Citation: Huan Wang, Yunyan Wu, Yanfei Zhao, Zhimin Liu. Recent Progress on Ionic Liquid-Mediated CO2 Conversion[J]. Acta Physico-Chimica Sinica, ;2021, 37(5): 201002. doi: 10.3866/PKU.WHXB202010022 shu

Recent Progress on Ionic Liquid-Mediated CO2 Conversion

  • Corresponding author: Zhimin Liu, liuzm@iccas.ac.cn
  • Received Date: 12 October 2020
    Revised Date: 28 October 2020
    Accepted Date: 30 October 2020
    Available Online: 4 November 2020

    Fund Project: National Natural Science Foundation of China 21890761National Natural Science Foundation of China 21533011Beijing Municipal Science & Technology Commission, China Z191100007219009

  • The efficient utilization of carbon dioxide (CO2) as a C1 feedstock is of great significance for green and sustainable development. Therefore, the efficient chemical conversion of CO2 into value-added products has recently attracted a lot of research attention in recent years. The transformation of CO2 generally requires high-energy substrates, specific catalysts, and harsh reaction conditions due to its high thermodynamic stability and kinetic inertness. Consequently, several efforts have been dedicated toward the development of high-performance catalysts and new reaction routes for CO2 conversion over the last few decades. To date, many routes of convert CO2 into value-added chemicals have been proposed, together with the development of heterogeneous and homogeneous catalysts. Among the advanced catalysts reported to date, ionic liquids (ILs) have been widely investigated and show great potential for the efficient, selective, and economical conversion of CO2 into highly valuable products under mild conditions, even under ambient conditions. Some task-specific ILs have been designed with unique functional groups (e.g., —OH, —SO3H, —NH2, —COOH, and —C≡N), which can act as the solvent, absorbent, activating agent, catalyst, or cocatalyst to realize the transformation of CO2 under metal-free and mild conditions. In addition, a variety of catalytic systems composed of ILs and metal catalysts have also been reported for the transformation of CO2, in which the combination of the IL and metal catalyst is responsible for CO2 conversion with high efficiency. In this review article, we summarize the recent advances in IL-mediated CO2 transformation into chemicals prepared via C—O, C—N, C—S, C—H, and C—C bond forming processes. ILs that can chemically capture CO2 with high capacity are first introduced, which can activate CO2 via the formation of IL-based carbonates or carbamates, thus realizing the transformation of CO2 under metal-free and mild conditions. Recent progress in IL-mediated CO2 transformations to form carbonates and various kinds of N- and S-containing compounds (e.g., oxazolidinones, ureas, benzimidazolones, formamides, methylamines, benzothiazoles, and other chemicals) as well as CO2 hydrogenation to give formic acid, methane, acetic acid, low-carbon alcohols, and hydrocarbons has been summarized in this review with a focus on the reaction routes, catalytic systems, and reaction mechanism. In these reactions, ILs can simultaneously activate the substrate via strong H-bonding in addition to activating CO2, and the cooperative effects among the ionic and molecular species and metal catalysts accomplish the reactions of CO2 with various kinds of substrates to afford a wide range of value-added chemicals. Finally, the shortcomings and perspectives of ILs are discussed. In short, IL-mediated CO2 transformations provide green and effective routes for the synthesis of high-value chemicals, which may have great potential for a wide range of applications.
  • 加载中
    1. [1]

      Yu, K. M.; Curcic, I.; Gabriel, J.; Tsang, S. C. ChemSusChem 2008, 1, 893. doi: 10.1002/cssc.200800169  doi: 10.1002/cssc.200800169

    2. [2]

      Sakakura, T.; Choi, J. C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. doi: 10.1021/cr068357u  doi: 10.1021/cr068357u

    3. [3]

      Duffy, P. B.; Field, C. B.; Diffenbaugh, N. S.; Doney, S. C.; Dutton, Z.; Goodman, S.; Heinzerling, L.; Hsiang, S.; Lobell, D. B.; Mickley, L. J.; et al. Science 2019, 363, eaat5982. doi: 10.1126/science.aat5982  doi: 10.1126/science.aat5982

    4. [4]

      He, M.; Sun, Y.; Han, B. Angew. Chem. Int. Ed. 2013, 52, 9620. doi: 10.1002/anie.201209384  doi: 10.1002/anie.201209384

    5. [5]

      Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J.; et al. Chem. Rev. 2013, 113, 6621. doi: 10.1021/cr300463y  doi: 10.1021/cr300463y

    6. [6]

      Das Neves Gomes, C.; Jacquet, O.; Villiers, C.; Thuery, P.; Ephritikhine, M.; Cantat, T. Angew. Chem. Int. Ed.2012, 51, 187. doi: 10.1002/anie.201105516  doi: 10.1002/anie.201105516

    7. [7]

      Aresta, M.; Dibenedetto, A.; Angelini, A. Chem. Rev. 2014, 114, 1709. doi: 10.1021/cr4002758  doi: 10.1021/cr4002758

    8. [8]

      Kupgan, G.; Abbott, L. J.; Hart, K. E.; Colina, C. M. Chem. Rev. 2018, 118, 5488. doi: 10.1021/acs.chemrev.7b00691  doi: 10.1021/acs.chemrev.7b00691

    9. [9]

      Yu, J. M.; Xie, L. H.; Li, J. R.; Ma, Y. G.; Seminario, J. M.; Balbuena, P. B. Chem. Rev. 2017, 117, 9674. doi: 10.1021/acs.chemrev.6b00626  doi: 10.1021/acs.chemrev.6b00626

    10. [10]

      Zhang, L.; Zhao, Z. J.; Wang, T.; Gong, J. Chem. Soc. Rev. 2018, 47, 5423. doi: 10.1039/c8cs00016f  doi: 10.1039/c8cs00016f

    11. [11]

      Voiry, D.; Shin, H. S.; Loh, K. P.; Chhowalla, M. Nat. Rev. Chem. 2018, 2, 0105. doi: 10.1038/s41570-017-0105  doi: 10.1038/s41570-017-0105

    12. [12]

      Yao, W.; Wang, H.; Cui, G.; Li, Z.; Zhu, A.; Zhang, S.; Wang, J. Angew. Chem. Int. Ed. 2016, 128, 8066. doi: 10.1002/anie.201600419  doi: 10.1002/anie.201600419

    13. [13]

      Wang, T.; Wang, W.; Lyu, Y.; Chen, X.; Li, C.; Zhang, Y.; Song, X.; Ding, Y. RSC Adv. 2017, 7, 2836. doi: 10.1039/c6ra26780g  doi: 10.1039/c6ra26780g

    14. [14]

      Wu, C.; Zhang, H.; Yu, B.; Chen, Y.; Ke, Z.; Guo, S.; Liu, Z. ACS Catal. 2017, 7, 7772. doi: 10.1021/acscatal.7b02231  doi: 10.1021/acscatal.7b02231

    15. [15]

      Li, R.; Zhao, Y.; Chen, Y.; Liu, Z.; Han, B.; Li, Z.; Wang, J. Commun. Chem. 2018, 1, 1. doi: 10.1038/s42004-018-0067-2  doi: 10.1038/s42004-018-0067-2

    16. [16]

      Hulla, M.; Chamam, S. M.; Laurenczy, G.; Das, S.; Dyson, P. J. Angew. Chem. Int. Ed. 2017, 56, 10559. doi: 10.1002/anie.201705438  doi: 10.1002/anie.201705438

    17. [17]

      Chen, K.; Shi, G.; Zhang, W.; Li, H.; Wang, C. J. Am. Chem. Soc.2016, 138, 14198. doi: 10.1021/jacs.6b08895  doi: 10.1021/jacs.6b08895

    18. [18]

      Zhang, M.; Ettelaie, R.; Yan, T.; Zhang, S.; Cheng, F.; Binks, B. P.; Yang, H. J. Am. Chem. Soc. 2017, 139, 17387. doi: 10.1021/jacs.7b07731  doi: 10.1021/jacs.7b07731

    19. [19]

      Zeng, S.; Zhang, X.; Bai, L.; Zhang, X.; Wang, H.; Wang, J.; Bao, D.; Li, M.; Liu, X.; Zhang, S. Chem. Rev. 2017, 117, 9625. doi: 10.1021/acs.chemrev.7b00072  doi: 10.1021/acs.chemrev.7b00072

    20. [20]

      MacFarlane, D. R.; Forsyth, M.; Izgorodina, E. I.; Abbott, A. P.; Annat, G.; Fraser, K. Phys. Chem. Chem. Phys. 2009, 11, 4962. doi: 10.1039/b900201d  doi: 10.1039/b900201d

    21. [21]

      Wang, J. F.; Petit, C.; Zhang, X. P.; Park, A. H. A. Green Energy Environ. 2016, 1, 258. doi: 10.1016/j.gee.2016.11.004  doi: 10.1016/j.gee.2016.11.004

    22. [22]

      Tan, X. X.; Zhao, W. C.; Mu, T. C. Green Chem. 2018, 20, 3625. doi: 10.1039/c8gc01609g  doi: 10.1039/c8gc01609g

    23. [23]

      Huang, J.; Rüther, T. Aust. J. Chem. 2009, 62, 298. doi: 10.1071/CH08559  doi: 10.1071/CH08559

    24. [24]

      Goodrich, B. F.; de la Fuente, J. C.; Gurkan, B. E.; Lopez, Z. K.; Price, E. A.; Huang, Y.; Brennecke, J. F. J. Phys. Chem. B 2011, 115, 9140. doi: 10.1021/jp2015534  doi: 10.1021/jp2015534

    25. [25]

      Blanchard, L. A.; Hancu, D.; Beckman, E. J.; Brennecke, J. F. Nature 1999, 399, 28. doi: 10.1038/19887  doi: 10.1038/19887

    26. [26]

      Niedermaier, I.; Bahlmann, M.; Papp, C.; Kolbeck, C.; Wei, W.; Krick Calderon, S.; Grabau, M.; Schulz, P. S.; Wasserscheid, P.; Steinruck, H. P.; et al. J. Am. Chem. Soc. 2014, 136, 436. doi: 10.1021/ja410745a  doi: 10.1021/ja410745a

    27. [27]

      Wang, S.; Wang, X. Angew. Chem. Int. Ed. 2016, 2308. doi: 10.1002/anie.201507145  doi: 10.1002/anie.201507145

    28. [28]

      Gurkan, B.; Fuente, J.; Mindrup, E.; Ficke, L.; Goodrich, B.; Price, E.; Schneider, W.; Brennecke, J. J. Am. Chem. Soc. 2010, 132, 2116. doi: 10.1021/ja909305t  doi: 10.1021/ja909305t

    29. [29]

      Cui, G.; Zheng, J.; Luo, X.; Lin, W.; Ding, F.; Li, H.; Wang, C. Angew. Chem. Int. Ed. 2013, 52, 10620. doi: 10.1002/anie.201305234  doi: 10.1002/anie.201305234

    30. [30]

      Wang, C.; Luo, X.; Luo, H.; Jiang, D. E.; Li, H.; Dai, S. Angew. Chem. Int. Ed. 2011, 50, 4918. doi: 10.1002/anie.201008151  doi: 10.1002/anie.201008151

    31. [31]

      Ding, F.; He, X.; Luo, X.; Lin, W.; Chen, K.; Li, H.; Wang, C. Chem. Commun. 2014, 50, 15041. doi: 10.1039/c4cc06944g  doi: 10.1039/c4cc06944g

    32. [32]

      Luo, X.; Guo, Y.; Ding, F.; Zhao, H.; Cui, G.; Li, H.; Wang, C. Angew. Chem. Int. Ed.2014, 53, 7053. doi: 10.1002/anie.201400957  doi: 10.1002/anie.201400957

    33. [33]

      Chen, F. F.; Huang, K.; Zhou, Y.; Tian, Z. Q.; Zhu, X.; Tao, D. J.; Jiang, D. E.; Dai, S. Angew. Chem. Int. Ed. 2016, 55, 7166. doi: 10.1002/anie.201602919  doi: 10.1002/anie.201602919

    34. [34]

      Huang, Y.; Cui, G.; Zhao, Y.; Wang, H.; Li, Z.; Dai, S.; Wang, J. Angew. Chem. Int. Ed.2017, 56, 13293. doi: 10.1002/anie.201706280  doi: 10.1002/anie.201706280

    35. [35]

      Wu, Y. Y.; Zhao, Y. F.; Wang, H.; Yu, B.; Yu, X. X.; Zhang, H. Y.; Liu, Z. M. Ind. Eng. Chem. Res. 2019, 58, 6333. doi: 10.1021/acs.iecr.9b00654  doi: 10.1021/acs.iecr.9b00654

    36. [36]

      Yang, M.; Zhong, X. H.; Chen, Q. Chem. Ind. Eng. Prog. 2017, 36, 3300.  doi: 10.16085/j.issn.1000-6613.2017-0282

    37. [37]

      Peng, J.; Deng, Y. New J. Chem. 2001, 25, 639. doi: 10.1039/B008923K  doi: 10.1039/B008923K

    38. [38]

      Alferov, K. A.; Fu, Z., Ye, S.; Han, D.; Wang, S.; Xiao, M.; Meng, Y. ACS Sustain. Chem. Eng. 2019, 7, 10708. doi: 10.1021/acssuschemeng.9b01345  doi: 10.1021/acssuschemeng.9b01345

    39. [39]

      Anthofer, M. H.; Wilhelm, M. E.; Cokoja, M.; Markovits, I. I.; Pöthig, A.; Mink, J.; Herrmann, W. A.; Kühn, F. E. Catal. Sci. Technol. 2014, 4, 1749. doi: 10.1039/c3cy01024d  doi: 10.1039/c3cy01024d

    40. [40]

      Meng, X. L. The Research Of Cyclic Carbonate Synthesis from CO2 Using Ionic Liquids. Ph. D. Dissertation, Qufu Normal University, Qufu, 2014.

    41. [41]

      Wang, J. -Q.; Dong, K.; Cheng, W. -G.; Sun, J.; Zhang, S. -J. Catal. Sci. Technol. 2012, 2, 1480. doi: 10.1039/C1CY00342A  doi: 10.1039/C1CY00342A

    42. [42]

      Toda, Y.; Komiyama, Y.; Kikuchi, A.; Suga, H. ACS Catal. 2016, 6, 6906. doi: 10.1021/acscatal.6b01422  doi: 10.1021/acscatal.6b01422

    43. [43]

      Yuan, G.; Zhao, Y.; Wu, Y.; Li, R.; Chen, Y.; Xu, D.; Liu, Z. Sci. China Chem. 2017, 60, 958. doi: 10.1007/s11426-016-0507-7  doi: 10.1007/s11426-016-0507-7

    44. [44]

      Liu, M.; Liu, B.; Zhong, S.; Shi, L.; Liang, L.; Sun, J. Ind. Eng. Chem. Res. 2015, 54, 633. doi: 10.1021/ie5042879  doi: 10.1021/ie5042879

    45. [45]

      Liu, M.; Wang, F.; Shi, L.; Liang, L.; Sun, J. RSC Adv. 2015, 5, 14277. doi: 10.1039/C4RA13262A  doi: 10.1039/C4RA13262A

    46. [46]

      Zheng, D.; Zhang, J.; Zhu, X.; Ren, T.; Wang, L.; Zhang, J. J. CO2 Util. 2018, 27, 99. doi: 10.1039/C9NJ04058G  doi: 10.1039/C9NJ04058G

    47. [47]

      Xiao, L. -F.; Lv, D. -W.; Su, D.; Wu, W.; Li, H. -F. J. Clean. Prod. 2014, 67, 285. doi: 10.1039/C5TA00993F  doi: 10.1039/C5TA00993F

    48. [48]

      Yue, C.; Su, D.; Zhang, X.; Wu, W.; Xiao, L. Catal. Lett. 2014, 144, 1313. doi: 10.1007/s10562-014-1241-5  doi: 10.1007/s10562-014-1241-5

    49. [49]

      Yang, C. H. Special. Petrochem. 2016, 33, 69.

    50. [50]

      Yang, Z. Z.; He, L. N.; Miao, C. X.; Chanfreau, S. Adv. Synth. Catal. 2010, 352, 2233. doi: 10.1002/adsc.201000239  doi: 10.1002/adsc.201000239

    51. [51]

      Agrigento, P.; Al-Amsyar, S. M.; Sorée, B.; Taherimehr, M.; Gruttadauria, M.; Aprile, C.; Pescarmona, P. P. Catal. Sci. Technol. 2014, 4, 1598. doi: 10.1039/C3CY01000G  doi: 10.1039/C3CY01000G

    52. [52]

      Kim, M. -I.; Choi, S. -J.; Kim, D. -W.; Park, D. -W. J. Ind. Eng. Chem. 2014, 20, 3102. doi: 10.1016/j.jiec.2013.11.051  doi: 10.1016/j.jiec.2013.11.051

    53. [53]

      Han, L.; Li, H.; Choi, S. -J.; Park, M. -S.; Lee, S. -M.; Kim, Y. -J.; Park, D. -W. Appl. Catal. A 2012, 429, 67. doi: 10.1016/j.apcata.2012.04.008  doi: 10.1016/j.apcata.2012.04.008

    54. [54]

      Dharman, M. M.; Choi, H. -J.; Kim, D. -W.; Park, D.-W. Catal. Today 2011, 164, 544. doi: 10.1016/j.cattod.2010.11.009  doi: 10.1016/j.cattod.2010.11.009

    55. [55]

      Zhang, W.; Wang, Q.; Wu, H.; Wu, P.; He, M. Green Chem. 2014, 16, 4767. doi: 10.1039/C4GC01245C.  doi: 10.1039/C4GC01245C

    56. [56]

      Zhang, W. -H.; He, P. -P.; Wu, S.; Xu, J.; Li, Y.; Zhang, G.; Wei, X. -Y. Appl. Catal. A Gener. 2016, 509, 111. doi: 10.1016/j.apcata.2015.10.038  doi: 10.1016/j.apcata.2015.10.038

    57. [57]

      Song, Q. W.; Chen, W. Q.; Ma, R.; Yu, A.; Li, Q. Y.; Chang, Y.; He, L. N. ChemSusChem 2015, 8, 821. doi: 10.1002/cssc.201402921  doi: 10.1002/cssc.201402921

    58. [58]

      Song, Q. -W.; Yu, B.; Li, X. -D.; Ma, R.; Diao, Z. -F.; Li, R. -G.; Li, W.; He, L. -N. Green Chem. 2014, 16, 1633. doi: 10.1039/C3GC42406E  doi: 10.1039/C3GC42406E

    59. [59]

      Kimura, T.; Kamata, K.; Mizuno, N. Angew. Chem. Int. Ed. 2012, 51, 6700. doi: 10.1002/anie.201203189  doi: 10.1002/anie.201203189

    60. [60]

      Sun, S.; Wang, B.; Gu, N.; Yu, J. -T.; Cheng, J. Org. Lett. 2017, 19, 1088. doi: 10.1021/acs.orglett.7b00111  doi: 10.1021/acs.orglett.7b00111

    61. [61]

      Chen, K.; Shi, G.; Dao, R.; Mei, K.; Zhou, X.; Li, H.; Wang, C. Chem. Commun. 2016, 52, 7830c. doi: 10.1039/c6cc02853e  doi: 10.1039/c6cc02853e

    62. [62]

      Hu, J.; Ma, J.; Lu, L.; Qian, Q.; Zhang, Z.; Xie, C.; Han, B. ChemSusChem 2017, 10, 1292. doi: 10.1002/cssc.201601773  doi: 10.1002/cssc.201601773

    63. [63]

      Zhao, Y.; Wu, Y.; Yuan, G.; Hao, L.; Gao, X.; Yang, Z.; Yu, B.; Zhang, H.; Liu, Z. Chem. Asian. J. 2016, 11, 2735. doi: 10.1002/asia.201600281  doi: 10.1002/asia.201600281

    64. [64]

      Gu, Y.; Zhang, Q.; Duan, Z.; Zhang, J.; Zhang, S.; Deng, Y. J. Org. Chem. 2005, 70, 7376. doi: 10.1021/jo050802i  doi: 10.1021/jo050802i

    65. [65]

      Wang, M. -Y.; Song, Q. -W.; Ma, R.; Xie, J. -N.; He, L. -N. Green Chem. 2016, 18, 282. doi: 10.1039/C5GC02311D  doi: 10.1039/C5GC02311D

    66. [66]

      Yang, Z.-Z.; He, L. -N.; Peng, S.-Y.; Liu, A.-H. Green Chem. 2010, 12, 1850. doi: 10.1039/C0GC00286K  doi: 10.1039/C0GC00286K

    67. [67]

      Yang, Z. -Z.; Li, Y. -N.; Wei, Y. -Y.; He, L. -N. Green Chem. 2011, 13, 2351. doi: 10.1039/C1GC15581D  doi: 10.1039/C1GC15581D

    68. [68]

      Hu, J.; Ma, J.; Zhang, Z.; Zhu, Q.; Zhou, H.; Lu, W.; Han, B. Green Chem. 2015, 17, 1219. doi: 10.1039/c4gc02033b  doi: 10.1039/c4gc02033b

    69. [69]

      Hu, J.; Ma, J.; Zhu, Q.; Zhang, Z.; Wu, C.; Han, B. Angew. Chem. Int. Ed. 2015, 54, 5399. doi: 10.1002/anie.201411969  doi: 10.1002/anie.201411969

    70. [70]

      Lu, W.; Ma, J.; Hu, J.; Song, J.; Zhang, Z.; Yang, G.; Han, B. Green Chem. 2014, 16, 221. doi: 10.1039/C3GC41467A  doi: 10.1039/C3GC41467A

    71. [71]

      Zhao, Y.; Yu, B.; Yang, Z.; Zhang, H.; Hao, L.; Gao, X.; Liu, Z. Angew. Chem. Int. Ed.2014, 53, 5922. doi: 10.1002/anie.201400521  doi: 10.1002/anie.201400521

    72. [72]

      Shi, G.; Chen, K.; Wang, Y.; Li, H.; Wang, C. ACS Sustain. Chem. Eng. 2018, 6, 5760. doi: 10.1021/acssuschemeng.8b01109  doi: 10.1021/acssuschemeng.8b01109

    73. [73]

      Gabriele, B.; Salerno, G.; Mancuso, R.; Costa, M. J. Org. Chem. 2004, 69, 4741. doi: 10.1021/jo0494634  doi: 10.1021/jo0494634

    74. [74]

      Shi, F.; Deng, Y.; SiMa, T.; Peng, J.; Gu, Y.; Qiao, B. Angew. Chem. Int. Ed. 2003, 42, 3257. doi: 10.1002/anie.200351098  doi: 10.1002/anie.200351098

    75. [75]

      Jiang, T.; Ma, X.; Zhou, Y.; Liang, S.; Zhang, J.; Han, B. Green Chem. 2008, 10, 465. doi: 10.1039/b717868a  doi: 10.1039/b717868a

    76. [76]

      Zhang, Q.; Yuan, H. -Y.; Fukaya, N.; Yasuda, H.; Choi, J. -C. Green Chem. 2017, 19, 5614. doi: 10.1039/C7GC02666H  doi: 10.1039/C7GC02666H

    77. [77]

      Troisi, L.; Granito, C.; Perrone, S.; Rosato, F. Tetrahedron Lett. 2011, 52, 4330. doi: 10.1016/j.tetlet.2011.06.049  doi: 10.1016/j.tetlet.2011.06.049

    78. [78]

      Fu, Y.; Baba, T.; Ono, Y. J. Catal. 2001, 197, 91. doi: 10.1006/jcat.2000.3075  doi: 10.1006/jcat.2000.3075

    79. [79]

      Yu, B.; Zhang, H. Y.; Zhao, Y. F.; Chen, S.; Xu, J. L.; Hao, L. D.; Liu, Z. M. ACS Catal. 2013, 3, 2076. doi: 10.1021/cs400256j  doi: 10.1021/cs400256j

    80. [80]

      Dong, B.; Wang, L.; Zhao, S.; Ge, R.; Song, X.; Wang, Y.; Gao, Y. Chem. Commun. 2016, 52, 7082. doi: 10.1039/C6CC03058K  doi: 10.1039/C6CC03058K

    81. [81]

      Hao, L.; Zhao, Y.; Yu, B.; Yang, Z.; Zhang, H.; Han, B.; Gao, X.; Liu, Z. ACS Catal. 2015, 5, 4989. doi: 10.1021/acscatal.5b01274  doi: 10.1021/acscatal.5b01274

    82. [82]

      Ke, Z.; Hao, L.; Gao, X.; Zhang, H.; Zhao, Y.; Yu, B.; Yang, Z.; Chen, Y.; Liu, Z. Chem. Eur. J. 2017, 23, 9721. doi: 10.1002/chem.201701420  doi: 10.1002/chem.201701420

    83. [83]

      Li, R.; Zhao, Y.; Wang, H.; Xiang, J.; Wu, Y.; Yu, B.; Han, B.; Liu, Z. Chem. Sci. 2019, 10, 9822. doi: 10.1039/c9sc03242h  doi: 10.1039/c9sc03242h

    84. [84]

      Hartwig, J. F. Nature 2008, 455, 314. doi:10.1038/nature07369.  doi: 10.1038/nature07369

    85. [85]

      Mellah, M.; Voituriez, A.; Schulz, E. Chem. Rev. 2007, 107, 5133. doi: 10.1021/cr068440h  doi: 10.1021/cr068440h

    86. [86]

      Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Angew. Chem. Int. Ed.2013, 125, 7297. doi: 10.1002/ange.201301634  doi: 10.1002/ange.201301634

    87. [87]

      Zhang, Y.; Li, Y.; Zhang, X.; Jiang, X. Chem. Commun. 2015, 51, 941. doi: 10.1039/C4CC08367A  doi: 10.1039/C4CC08367A

    88. [88]

      Gao, X.; Yu, B.; Yang, Z.; Zhao, Y.; Zhang, H.; Hao, L.; Han, B.; Liu, Z. ACS Catal. 2015, 5, 6648. doi: 10.1021/acscatal.5b01874  doi: 10.1021/acscatal.5b01874

    89. [89]

      Zhang, Z.; Xie, Y.; Li, W.; Hu, S.; Song, J.; Jiang, T.; Han, B. Angew. Chem. Int. Ed. 2008, 120, 1143. doi: 10.1002/ange.200704487  doi: 10.1002/ange.200704487

    90. [90]

      Meng, Y.; Kuang, S.; Liu, H.; Fan, Q.; Ma, X.; Zhang, S. Acta Phys. -Chim. Sin. 2021, 37, 2006034.  doi: 10.3866/PKU.WHXB202006034

    91. [91]

      Zhang, J.; Zhong, D.; Lu, T. Acta Phys. -Chim. Sin. 2021, 37, 2008068.  doi: 10.3866/PKU.WHXB202008068

    92. [92]

      Zhang, X.; Cao, Y.; Chen, Q.; Shen, C.; He, L. Acta Phys. -Chim. Sin. 2021, 37, 2007052.  doi: 10.3866/PKU.WHXB202007052

    93. [93]

      Qadir, M. I.; Weilhard, A.; Fernandes, J. A.; de Pedro, I.; Vieira, B. J. C.; Waerenborgh, J. C.; Dupont, J. ACS Catal. 2018, 8, 1621. doi: 10.1021/acscatal.7b03804  doi: 10.1021/acscatal.7b03804

    94. [94]

      Vogt, C.; Groeneveld, E.; Kamsma, G.; Nachtegaal, M.; Lu, L.; Kiely, C. J.; Berben, P. H.; Meirer, F.; Weckhuysen, B. M. Nat. Catal. 2018, 1, 127. doi: 10.1038/s41929-017-0016-y  doi: 10.1038/s41929-017-0016-y

    95. [95]

      Kattel, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Science 2017, 355, 1296. doi: 10.1126/science.aal3573  doi: 10.1126/science.aal3573

    96. [96]

      Upadhyay, P.; Srivastava, V. Catal. Lett. 2016, 146, 12. doi: 10.1007/s10562-015-1654-9  doi: 10.1007/s10562-015-1654-9

    97. [97]

      Upadhyay, P. R.; Srivastava, V. Catal. Lett. 2017, 147, 1051. doi: 10.1007/s10562-017-1995-7  doi: 10.1007/s10562-017-1995-7

    98. [98]

      Melo, C. I.; Szczepanska, A.; Bogel-Lukasik, E.; Nunes da Ponte, M.; Branco, L. C. ChemSusChem 2016, 9, 1081. doi: 10.1002/cssc.201600203  doi: 10.1002/cssc.201600203

    99. [99]

      Zhang, Z.; Hu, S.; Song, J.; Li, W.; Yang, G.; Han, B. ChemSusChem 2009, 2, 234. doi: 10.1002/cssc.200800252  doi: 10.1002/cssc.200800252

    100. [100]

      Srivastava, V. Catal. Lett. 2014, 144, 2221. doi: 10.1007/s10562-014-1392-4  doi: 10.1007/s10562-014-1392-4

    101. [101]

      Weilhard, A.; Qadir, M. I.; Sans, V.; Dupont, J. ACS Catal. 2018, 8, 1628. doi: 10.1021/acscatal.7b03931  doi: 10.1021/acscatal.7b03931

    102. [102]

      Wang, H.; Zhao, Y.; Wu, Y.; Li, R.; Zhang, H.; Yu, B.; Zhang, F.; Xiang, J.; Wang, Z.; Liu, Z. ChemSusChem 2019, 12, 4390. doi: 10.1002/cssc.201901820  doi: 10.1002/cssc.201901820

    103. [103]

      Cui, M.; Qian, Q.; Zhang, J.; Chen, C.; Han, B. Green Chem. 2017, 19, 3558. doi: 10.1039/c7gc01391d  doi: 10.1039/c7gc01391d

    104. [104]

      Qian, Q.; Zhang, J.; Cui, M.; Han, B. Nat. Commun. 2016, 7, 11481. doi: 10.1038/ncomms11481  doi: 10.1038/ncomms11481

    105. [105]

      Wang, H.; Zhao, Y.; Ke, Z.; Yu, B.; Li, R.; Wu, Y.; Wang, Z.; Han, J.; Liu, Z. Chem. Commun. 2019, 55, 3069. doi: 10.1039/C9CC00819E  doi: 10.1039/C9CC00819E

    106. [106]

      Cui, M.; Qian, Q.; He, Z.; Zhang, Z.; Ma, J.; Wu, T.; Yang, G.; Han, B. Chem. Sci. 2016, 7, 5200. doi: 10.1039/c6sc01314g  doi: 10.1039/c6sc01314g

    107. [107]

      He, Z.; Qian, Q.; Ma, J.; Meng, Q.; Zhou, H.; Song, J.; Liu, Z.; Han, B. Angew. Chem. Int. Ed. 2016, 55, 737. doi: 10.1002/anie.201507585  doi: 10.1002/anie.201507585

    108. [108]

      Qian, Q.; Cui, M.; Zhang, J.; Xiang, J.; Song, J.; Yang, G.; Han, B. Green Chem. 2018, 20, 206. doi: 10.1039/c7gc02807e  doi: 10.1039/c7gc02807e

    109. [109]

      Yang, D.; Zhu, Q.; Han, B. The Innovation 2020, 1. doi: 10.1016/j.xinn.2020.100016  doi: 10.1016/j.xinn.2020.100016

    110. [110]

      Wang, Y.; Zhang, J. J.; Qian, Q. L.; Bediako, B. B. A.; Cui, M.; Yang, G. Y.; Yan, J.; Han, B. X. Green Chem. 2019, 21, 589. doi: 10.1039/c8gc03320j  doi: 10.1039/c8gc03320j

    111. [111]

      Zhang, J.; Qian, Q.; Cui, M.; Chen, C.; Liu, S.; Han, B. Green Chem. 2017, 19, 4396. doi: 10.1039/c7gc01887h  doi: 10.1039/c7gc01887h

    112. [112]

      Bediako, B. B. A.; Qian, Q.; Zhang, J.; Wang, Y.; Shen, X.; Shi, J.; Cui, M.; Yang, G.; Wang, Z.; Tong, S. Green Chem. 2019, 21, 4152. doi: 10.1039/c9gc01185d  doi: 10.1039/c9gc01185d

  • 加载中
    1. [1]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    2. [2]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    3. [3]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    4. [4]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    5. [5]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    10. [10]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    11. [11]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    18. [18]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    19. [19]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    20. [20]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

Metrics
  • PDF Downloads(41)
  • Abstract views(786)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return