Citation: Fan Yun, Chen Guodan, Xi Xiuan, Li Jun, Wang Qi, Luo Jingli, Fu Xianzhu. Co-Generation of Ethylene and Electricity from Ethane by CeO2/RP-PSCFM@CoFe Anode Materials in Proton Conductive Fuel Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(7): 200910. doi: 10.3866/PKU.WHXB202009107 shu

Co-Generation of Ethylene and Electricity from Ethane by CeO2/RP-PSCFM@CoFe Anode Materials in Proton Conductive Fuel Cells

  • Corresponding author: Fu Xianzhu, xz.fu@szu.edu.cn
  • These authors contributed equally to this work and should be considered co-first authors.
  • Received Date: 30 September 2020
    Revised Date: 30 October 2020
    Accepted Date: 30 October 2020
    Available Online: 5 November 2020

    Fund Project: the National Natural Science Foundation of China 21975163The project was supported by the National Natural Science Foundation of China (21975163)

  • The continuous consumption and excessive use of fossil fuels promote the exploration of new energy conversion technologies. Meanwhile, the increase in the supply of ethane encourages the development of industrial technology for the production of ethylene chemical raw materials. Compared with traditional fossil fuel energy conversion equipment, solid oxide ethane cogeneration fuel cells are an efficient energy processing device. Through selective oxidation of fuel gas on the anode, the endothermic process of ethane dehydrogenation is converted into an exothermic oxidation reaction, which has a greater driving force for reaction thermodynamics, and simultaneously produces clean electricity and value-added chemicals without CO2 emissions. The anode material used for the proton conductor ethane fuel cells needs to operate stably and efficiently under hydrocarbon fuel. Consequently, excellent catalytic activity, low polarization resistance, and anti-coking stability are essential. In this work, CeO2 was uniformly impregnated into the surface of the porous cubic perovskite Pr0.4Sr0.6Co0.2Fe0.7Mo0.1O3−δ anode by wet impregnation, and then calcined and reduced to obtain a CeO2/RP-PSCFM@CoFe composite anode embedded with nanoparticles, which was successfully used in electrolyte-supported proton conductor fuel cells. CeO2 has a high ionic conductivity and transport capacity, which accelerates the transfer rate of protons on the anode and improves the catalytic reaction and transport process. Moreover, uniformly dispersed CeO2 can effectively increase the three-phase interface of the anode reaction and increase the range of reaction activity. The peak power densities before and after wet impregnation reached 172 and 253 mW·cm−2, respectively, at 750 ℃. When switching to ethane as the fuel, the peak power densities reached 136 and 183 mW·cm−2, respectively. The polarization resistance of the impregnated single cell was significantly reduced, and the catalytic activity improved. Moreover, there was no attenuation for 10 h in the long-term test. Inversely, the current density increased with the continuous reduction of the composite anode. Product analysis revealed that the yield of ethylene increased from 23.52% at 650 ℃ to 34.09% at 750 ℃, and the ethylene selectivity exceeded 94%. These results clearly show that the impregnated anode exhibited excellent catalytic activity and anti-coking ability in hydrocarbon fuels at high temperatures. Combining CoFe nanoparticles with CeO2 enhanced the electronic conductance and ionic conductance of the electrode, improved the transmission of electric energy and the efficient conversion of chemicals, thus successfully producing the cogeneration of electric energy and ethylene.
  • 加载中
    1. [1]

      Atkinson, A.; Barnett, S.; Gorte, R. J.; Irvine, J. T.; McEvoy, A. J.; Mogensen, M.; Singhal, S. C.; Vohs, J. Nat. Mater. 2004, 3, 17. doi: 10.1038/nmat1040  doi: 10.1038/nmat1040

    2. [2]

      Sun, W.; Shi, Z.; Liu, M.; Bi, L.; Liu, W. Adv. Funct. Mater. 2014, 24, 5695. doi: 10.1002/adfm.201401478  doi: 10.1002/adfm.201401478

    3. [3]

      Sengodan, S.; Choi, S.; Jun, A.; Shin, T. H.; Ju, Y. W.; Jeong, H. Y.; Shin, J.; Irvine, J. T.; Kim, G. Nat. Mater. 2015, 14, 205. doi: 10.1038/nmat4166  doi: 10.1038/nmat4166

    4. [4]

      Fu, X. Z.; Luo, J. L.; Sanger, A. R.; Luo, N. Chuang, K. T. J. Power Sources 2010, 195, 2659. doi: 10.1016/j.jpowsour.2009.10.069  doi: 10.1016/j.jpowsour.2009.10.069

    5. [5]

      Wang, S. Y.; Luo, J. L.; Sanger, A. R.; Chuang, K. T. J. Phys. Chem. C 2007, 111, 5069. doi: 10.1021/jp066690w  doi: 10.1021/jp066690w

    6. [6]

      Fan, Y.; Wang, Q.; Li, J.; Luo, J. L.; Fu, X. Z. J. Electrochem. 2020, 26, 243.  doi: 10.13208/j.electrochem.191145

    7. [7]

      Wang, W.; Xu, M. G.; Xu, X. M.; Zhou, W.; Shao, Z. P. Angew. Chem. Int. Ed. 2020, 59, 136. doi: 10.1002/anie.201900292  doi: 10.1002/anie.201900292

    8. [8]

      Li, Y. F.; Zhang, W. Q.; Zheng, Y.; Chen, J.; Yu, B.; Chen, Y.; Liu, M. L. Chem. Soc. Rev. 2017, 46, 6345. doi: 10.1039/c7cs00120g  doi: 10.1039/c7cs00120g

    9. [9]

      Xie, C.; Yan, D. F.; Chen, W.; Zou, Y. Q.; Chen, R.; Zang, S. Q.; Wang, Y. Y.; Yao, X. D.; Wang, S. Y. Mater. Today 2019, 31, 47. doi: 10.1016/j.mattod.2019.05.021  doi: 10.1016/j.mattod.2019.05.021

    10. [10]

      Jarrige, I.; Ishii, K.; Matsumura, D.; Nishihata, Y.; Yoshida, M.; Kishi, H.; Taniguchi, M.; Uenishi, M.; Tanaka, H.; Kasai, H.; et al. ACS Catal. 2015, 5, 1112. doi: 10.1021/cs501608k  doi: 10.1021/cs501608k

    11. [11]

      Zhang, J.; Gao, M. R.; Luo, J. L. Chem. Mater. 2020, 32, 5424. doi: 10.1021/acs.chemmater.0c00721  doi: 10.1021/acs.chemmater.0c00721

    12. [12]

      Zhang, X. R.; Ye, L. T.; Li, H.; Chen, F. L.; Xie, K. ACS Catal. 2020, 10, 3505. doi: 10.1021/acscaatal.9b05409  doi: 10.1021/acscaatal.9b05409

    13. [13]

      Sun, Y. F.; Zhang, Y. Q.; Chen, J.; Li, J. H.; Zhu, Y. T.; Zeng, Y. M.; Amirkhiz, B. S.; Li, J.; Hua, B.; Luo, J. L. Nano Lett. 2016, 16, 5303. doi: 10.1021/acs.nanolett.6b02757  doi: 10.1021/acs.nanolett.6b02757

    14. [14]

      Neagu, D.; Tsekouras, G.; Miller, D. N.; Menard, H.; Irvine, J. T. Nat. Chem. 2013, 5. doi: 10.1038/nchem.1773

    15. [15]

      Liu, S.; Liu, Q.; Fu, X. Z.; Luo, J. L. Appl. Catal. B: Environ. 2018, 220, 283. doi: 10.1016/j.apcatb.2017.08.051  doi: 10.1016/j.apcatb.2017.08.051

    16. [16]

      Lv, H. F.; Lin, L.; Zhang, X. M.; Song, Y. F.; Matsumoto, H.; Zeng, C. B.; Ta, N.; Liu, W.; Gao, D. F.; Wang, G. X.; et al. Adv. Mater. 2019, 32, 2063. doi: 10.1002/adma.201906193  doi: 10.1002/adma.201906193

    17. [17]

      Shi, N.; Xue, S.; Xie, Y.; Yang, Y.; Huan, D.; Pan, Y.; Peng, R.; Xia, C.; Zhan, Z.; Lu, Y. Appl. Catal. B: Environ. 2020, 272, 118973. doi: 10.1016/j.apcatb.2020.118973  doi: 10.1016/j.apcatb.2020.118973

    18. [18]

      Hua, B.; Yan, N.; Li, M.; Sun, Y. F.; Zhang, Y. Q.; Li, J.; Etsell, T.; Sarkar, P.; Luo, J. L. Adv. Mater. 2016, 28, 8922. doi: 10.1002/adma.201602103  doi: 10.1002/adma.201602103

    19. [19]

      Xi, X.; Cao, Z. -S.; Shen, X. Q.; Lu, Y.; Li, J.; Luo, J. L.; Fu, X. Z. J. Power Sources 2020, 459, 228071. doi: 10.1016/j.jpowsour.2020.228071  doi: 10.1016/j.jpowsour.2020.228071

    20. [20]

      Liu, S.; Chuang, K. T.; Luo, J. L. ACS Catal. 2015, 6, 760. doi: 10.1021/acscatal.5b02296  doi: 10.1021/acscatal.5b02296

    21. [21]

      Lv, X.; Chen, H.; Zhou, W.; Cheng, F.; Li, S. D.; Shao, Z. Renewable Energy. 2020, 150, 334. doi: 10.1016/j.renene.2019.12.126  doi: 10.1016/j.renene.2019.12.126

    22. [22]

      Ding, S.; Li, M.; Pang, W.; Hua, B.; Duan, N.; Zhang, Y. -Q.; Zhang, S. -N.; Jin, Z.; Luo, J. L. Electrochim. Acta 2020, 335, 135683. doi: 10.1016/j.electacta.2020.135683  doi: 10.1016/j.electacta.2020.135683

    23. [23]

      Bian, L.; Duan, C.; Wang, L.; O'Hayre, R.; Cheng, J.; Chou, K. C. J. Mater. Chem. A. 2017, 5, 15253. doi: 10.1039/c7ta03001k  doi: 10.1039/c7ta03001k

    24. [24]

      Fu, X. Z.; Luo, X. X.; Luo, J. L.; Chuang, K. T.; Sanger, A. R.; Krzywicki, A. J. Power Sources 2011, 196, 1036. doi: 10.1016/j.jpowsour.2010.08.043  doi: 10.1016/j.jpowsour.2010.08.043

    25. [25]

      McIntosh, S.; Gorte, R. J. Chem. Rev. 2004, 104, 4845. doi: 10.1021/cr020725g  doi: 10.1021/cr020725g

    26. [26]

      Silva, A. A. A.; Bion, N.; Epron, F.; Baraka, S.; Fonseca, F. C.; Rabelo, N. R. C.; Mattos, L. V.; Noronha, F. B. Appl. Catal. B: Environ. 2017, 206, 626. doi: 10.1016/j.apcatb.2017.01.069  doi: 10.1016/j.apcatb.2017.01.069

    27. [27]

      Liu, Z.; Liu, B.; Ding, D.; Liu, M.; Chen, F.; Xia, C. J. Power Sources. 2013, 237, 243. doi: 10.1016/j.jpowsour.2013.03.025  doi: 10.1016/j.jpowsour.2013.03.025

    28. [28]

      Lei, Z.; Zhu, Q. S.; Han, M. F. Acta Phys. -Chim. Sin. 2010, 26, 583.  doi: 10.3866/PKU.WHXB20100323

    29. [29]

      Mackenzie J. D.; Bescher E. P. Acc. Chem. Res. 2007, 40, 810. doi: 10.1021/ar7000149  doi: 10.1021/ar7000149

    30. [30]

      Zuo, C.; Zha, S.; Liu, M.; Hatano, M.; Uchiyama, M. Adv. Mater. 2006, 18, 3318. doi: 10.1002/adma.200601366  doi: 10.1002/adma.200601366

    31. [31]

      Zhang, L.; Yang, C.; Frenkel, A. I.; Wang, S.; Xiao, G.; Brinkman, K.; Chen, F. J. Power Sources. 2014, 262, 421. doi: 10.1016/j.jpowsour.2014.04.009  doi: 10.1016/j.jpowsour.2014.04.009

    32. [32]

      Yang, C.; Li, J.; Lin, Y.; Liu, J.; Chen, F.; Liu, M. Nano Energy 2015, 11, 704. doi: 10.1016/j.nanoen.2014.12.001  doi: 10.1016/j.nanoen.2014.12.001

    33. [33]

      Wang, Z.; Tian, Y.; Li, Y. J. Power Sources 2011, 196, 6104. doi: 10.1016/j.jpowsour.2011.03.053  doi: 10.1016/j.jpowsour.2011.03.053

    34. [34]

      Song, Y.; Zhong, Q.; Tan, W.; Pan, C. Electrochim. Acta 2014, 139, 13. doi: 10.1016/j.electacta.2014.07.022  doi: 10.1016/j.electacta.2014.07.022

    35. [35]

      Chen, D.; Chen, C.; Dong, F.; Shao, Z.; Ciucci, F. J. Power Sources 2014, 250, 188. doi: 10.1016/j.jpowsour.2013.11.010  doi: 10.1016/j.jpowsour.2013.11.010

    36. [36]

      Pan, X.; Wang, Z.; He, B.; Wang, S.; Wu, X.; Xia, C. Int. J. Hydrog. Energy 2013, 38, 4108. doi: 10.1016/j.ijhydene.2013.01.121  doi: 10.1016/j.ijhydene.2013.01.121

    37. [37]

      Osinkin, D. A.; Bogdanovich, N. M.; Gavrilyuk, A. L. Electrochim. Acta 2016, 199, 108. doi: 10.1016/j.electacta.2016.03.133  doi: 10.1016/j.electacta.2016.03.133

    38. [38]

      Liu, S.; Behnamian, Y.; Chuang, K. T.; Liu, Q.; Luo, J. L. J. Power Sources 2015, 298, 23. doi: 10.1016/j.jpowsour.2015.08.032  doi: 10.1016/j.jpowsour.2015.08.032

    39. [39]

      Fu, X. Z.; Lin, J. Y.; Xu, S.; Luo, J. L.; Chuang, K. T.; Sanger, A. R.; Krzywicki, A. Phys. Chem. Chem. Phys. 2011, 13, 19615. doi: 10.1039/c1cp22837d  doi: 10.1039/c1cp22837d

  • 加载中
    1. [1]

      Yixin LuMinghan QinShixian ZhangZhen LiuWang SunZhenhua WangJinshuo QiaoKening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Yao-Yu MaWen-Juan ShiGang-Ding WangXin LiuLei HouYao-Yu Wang . Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2025, 36(3): 109729-. doi: 10.1016/j.cclet.2024.109729

    4. [4]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    5. [5]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    6. [6]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    7. [7]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    8. [8]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    9. [9]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    10. [10]

      Wendi DouGuangying WanTiefeng LiuLin HanWu ZhangChuang SunRensheng SongJianhui ZhengYujing LiuXinyong Tao . Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2024, 35(11): 109389-. doi: 10.1016/j.cclet.2023.109389

    11. [11]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    12. [12]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    13. [13]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    14. [14]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    15. [15]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

    16. [16]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    17. [17]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    18. [18]

      Wenfeng ShaoChuanlin LiChenggang WangGuangsen DuShunshun ZhaoGuangmeng QuYupeng XingTianshuo GuoHongfei LiXijin Xu . Stabilization of zinc anode by trace organic corrosion inhibitors for long lifespan. Chinese Chemical Letters, 2025, 36(3): 109531-. doi: 10.1016/j.cclet.2024.109531

    19. [19]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    20. [20]

      Wenqing DengFanfeng DengTing ZhangJunjie LinLiang ZhaoGang LiYi PanJiebin Yang . Continuous measurement of reactive ammonia in hydrogen fuel by online dilution module coupled with Fourier transform infrared spectrometer. Chinese Chemical Letters, 2025, 36(3): 110085-. doi: 10.1016/j.cclet.2024.110085

Metrics
  • PDF Downloads(22)
  • Abstract views(434)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return