8. [8]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    9. [9]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    10. [10]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    11. [11]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    12. [12]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    13. [13]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    14. [14]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    15. [15]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    16. [16]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    17. [17]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    18. [18]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    19. [19]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    20. [20]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

Metrics
  • PDF Downloads(74)
  • Abstract views(1208)
  • HTML views(386)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return