Citation: Xue Yanrong, Wang Xingdong, Zhang Xiangqian, Fang Jinjie, Xu Zhiyuan, Zhang Yufeng, Liu Xuerui, Liu Mengyuan, Zhu Wei, Zhuang Zhongbin. Cost-Effective Hydrogen Oxidation Reaction Catalysts for Hydroxide Exchange Membrane Fuel Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(9): 200910. doi: 10.3866/PKU.WHXB202009103 shu

Cost-Effective Hydrogen Oxidation Reaction Catalysts for Hydroxide Exchange Membrane Fuel Cells


  • Author Bio:








    Zhongbin Zhuang, born in August 1983, received his Ph.D. degrees from Tsinghua University 2010. He joined Beijing University of Chemical Technology as a professor in 2015. His current research interests include electrocatalysts for fuel cell and electrolyzers, interfacial electrochemistry and methodology for nanocrystal synthesis
  • Corresponding author: Zhuang Zhongbin, zhuangzb@mail.buct.edu.cn
  • Received Date: 30 September 2020
    Revised Date: 31 October 2020
    Accepted Date: 2 November 2020
    Available Online: 12 November 2020

    Fund Project: the National Key Research and Development Program of China 2019YFA0210300The project was supported by the National Key Research and Development Program of China (2019YFA0210300) and the National Natural Science Foundation of China (21671014)the National Natural Science Foundation of China 21671014

  • Fuel cells are clean, efficient energy conversion devices that produce electricity from chemical energy stored within fuels. The development of fuel cells has significantly progressed over the past decades. Specifically, polymer electrolyte fuel cells, which are representative of proton exchange membrane fuel cells (PEMFCs), exhibit high efficiency, high power density, and quick start-up times. However, the high cost of PEMFCs, partially from the Pt-based catalysts they employ, hinders their diverse applicability. Hydroxide exchange membrane fuel cells (HEMFCs), which are also known as alkaline polymer electrolyte fuel cells (APEFCs), alkaline anion-exchange membrane fuel cells (AAEMFCs), anion exchange membrane fuel cells (AEMFCs), or alkaline membrane fuel cells (AMFCs), have attracted much attention because of their capability to use non-Pt electrocatalysts and inexpensive bipolar plates. The HEMFCs are structurally similar to PEMFCs but they use a polymer electrolyte that conducts hydroxide ions, thus providing an alkaline environment. However, the relatively sluggish kinetics of the hydrogen oxidation reaction (HOR) inhibit the practical application of HEMFCs. The anode catalyst loading needed for HEMFCs to achieve high cell performance is larger than that required for other fuel cells, which substantially increases the cost of HEMFCs. Therefore, low-cost, highly active, and stable HOR catalysts in the alkaline condition are greatly desired. Here, we review the recent achievements in developing such HOR catalysts. First, plausible HOR mechanisms are explored and HOR activity descriptors are summarized. The HOR processes are mainly controlled by the binding energy between hydrogen and the catalysts, but they may also be influenced by OH adsorption, interfacial water adsorption, and the potential of zero (free) charge. Next, experimental methods used to elevate HOR activities are introduced, followed by HOR catalysts reported in the literature, including Pt-, Ir-, Pd-, Ru-, and Ni-based catalysts, among others. HEMFC performances when employing various anode catalysts are then summarized, where HOR catalysts with platinum-group metals exhibited the highest HEMFC performance. Although the Ni-based HOR catalyst activity was higher than those of other non-precious metal-based catalysts, they showed unsatisfactory performance in HEMFCs. We further analyzed HEMFC performances while considering anode catalyst cost, where we found that this cost can be reduced by using recently developed, non-Pt HOR catalysts, especially Ru-based catalysts. In fact, an HEMFC using a Ru-based HOR catalyst showed an anode catalyst cost-based performance similar to that of PEMFCs, making the HEMFC promising for use in practical applications. Finally, we proposed routes for developing future HOR catalysts for HEMFCs.
  • 加载中
    1. [1]

      Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Science 2017, 355, 4998. doi: 10.1126/science.aad4998  doi: 10.1126/science.aad4998

    2. [2]

      Gasteiger, H. A.; Markovic, N. M. Science 2009, 324, 48. doi: 10.1126/science.1172083  doi: 10.1126/science.1172083

    3. [3]

      Setzler, B. P.; Zhuang, Z.; Wittkopf, J. A.; Yan, Y. Nat. Nanotech. 2016, 11, 1020. doi: 10.1038/nnano.2016.265  doi: 10.1038/nnano.2016.265

    4. [4]

      Koper, M. T. Nat. Chem. 2013, 5, 255. doi: 10.1038/nchem.1600  doi: 10.1038/nchem.1600

    5. [5]

      Bockris, J. O. M. Int. J. Hydrogen Energy 2013, 38, 2579. doi: 10.1016/j.ijhydene.2012.12.026  doi: 10.1016/j.ijhydene.2012.12.026

    6. [6]

      Bockris, J. O. M. Int. J. Hydrogen Energy 1999, 24, 1. doi: 10.1016/S0360-3199(98)00115-3  doi: 10.1016/S0360-3199(98)00115-3

    7. [7]

      Sun, Y.; Lu, J.; Zhuang, L. Electrochim. Acta 2010, 55, 844. doi: 10.1016/j.electacta.2009.09.047  doi: 10.1016/j.electacta.2009.09.047

    8. [8]

      Kenney, M. J.; Huang, J. E.; Zhu, Y.; Meng, Y.; Xu, M.; Zhu, G.; Hung, W.; Kuang, Y.; Lin, M.; Sun, X.; et al. Nano Res. 2019, 12, 1431. doi: 10.1007/s12274-019-2379-7  doi: 10.1007/s12274-019-2379-7

    9. [9]

      Furukawa, S.; Suzuki, R.; Ochi, K.; Yashima, T.; Komatsu, T. ChemSusChem 2015, 8, 2028. doi: 10.1002/cssc.201500112  doi: 10.1002/cssc.201500112

    10. [10]

      Strong, A.; Thornberry, C. J. Fuel. Cell. Sci. Tech. 2015, 12, 064001. doi: 10.1115/1.4031961  doi: 10.1115/1.4031961

    11. [11]

      Shao, Y.; Liu, J.; Wang, Y.; Lin, Y. J. Mater. Chem. 2009, 19, 46. doi: 10.1039/b808370c  doi: 10.1039/b808370c

    12. [12]

      Kongkanand, A.; Mathias, M. F. J. Phys. Chem. Lett. 2016, 7, 1127. doi: 10.1021/acs.jpclett.6b00216  doi: 10.1021/acs.jpclett.6b00216

    13. [13]

      Wang, Y.; Leung, D. Y. C.; Xuan, J.; Wang, H. Renew. Sust. Energ. Rev. 2016, 65, 961. doi: 10.1016/j.rser.2016.07.046  doi: 10.1016/j.rser.2016.07.046

    14. [14]

      Banham, D.; Ye, S. ACS Energy Lett. 2017, 2, 629. doi: 10.1021/acsenergylett.6b00644  doi: 10.1021/acsenergylett.6b00644

    15. [15]

      Majlan, E. H.; Rohendi, D.; Daud, W. R. W.; Husaini, T.; Haque, M. A. Renew. Sust. Energ. Rev. 2018, 89, 117. doi: 10.1016/j.rser.2018.03.007  doi: 10.1016/j.rser.2018.03.007

    16. [16]

      Deng, Y.; Chi, B.; Li, J.; Wang, G.; Zheng, L.; Shi, X.; Cui, Z.; Du, Li.; Liao, S.; Zang, K.; et al. Adv. Energy Mater. 2019, 9, 1802856. doi: 10.1002/aenm.201802856  doi: 10.1002/aenm.201802856

    17. [17]

      Wang, J.; Zhao, Y.; Setzler, B.; Rojas-Carbonell, S.; Ben, Y. C.; Amel, A.; Page, M.; Wang, L.; Hu, K.; et al. Nat. Energy 2019, 4, 392. doi: 10.1038/s41560-019-0372-8  doi: 10.1038/s41560-019-0372-8

    18. [18]

      Pan, J.; Chen, C.; Zhuang, L.; Lu, J. Acc. Chem. Res. 2012, 45, 473. doi: 10.1021/ar200201x  doi: 10.1021/ar200201x

    19. [19]

      Wang, Y. J.; Qiao, J.; Baker, R.; Zhang, J. Chem. Soc. Rev. 2013, 42, 5768. doi: 10.1039/c3cs60053j  doi: 10.1039/c3cs60053j

    20. [20]

      Maurya, S.; Noh, S.; Matanovic, I. Park, E.; Villarrubia, C. N.; Martinez, U.; Han, J.; Bae, C.; Kim, Y. S. Energy Environ. Sci. 2018, 11, 3283. doi: 10.1039/c8ee02192a  doi: 10.1039/c8ee02192a

    21. [21]

      Zhu, L. Pan, J.; Wang, Y.; Han, J.; Zhuang, L.; Hickner, M. A. Macromolecules 2016, 49, 815. doi: 10.1021/acs.macromol.5b02671  doi: 10.1021/acs.macromol.5b02671

    22. [22]

      Lee, W. H.; Kim, Y. S.; Bae, C. ACS Macro Lett. 2015, 4, 814. doi: 10.1021/acsmacrolett.5b00375  doi: 10.1021/acsmacrolett.5b00375

    23. [23]

      Wang, L.; Magliocca, E.; Cunningham, E. L.; Mustain, Wi. E.; Poynton, S. D.; Escudero-Cid, R.; Nasef, M. M.; Ponce-González, J.; Bance-Souahli, R.; Slade, R. C. T.; et al. Green Chem. 2017, 19, 831. doi: 10.1039/c6gc02526a  doi: 10.1039/c6gc02526a

    24. [24]

      Huang, G.; Mandal, M.; Peng, X.; Yang-Neyerlin, A. C.; Pivovar, B. S.; Mustain, W. E.; Kohl, P. A. J. Electrochem. Soc. 2019, 166, F637. doi: 10.1149/2.1301910jes  doi: 10.1149/2.1301910jes

    25. [25]

      Varcoe, J. R.; Slade, R. C. T. Fuel Cells 2004, 2, 187. doi: 10.1002/fuce.200400045  doi: 10.1002/fuce.200400045

    26. [26]

      Lu, S.; Pan, J.; Huang, A.; Zhuang, L.; Lu, J. Proc. Natl. Acad. Sci. USA 2008, 105, 20611. doi: 10.1073/pnas.0810041106  doi: 10.1073/pnas.0810041106

    27. [27]

      Wang, L.; Bellini, M.; Miller, H. A.; Varcoe, J. R. J. Mater. Chem. A 2018, 6, 15404. doi: 10.1039/c8ta04783a  doi: 10.1039/c8ta04783a

    28. [28]

      Wang, L.; Peng, X.; Mustain, W. E.; Varcoe, J. R. Energy Environ. Sci. 2019, 12, 1575, doi: 10.1039/c9ee00331b  doi: 10.1039/c9ee00331b

    29. [29]

      Wang, Y.; Yang, Y.; Jia, S.; Wang, X.; Lyu, K.; Peng, Y.; Zheng, H.; Wei, X.; Ren, H.; Xiao, L. et al. Nat. Commun. 2019, 10, 1506. doi: 10.1038/s41467-019-09503-4  doi: 10.1038/s41467-019-09503-4

    30. [30]

      Woo, J.; Yang, S. Y.; Sa, Y. J.; Choi, W. Y.; Lee, M. H.; Lee, H. W.; Shin, T. J.; Kim, T. Y.; Joo, S. H. Chem. Mater. 2018, 30, 6684. doi: 10.1021/acs.chemmater.8b02117  doi: 10.1021/acs.chemmater.8b02117

    31. [31]

      Ren, H.; Wang, Y.; Yang, Y.; Tang, X.; Peng, Y.; Peng, H.; Xiao, L.; Lu, J.; Abruña, H. D.; Zhuang, L.; et al. ACS Catal. 2017, 7, 6485. doi: 10.1021/acscatal.7b02340  doi: 10.1021/acscatal.7b02340

    32. [32]

      Brouzgoua, A.; Song, S. Q. Appl. Catal. B-Environ. 2012, 127, 371. doi: 10.1016/j.apcatb.2012.08.031  doi: 10.1016/j.apcatb.2012.08.031

    33. [33]

      Lu, S.; Zhuang, Z. Sci. China Mater. 2016, 59, 217. doi: 10.1007/s40843-016-0127-9  doi: 10.1007/s40843-016-0127-9

    34. [34]

      Sheng, W.; Zhuang, Z.; Gao, M.; Zheng, J.; Chen, J. G.; Yan, Y. Nat. Commun. 2015, 6, 5848. doi: 10.1038/ncomms6848  doi: 10.1038/ncomms6848

    35. [35]

      Sheng, W.; Gasteiger, H. A.; Shao-Horn, Y. J. Electrochem. Soc. 2010, 157, B1529. doi: 10.1149/1.3483106  doi: 10.1149/1.3483106

    36. [36]

      Lu, S.; Zhuang, Z. J. Am. Chem. Soc. 2017, 139, 5156. doi: 10.1021/jacs.7b00765  doi: 10.1021/jacs.7b00765

    37. [37]

      Wang, Y.; Qiu, W.; Song, E.; Gu, F.; Zheng, Z.; Zhao, X.; Zhao, Y.; Liu, J.; Zhang, W. Natl. Sci. Rev. 2018, 5, 327. doi: 10.1093/nsr/nwx119  doi: 10.1093/nsr/nwx119

    38. [38]

      Trasatti, S. J. Electroanal. Chem. 1972, 39, 163. doi: 10.1016/S0022-0728(72)80485-6  doi: 10.1016/S0022-0728(72)80485-6

    39. [39]

      Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. J. Electrochem. Soc. 2005, 152, J23. doi: 10.1149/1.1856988  doi: 10.1149/1.1856988

    40. [40]

      Sheng, W.; Myint, M.; Chen, J. G.; Yan, Y. Energy Environ. Sci. 2013, 6, 1509. doi: 10.1039/c3ee00045a  doi: 10.1039/c3ee00045a

    41. [41]

      Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; van der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Nat. Chem. 2013, 5, 300. doi: 10.1038/nchem.1574  doi: 10.1038/nchem.1574

    42. [42]

      Wang, Y.; Wang, G.; Li, G.; Huang, B.; Pan, J.; Liu, Q.; Han, J.; Xiao, L.; Lu, J.; Zhuang, L. Energy Environ. Sci. 2015, 8, 177. doi: 10.1039/c4ee02564d  doi: 10.1039/c4ee02564d

    43. [43]

      Davydova, E. S.; Mukerjee, S.; Jaouen, F.; Dekel, D. R. ACS Catal. 2018, 8, 6665. doi: 10.1021/acscatal.8b00689  doi: 10.1021/acscatal.8b00689

    44. [44]

      Zheng, J.; Zhuang, Z.; Xu, B.; Yan, Y. ACS Catal. 2015, 5, 4449. doi: 10.1021/acscatal.5b00247  doi: 10.1021/acscatal.5b00247

    45. [45]

      Zheng, J.; Sheng, W.; Zhuang, Z.; Xu, B.; Yan, Y. Sci. Adv. 2016, 2, e1501602. doi: 10.1126/sciadv.1501602  doi: 10.1126/sciadv.1501602

    46. [46]

      Zheng, J.; Nash, J.; Xu, B.; Yan, Y. J. Electrochem. Soc. 2018, 165, H27. doi: 10.1149/2.0881802jes  doi: 10.1149/2.0881802jes

    47. [47]

      Cheng, T.; Wang, L.; Merinov, B. V.; Goddard, W. A. J. Am. Chem. Soc. 2018, 140, 7787. doi: 10.1021/jacs.8b04006  doi: 10.1021/jacs.8b04006

    48. [48]

      Zhu, S.; Qin, X.; Yao, Y.; Shao, M. J. Am. Chem. Soc. 2020, 142, 8748. doi: 10.1021/jacs.0c01104  doi: 10.1021/jacs.0c01104

    49. [49]

      Ledezma-Yanez, I.; Wallace, W. D. Z.; Sebastián-Pascual, P.; Climent, V.; Feliu, J. M.; Koper, M. T. M. Nat. Energy 2017, 2, 17031. doi: 10.1038/nenergy.2017.31  doi: 10.1038/nenergy.2017.31

    50. [50]

      Rheinlander, P. J.; Herranz, J.; Durst, J.; Gasteiger, H. A. J. Electrochem. Soc. 2014, 161, F1448. doi: 10.1149/2.0501414jes  doi: 10.1149/2.0501414jes

    51. [51]

      Nash, J.; Zheng, J.; Wang, Y.; Xu, B.; Yan, Y. J. Electrochem. Soc. 2018, 165, J3378. doi: 10.1149/2.051181jes  doi: 10.1149/2.051181jes

    52. [52]

      Li, Q.; H. Peng, H.; Wang, Y.; Li, X.; Lu, J.; Zhuang, L. Angew. Chem. Int. Ed. 2018, 58, 1442. doi: 10.1002/anie.201812662  doi: 10.1002/anie.201812662

    53. [53]

      Wang, T.; Shi, L.; Wang, J.; Zhao, Y.; Setzler, B. P.; Santiago, R. C.; Yan, Y. J. Electrochem. Soc. 2019, 166, F3305. doi: 10.1149/2.0361907jes  doi: 10.1149/2.0361907jes

    54. [54]

      Okubo, K.; Ohyama, J.; Satsuma, A. Chem. Commum. 2019, 55, 3101. doi: 10.1039/c9cc00582j  doi: 10.1039/c9cc00582j

    55. [55]

      Scofield, M. E.; Zhou, Y.; Yue, S.; Wang, L.; Su, D.; Tong, X.; Vukmirovic, M. B.; Adzic, R. R.; Wong, S. S. ACS Catal. 2016, 6, 3895. doi: 10.1021/acscatal.6b00350  doi: 10.1021/acscatal.6b00350

    56. [56]

      Markovic, N. M.; Sarraf, S. T. J. Chem. Soc. Faraday Trans 1996, 92 (20), 3719. doi: 10.1039/ft9969203719  doi: 10.1039/ft9969203719

    57. [57]

      Jin, Y.; Chen, F.; Wang, J.; Guo, L.; Jin, T.; Liu, H. J. Power Sources 2019, 435, 226798. doi: 10.1016/j.jpowsour.2019.226798  doi: 10.1016/j.jpowsour.2019.226798

    58. [58]

      Alia, S. M.; Pivovar, B. S.; Yan, Y. J. Am. Chem. Soc. 2013, 135, 13473. doi: 10.1021/ja405598a  doi: 10.1021/ja405598a

    59. [59]

      Xiao, W.; Lei, W.; Wang, J.; Gao, G.; Zhao, T.; Cordeiro, M. A. L.; Lin, R.; Gong, M.; Guo, X.; Stavitski, E. J. Mater. Chem. A 2018, 6, 11346. doi: 10.1039/c8ta03250e  doi: 10.1039/c8ta03250e

    60. [60]

      Ramaswamy, N.; Mukerjee, S. Chem. Rev. 2019, 119, 11945. doi: 10.1021/acs.chemrev.9b00157  doi: 10.1021/acs.chemrev.9b00157

    61. [61]

      Wang, T.; Shi, L.; Wang, J.; Zhao, Y.; Setzler, B, P.; Rojas-Carbonell, S.; Yan, Y. J. Electrochem. Soc. 2019, 166, F3305. doi: 10.1149/2.0361907jes  doi: 10.1149/2.0361907jes

    62. [62]

      Li, J.; Ghoshal, S.; Bates, M. K.; Miller, T. E.; Davies, V.; Stavitski, E.; Attenkofer, K.; Mukerjee, S.; Ma, Z. F.; Jia, Q. Angew. Chem. Int. Ed. 2017, 56, 15594. doi: 10.1002/anie.201708484  doi: 10.1002/anie.201708484

    63. [63]

      Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. Energy Environ. Sci. 2014, 7, 2255. doi: 10.1039/c4ee00440j  doi: 10.1039/c4ee00440j

    64. [64]

      Montero, M. A.; de Chialvo, M. R. G.; Chialvo, A. C. J. Electroanal. Chem. 2016, 767, 153. doi: 10.1016/j.jelechem.2016.02.024  doi: 10.1016/j.jelechem.2016.02.024

    65. [65]

      Yang, F.; Fu, L.; Cheng, G.; Chen, S.; Luo, W. J. Mater. Chem. A 2017, 5, 22959. doi: 10.1039/c7ta07635e  doi: 10.1039/c7ta07635e

    66. [66]

      Jervis, R.; Mansor, N.; Gibbs, C.; Murray, C. A.; Tang, Chiu C.; Shearing, P. R.; Brett, D. J. L. J. Electrochem. Soc. 2014, 161, F458. doi: 10.1149/2.037404jes  doi: 10.1149/2.037404jes

    67. [67]

      Cong, Y.; McCrum, I. T.; Gao, X.; Lv, Y.; Miao, S.; Shao, Z.; Yi, B.; Yu, H.; Janik, M, J.; Song, Y. J. Mater. Chem. A 2019, 7, 3161. doi: 10.1039/c8ta11019k  doi: 10.1039/c8ta11019k

    68. [68]

      Ohyama, J.; Kumada, D.; Satsuma, A. J. Mater. Chem. A 2016, 4, 15980. doi: 10.1039/c6ta05517f  doi: 10.1039/c6ta05517f

    69. [69]

      Qin, B.; Yu, H.; Gao, X.; Yao, D.; Sun, X.; Song, W.; Yi, B.; Shao, Z. J. Mater. Chem. A 2018, 6, 20374. doi: 10.1039/c8ta07414c  doi: 10.1039/c8ta07414c

    70. [70]

      Wang, H.; Abruña, H. D. J. Am. Chem. Soc. 2017, 139, 6807. doi: 10.1021/jacs.7b02434  doi: 10.1021/jacs.7b02434

    71. [71]

      Tatus-Portnoy, Z.; Kitayev, A.; Vineesh, T. V.; Tal-Gutelmacherb, E.; Pageb, M.; Zitoun, D. Chem. Commun. 2020, 10, 36467. doi: 10.1039/D0CC00008F  doi: 10.1039/D0CC00008F

    72. [72]

      Qin, B.; Yu, H.; Jia, J.; Jun, C.; Gao, X.; Yao, D.; Sun, X.; Song, W.; Yi, B.; Shao, Z. Nanoscale 2018, 10, 4872. doi: 10.1039/c7nr09452c  doi: 10.1039/c7nr09452c

    73. [73]

      Liu, D. Lu, S.; Xue, Y.; Guan, Z.; Fang, J.; Zhu, W.; Zhuang, Z. Nano Energy 2019, 59, 26. doi: 10.1016/j.nanoen.2019.01.070  doi: 10.1016/j.nanoen.2019.01.070

    74. [74]

      Qin, B.; Yu, H.; Chi, J.; Jia, J.; Gao, X.; Yao, D.; Yi, B.; Shao, Z. RSC Adv. 2017, 7, 31574. doi: 10.1039/c7ra03675b  doi: 10.1039/c7ra03675b

    75. [75]

      Markovic, N. M.; Lucas, C.A.; Climent, V.; Stamenkovic, V.; Ross, P. N. Surf. Sci. 2000, 465, 103. doi: 10.1016/S0039-6028(00)00674-9  doi: 10.1016/S0039-6028(00)00674-9

    76. [76]

      Rau, M. S.; Quaino, P. M. Gennero, D.; Chialvo, M. R.; Chialvo, A. C. Electrochem. Commun. 2008, 10, 208. doi: 10.1016/j.elecom.2007.11.031  doi: 10.1016/j.elecom.2007.11.031

    77. [77]

      Gabrielli, C.; Grand, P. P.; Lasia, A.; Perrot, H. J. Electrochem. Soc. 2004, 151, A1937. doi: 10.1149/1.1797035  doi: 10.1149/1.1797035

    78. [78]

      Zheng, J., Zhou, S.; Gu, S.; Xu, B.; Yan, Y. J. Electrochem. Soc. 2016, 163, F499. doi: 10.1149/2.0661606jes  doi: 10.1149/2.0661606jes

    79. [79]

      Greeley, J.; Norskov, J. K.; Kibler, L. A.; El-Aziz, A. M.; Kolb, D. M. Chemphyschem 2006, 7, 1032. doi: 10.1002/cphc.200500663  doi: 10.1002/cphc.200500663

    80. [80]

      Alia, S. M.; Yan, Y. J. Electrochem. Soc. 2015, 162, F849. doi: 10.1149/2.0211508jes  doi: 10.1149/2.0211508jes

    81. [81]

      Shviro, M.; Polani, S.; Dunin-Borkowski, R. E.; Zitoun, D. Adv. Mater. Interfaces 2018, 1701666. doi: 10.1002/admi.201701666  doi: 10.1002/admi.201701666

    82. [82]

      Bakos, I.; Paszternák, A.; Zitoun, D. Electrochim. Acta 2015, 176, 1074. doi: 10.1016/j.electacta.2015.07.109  doi: 10.1016/j.electacta.2015.07.109

    83. [83]

      Ghosh, A.; Chandran, P.; Ramaprabhu, S. Appl. Energ. 2017, 208, 37. doi: 10.1016/j.apenergy.2017.10.022  doi: 10.1016/j.apenergy.2017.10.022

    84. [84]

      Alesker, M.; Page, M.; Shviro, M.; Paska, Y.; Gershinsky, G.; Dekel, D. R.; Zitoun, D. J. Power Sources 2016, 304, 332. doi: 10.1016/j.jpowsour.2015.11.026  doi: 10.1016/j.jpowsour.2015.11.026

    85. [85]

      Feng, Z. A.; El Gabaly, F.; El Gabaly, F.; Ye, X.; Shen, Z. X.; Chueh, W. C. Nat. Commun. 2014, 5, 4374. doi: 10.1038/ncomms5374  doi: 10.1038/ncomms5374

    86. [86]

      Hamish A.; Miller, A. L. Vizza, F.; Marelli, M.; Di Benedetto, F.; D'Acapito, F.; Paska, Y.; Page, M.; Dekel, D, R. Angew. Chem. Int. Ed. 2016, 55, 6004. doi: 10.1002/ange.201600647  doi: 10.1002/ange.201600647

    87. [87]

      Omasta, T. J.; Peng, X.; Miller, H. A.; Vizza, F.; Wang, L.; Varcoe, J. R.; Dekel, D. R.; Mustain, W. E. J. Electrochem. Soc. 2018, 165, J3039. doi: 10.1149/2.0071815jes  doi: 10.1149/2.0071815jes

    88. [88]

      Bellini, M.; Pagliaro, M. V.; Lenarda, A.; Fornasiero, P.; Marelli, M.; Evangelisti, C.; Innocenti, M.; Jia, Q.; Mukerjee, S.; Jankovic, J. ACS Appl. Energy Mater. 2019, 2, 4999. doi: 10.1021/acsaem.9b00657  doi: 10.1021/acsaem.9b00657

    89. [89]

      Bhowmik, T.; Kundu, M. K.; Barman, S. ACS Catal. 2016, 6, 1929. doi: 10.1021/acscatal.5b02485  doi: 10.1021/acscatal.5b02485

    90. [90]

      Kucernak, A. R. J.; Fahy, K. F.; Sundaram, V. Catal. Today 2016, 262, 48. doi: 10.1016/j.cattod.2015.09.031  doi: 10.1016/j.cattod.2015.09.031

    91. [91]

      Jang, J. H.; Kim, J.; Lee, Y. H.; Pak, C.; Kwon, Y. U. Electrochim. Acta 2009, 55, 485. doi: 10.1016/j.electacta.2009.08.061  doi: 10.1016/j.electacta.2009.08.061

    92. [92]

      St. John, S.; Atkinson, R. W.; Unocic, R. R.; Zawodzinski, T. A.; Papandrew, A. B. J. Phys Chem. C 2015, 119, 13481. doi: 10.1021/acs.jpcc.5b03284  doi: 10.1021/acs.jpcc.5b03284

    93. [93]

      Inoue, H.; Wang, J. X.; Sasaki, K.; Adzic, R. R. J. Electroanal. Chem. 2003, 554, 77. doi: 10.1016/s0022-0728(03)00077-9  doi: 10.1016/s0022-0728(03)00077-9

    94. [94]

      Mercer, M. P.; Hoster, H. E. Electrocatalysis 2017, 8, 518. doi: 10.1007/s12678-017-0381-y  doi: 10.1007/s12678-017-0381-y

    95. [95]

      Rau, M. S.; de Chialvo, M. R. G.; Chialvo, A. C. Electrochim. Acta 2010, 55, 5014. doi: 10.1016/j.electacta.2010.04.007  doi: 10.1016/j.electacta.2010.04.007

    96. [96]

      Liu, Y.; Zhang, L.; Qin, Y.; Chu, F.; Kong, Y.; Tao, Y.; Li, Y.; Bu, Y.; Ding, D.; Liu, M. ACS Catal. 2018, 8, 5714. doi: 10.1021/acscatal.8b01609  doi: 10.1021/acscatal.8b01609

    97. [97]

      Ohyama, J.; Sato, T.; Yamamoto, Y.; Arai, S.; Satsuma. J. Am. Chem. Soc. 2013, 135, 8016. doi: 10.1021/ja4021638  doi: 10.1021/ja4021638

    98. [98]

      Ohyama, J.; Sato, T.; Satsuma, A. J. Power Sources 2013, 225, 311. doi: 10.1016/j.jpowsour.2012.10.051  doi: 10.1016/j.jpowsour.2012.10.051

    99. [99]

      Zeng, L.; Peng, H.; Liu, W.; Yin, J.; Xiao, L.; Lu, J.; Zhuang, L. J. Power Sources 2020, 461, 228147. doi: 10.1016/j.jpowsour.2020.228147  doi: 10.1016/j.jpowsour.2020.228147

    100. [100]

      Xue, Y.; Shi, L.; Liu, X.; Fang, J.; Wang, X.; Setzler, B. P.; Zhu, W.; Yan, Y.; Zhuang Z. Nat. Commun. 2020, 11, 5651. doi: 10.1038/s41467-020-19413-5  doi: 10.1038/s41467-020-19413-5

    101. [101]

      Floner, D.; Lamy, C.; Leger, J. M. Surf. Sci. 1990, 234, 87. doi: 10.1016/0039-6028(90)90668-X  doi: 10.1016/0039-6028(90)90668-X

    102. [102]

      Shim, J.; Li, H. K. Mater. Chem. Phys. 2001, 69, 72. doi: 10.1016/S0254-0584(00)00349-7  doi: 10.1016/S0254-0584(00)00349-7

    103. [103]

      Jenseit, W.; Khalil, A.; Wendt, H. J. Appl. Electrochem. 1990, 20, 893. doi: 10.1007/BF01019562  doi: 10.1007/BF01019562

    104. [104]

      Kiros, Y.; Majari, M.; Nissinen, T. A. J. Alloys Compd. 2003, 360, 279. doi: 10.1016/s0925-8388(03)00346-3  doi: 10.1016/s0925-8388(03)00346-3

    105. [105]

      Gu, S.; Sheng, W.; Cai, R.; Alia, S. M.; Song, S.; Jensen, K. O.; Yan, Y. Chem. Commun. 2013, 49, 131. doi: 10.1039/c2cc34862d  doi: 10.1039/c2cc34862d

    106. [106]

      Davydova, E.; Zaffran, J.; Dhaka, K.; Toroker, M.; Dekel, D. Catalysts 2018, 8, 454. doi: 10.3390/catal8100454  doi: 10.3390/catal8100454

    107. [107]

      Hu, Q.; Li, G.; Pan, J.; Tan, L.; Lu, J.; Zhuang, L. Int. J. Hydrogen Energy 2013, 38, 16264. doi: 10.1016/j.ijhydene.2013.09.125  doi: 10.1016/j.ijhydene.2013.09.125

    108. [108]

      Kabir, S.; Lemire, K.; Artyushkova, K.; Roy, A.; Odgaard, M.; Schlueter, D.; Oshchepkov, A.; Bonnefont, A.; Savinova, E.; Sabarirajan, D. C.; et al. J. Mater. Chem. A 2017, 5, 24433. doi: 10.1039/c7ta08718g  doi: 10.1039/c7ta08718g

    109. [109]

      Roy, A.; Talarposhti, M. R.; Normile, S. J.; Zenyuk, I. V.; De Andrade, V.; Artyushkova, K.; Serov, A.; Atanassov, P. Sustain. Energy Fuels. 2018, 2, 2268. doi: 10.1039/c8se00261d  doi: 10.1039/c8se00261d

    110. [110]

      Zhuang, Z.; Giles, S. A.; Zheng, J.; Jenness, G. R.; Caratzoulas, S.; Vlachos, D. G.; Yan, Y. Nat. Commun. 2016, 7, 10141. doi: 10.1038/ncomms10141  doi: 10.1038/ncomms10141

    111. [111]

      Jiang, S.; Cheng, Q.; Zou, L.; Zou, Z.; Li, Y.; Zhang, Q.; Gao, Y.; Yang, H. Chem. Phys. Lett. 2019, 728, 19. doi: 10.1016/j.cplett.2019.04.072  doi: 10.1016/j.cplett.2019.04.072

    112. [112]

      Song, F.; Li, W.; Yang, J.; Han, G.; Liao, P.; Sun, Y. Nat. Commun. 2018, 9, 4531. doi: 10.1038/s41467-018-06728-7  doi: 10.1038/s41467-018-06728-7

    113. [113]

      Ni, W.; Krammer, A.; Hsu, C. S.; Chen, H. M.; Schuler, A.; Hu, X. Angew. Chem. Int. Ed. 2019, 58, 7445. doi: 10.1002/anie.201902751  doi: 10.1002/anie.201902751

    114. [114]

      Yang, F.; Bao, X.; Zhao, Y.; Wang, X.; Cheng, G.; Luo, W. J. Mater. Chem. A 2019, 7, 10936. doi: 10.1039/c9ta01916b  doi: 10.1039/c9ta01916b

    115. [115]

      Davydova, E. S.; Speck, F. D.; Paul, M. T. Y.; Dekel, D. R.; Cherevko, S. ACS Catal. 2019, 9, 6837. doi: 10.1021/acscatal.9b01582  doi: 10.1021/acscatal.9b01582

    116. [116]

      Sandoval, R.; Schrebler, R.; Gomez, H. J. Electroanal. Chem. 1986, 210, 287. doi: 10.1016/0022-0728(86)80581-2  doi: 10.1016/0022-0728(86)80581-2

    117. [117]

      Gao, L.; Wang, Y.; Li, H.; Li, Q.; Ta, N.; Zhuang, L.; Fu, Q.; Bao, X. Chem. Sci. 2017, 8, 5728. doi: 10.1039/c7sc01615h  doi: 10.1039/c7sc01615h

    118. [118]

      Gao, Y.; Peng, H.; Wang, Y.; Wang, G.; Xiao, L.; Lu, J.; Zhuang, L. ACS Appl. Mater. Interfaces 2020, 12, 31575. doi: 10.1021/acsami.0c10784  doi: 10.1021/acsami.0c10784

    119. [119]

      Oshchepkov, A. G.; Bonnefont, A.; Saveleva, V. A.; Papaefthimiou, V.; Zafeiratos, S.; Pronkin, S. N.; Parmon, V. N.; Savinova, E. R. Top. Catal. 2016, 59, 1319. doi: 10.1007/s11244-016-0657-0  doi: 10.1007/s11244-016-0657-0

    120. [120]

      Pan, Y.; Hu, G.; Lu, J.; Xiao, L.; Zhuang, L. J. Energy Chem. 2019, 29, 111. doi: 10.1016/j.jechem.2018.02.011  doi: 10.1016/j.jechem.2018.02.011

    121. [121]

      Yang, Y.; Sun, X.; Han, G.; Liu, X.; Zhang, X.; Sun, Y.; Zhang, M.; Cao, Z.; Sun, Y. Angew. Chem. In.t Ed. 2019, 58, 10644. doi: 10.1002/anie.201905430  doi: 10.1002/anie.201905430

    122. [122]

      Deng, S.; Liu, X.; Huang, T.; Zhao, T.; Lu, Y.; Cheng, J.; Shen, T.; Liang, J.; Wang, D. Electrochim. Acta 2019, 324, 134892. doi: 10.1016/j.electacta.2019.134892  doi: 10.1016/j.electacta.2019.134892

    123. [123]

      Wang, H.; Abruña, H. D. ACS Catal. 2019, 9, 5057. doi: 10.1021/acscatal.9b00906  doi: 10.1021/acscatal.9b00906

    124. [124]

      Yang, F.; Zhao, Y.; Du, Y.; Chen, Y.; Cheng, G.; Chen, S.; Luo, W. Adv. Energy Mater. 2018, 8, 1703489. doi: 10.1002/aenm.201703489  doi: 10.1002/aenm.201703489

    125. [125]

      Yang, F.; Bao, X.; Gong, D.; Su, L.; Cheng, G.; Chen, S.; Luo, W. ChemElectroChem 2019, 6, 1990. doi: 10.1002/celc.201900129  doi: 10.1002/celc.201900129

    126. [126]

      Kelly, T. G.; Chen, J. G. Chem. Soc. Rev. 2012, 41, 8021. doi: 10.1039/c2cs35165j  doi: 10.1039/c2cs35165j

    127. [127]

      Kimmel, Y. C.; Xu, X.; Yu, W.; Yang, X.; Chen, J. G. ACS Catal. 2014, 4, 1558. doi: 10.1021/cs500182h  doi: 10.1021/cs500182h

    128. [128]

      Vasić, D. D.; Pašti, I. A. Int. J. Hydrogen Energy 2013, 38, 5009. doi: 10.1016/j.ijhydene.2013.02.020  doi: 10.1016/j.ijhydene.2013.02.020

    129. [129]

      Esposito, D. V.; Hunt, S. T.; Kimmel, Y. C.; Chen, J. G. J. Am. Chem. Soc. 2012, 134, 3025. doi: 10.1021/ja208656v  doi: 10.1021/ja208656v

    130. [130]

      Wang, L.; Mahoney, E. G.; Zhao, S.; Yang, B.; Chen, J. G. Chem. Commun. 2016, 52, 3697. doi: 10.1039/c5cc10439d  doi: 10.1039/c5cc10439d

    131. [131]

      Omasta, T. J.; Wang, L.; Peng, X.; Lewis, C. A.; Varcoe, J. R.; Mustain, W. E. J. Power Sources 2018, 375, 205. doi: 10.1016/j.jpowsour.2017.05.006  doi: 10.1016/j.jpowsour.2017.05.006

    132. [132]

      Piana, M.; Boccia, M.; Filpi, A.; Flammia, E.; Miller, H. A.; Orsini, M.; Salusti, F.; Santiccioli, S.; Ciardelli, F.; Pucci, A. J. Power Sources 2010, 195, 5875. doi: 10.1016/j.jpowsour.2009.12.085  doi: 10.1016/j.jpowsour.2009.12.085

    133. [133]

      https://quote.cngold.org/gjs/jgs_ttpt.html

    134. [134]

      Li, T.; Yuan, H. Geochimica 2011, 4, 1. doi: 10.19700/j.0379-1726.2011.01.001  doi: 10.19700/j.0379-1726.2011.01.001

    135. [135]

      Chen, W. H.; Chen, S. L. Acta Phys. -Chim Sin. 2019, 35, 517.  doi: 10.3866/PKU.WHXB201806011

    136. [136]

      Yang, C.; Han, N.; Wang, Y.; Yuan, X.; Xu, J.; Huang, H.; Fan, J.; Li, H.; Wang, H. ACS Sustain. Chem. Eng. 2020, 8, 9803. doi: 10.1021/acssuschemeng.0c02386  doi: 10.1021/acssuschemeng.0c02386

    137. [137]

      Xiong, L.; Manthiram, A. Electrochim. Acta 2005, 50, 3200. doi: 10.1016/j.electacta.2004.11.049  doi: 10.1016/j.electacta.2004.11.049

    138. [138]

      Thompson, S. T.; James, B. D.; Huya-Kouadio, J. M.; Houchins, C.; DeSantis, D. A.; Ahluwalia, R.; Wilson, A. R. Kleen, G.; Papageorgopoulos, D. J. Power Sources 2018, 399, 304. doi: 10.1016/j.jpowsour.2018.07.100  doi: 10.1016/j.jpowsour.2018.07.100

    139. [139]

      Liu, R.; Zhou, W.; Wan, L.; Zhang, P.; Li, S.; Gao, Y.; Xu, D.; Zheng, C.; Shang, M. Curr. Appl. Phys. 2020, 20, 11. doi: 10.1016/j.cap.2019.09.016  doi: 10.1016/j.cap.2019.09.016

    140. [140]

      Peng, X.; Zhao, S.; Omasta, T. J.; Roller, J. M.; Mustain, W. E. Appl. Catal. B-Environ. 2017, 203, 927. doi: 10.1016/j.apcatb.2016.10.081  doi: 10.1016/j.apcatb.2016.10.081

  • 加载中
    1. [1]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    2. [2]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    3. [3]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    4. [4]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    5. [5]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    6. [6]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    7. [7]

      Xinyu YuFei WuXianglang SunLinna ZhuBaoyu XiaZhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821

    8. [8]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    9. [9]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    10. [10]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    11. [11]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    12. [12]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    13. [13]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    14. [14]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    15. [15]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    16. [16]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    17. [17]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    18. [18]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    19. [19]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    20. [20]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

Metrics
  • PDF Downloads(12)
  • Abstract views(506)
  • HTML views(137)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return