Citation: Zhang Peng, Wang Jiquan, Li Yuan, Jiang Lisha, Wang Zhuangzhuang, Zhang Gaoke. Non-Noble-Metallic Cocatalyst Ni2P Nanoparticles Modified Graphite-Like Carbonitride with Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation[J]. Acta Physico-Chimica Sinica, ;2021, 37(8): 200910. doi: 10.3866/PKU.WHXB202009102 shu

Non-Noble-Metallic Cocatalyst Ni2P Nanoparticles Modified Graphite-Like Carbonitride with Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation

  • Corresponding author: Wang Jiquan, 441780131@qq.com Zhang Gaoke, gkzhang@whut.edu.cn
  • Received Date: 29 September 2020
    Revised Date: 27 October 2020
    Accepted Date: 28 October 2020
    Available Online: 2 November 2020

    Fund Project: the National Science Funding of Hubei Province, China 2016CFA078the National Natural Science Founding of China 51472194This project was supported by the National Natural Science Founding of China (51472194) and the National Science Funding of Hubei Province, China (2016CFA078)

  • Energy crisis has become a serious global issue due to the increasing depletion of fossil fuels; therefore, it is crucial to develop environmentally friendly and renewable energy resources, such as hydrogen (H2), to replace fossil fuels. From this viewpoint, photocatalytic H2 production is considered as one of the most promising technologies. Noble metal platinum (Pt) can be applied as an efficient cocatalyst for improving the H2 production performance of photocatalytic systems; however, its high cost limits its further application. Thus, the development of novel, high-activity, and low-cost cocatalysts for replacing noble metal cocatalysts is of great significance for use in photocatalytic H2 evolution techniques. Herein, we successfully synthesized a Ni2P/graphite-like carbonitride photocatalyst (Ni2P/CN) using a conjugated polymer (SCN)n as precursor for enhanced photocatalytic H2 production under visible light illumination. Various characterization techniques, including optical and photoelectronic chemical tests, were used to investigate the structural composition, morphology, and light adsorption ability of these materials. X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy results showed that Ni2P/CN nanocomposites with good crystal structure were obtained. Scanning electron microscopy and transmission electron microscopy results revealed that the Ni2P/CN samples had a typical two-dimensional layered structure, and the Ni2P nanoparticles were uniformly loaded on the surface of the CN to form a non-noble metal promoter. UV-Vis diffuse reflectance spectra results demonstrated that the loading of Ni2P nanoparticles effectively enhances the adsorption capacity of CN to visible light. Photoluminescence spectroscopy and photocurrent (PL) results suggested that Ni2P loading to CN is beneficial for promoting the migration and separation efficiency of photogenerated carriers. Photocatalytic H2 production was conducted under visible light irradiation with triethanolamine as a sacrificial agent. The results suggest that the Ni2P/CN composite photocatalysts exhibit excellent photocatalytic reduction performance. In particular, the H2 evolution rate of the optimal Ni2P/CN nanocomposite is 623.77 μmol·h-1·g-1, which is higher than that of CN modified by noble metal Pt, i.e., 524.63 μmol·h-1·g-1. In conclusion, Ni2P nanoparticles are homogeneously attached to the surface of CN, and a strong interfacial effect exists between them, thereby forming an electron transfer tunnel that greatly inhibits the recombination of photoinduced carriers and promotes the migration of electrons from CN to Ni2P. In addition, a possible photocatalytic mechanism is proposed based on the experiments and characterizations. This work has profound significance for developing non-noble metal cocatalysts for the substitution of noble metal cocatalysts for high-efficiency photocatalytic H2 evolution.
  • 加载中
    1. [1]

      Wang, K.; Li, Y.; Li, J.; Zhang, G. Appl. Catal. B 2020, 263, 117730. doi: 10.1016/j.apcatb.2019.05.032  doi: 10.1016/j.apcatb.2019.05.032

    2. [2]

      Liu, M.; Chen, Y.; Su, J.; Shi, J.; Wang, X.; Guo, L. Nat. Energy 2016, 1, 16151. doi: 10.1038/nenergy.2016.151  doi: 10.1038/nenergy.2016.151

    3. [3]

      Gao, Y.; Li, X.; Wu, H.; Meng, S.; Fan, X.; Huang, M.; Guo, Q.; Tung, C.; Wu, L. Adv. Funct. Mater. 2018, 28, 1801769. doi: 10.1002/adfm.201801769  doi: 10.1002/adfm.201801769

    4. [4]

      Wang, X.; Chen, L.; Chong, S. Y.; Little, M. A.; Wu, Y.; Zhu, W.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S.; et al. Nat. Chem. 2018, 10, 1180. doi: 10.1038/s41557-018-0141-5  doi: 10.1038/s41557-018-0141-5

    5. [5]

      Jia, J.; Sun, W.; Zhang, Q.; Zhang, X.; Hu, X.; Liu, E.; Fan, J. Appl. Catal. B 2020, 261, 118249. doi: 10.1016/j.apcatb.2019.118249  doi: 10.1016/j.apcatb.2019.118249

    6. [6]

      Wang, L.; Hong, Y.; Liu, E.; Duan, X.; Lin, X.; Shi, J. Carbon 2020, 163, 234. doi: 10.1016/j.carbon.2020.03.031  doi: 10.1016/j.carbon.2020.03.031

    7. [7]

      Ran, J.; Gao, G.; Li, F.; Ma, T.; Du, A.; Qiao, S. Nat. Commun. 2017, 8, 13907. doi: 10.1038/ncomms13907  doi: 10.1038/ncomms13907

    8. [8]

      Wang, Z.; Wang, K.; Li, Y.; Jiang, L.; Zhang, G. Appl. Surf. Sci. 2019, 498, 143850. doi: 10.1016/j.apsusc.2019.143850  doi: 10.1016/j.apsusc.2019.143850

    9. [9]

      Zeng, D.; Ong, W. J.; Chen, Y.; Tee, S. Y.; Chua, C. S.; Peng, D. L.; Han, M. Y. Part. Part. Syst. Charact. 2018, 35, 1700251. doi: 10.1002/ppsc.201700251  doi: 10.1002/ppsc.201700251

    10. [10]

      Cheng, H.; Lv, X.; Cao, S.; Zhao, Z.; Chen, Y.; Fu, W. Sci. Rep. 2016, 6, 19846. doi: 10.1038/srep19846  doi: 10.1038/srep19846

    11. [11]

      Sun, Z.; Yue, Q.; Li, J.; Xu, J.; Zheng, H.; Du, P. J. Mater. Chem. A 2015, 3, 10243. doi: 10.1039/C5TA02105G  doi: 10.1039/C5TA02105G

    12. [12]

      Lu, Z.; Li, C.; Han, J.; Wang, L.; Wang, S.; Ni, L.; Wang, Y. Appl. Catal. B 2018, 237, 919. doi: 10.1016/j.apcatb.2018.06.062  doi: 10.1016/j.apcatb.2018.06.062

    13. [13]

      Indra, A.; Acharjya, A.; Menezes, P. W.; Merschjann, C.; Hollmann, D.; Schwarze, M.; Aktas, M.; Friedrich, A.; Lochbrunner, S.; Thomas, A.; et al. Angew. Chem. Int. Ed. 2017, 56, 1653. doi: 10.1002/anie.201611605  doi: 10.1002/anie.201611605

    14. [14]

      Shi, J.; Zou, Y.; Cheng, L.; Ma, D.; Sun, D.; Mao, S.; Sun, L.; He, C.; Wang, Z. Chem. Eng. J. 2019, 378, 122161. doi: 10.1016/j.cej.2019.122161  doi: 10.1016/j.cej.2019.122161

    15. [15]

      Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317  doi: 10.1038/nmat2317

    16. [16]

      Li, X. W.; Wang, B.; Yin, W. X.; Di, J.; Xia, J. X.; Zhu, W. S.; Li, H. M. Acta Phys. -Chim. Sin. 2020, 36, 1902001.  doi: 10.3866/PKU.WHXB201902001

    17. [17]

      Fu, J.; Yu, J.; Jiang, C.; Cheng, B. Adv. Energy Mater. 2018, 8, 1701503. doi: 10.1002/aenm.201701503  doi: 10.1002/aenm.201701503

    18. [18]

      Ren, Y.; Zeng, D.; Wee-Jun, O. Chin. J. Catal. 2019, 40, 289. doi: 10.1016/S1872-2067(19)63293-6  doi: 10.1016/S1872-2067(19)63293-6

    19. [19]

      Bu, Y.; Chen, Z.; Li, W. Appl. Catal. B 2014, 144, 622. doi: 10.1016/j.apcatb.2013.07.066  doi: 10.1016/j.apcatb.2013.07.066

    20. [20]

      Dong, G.; Jacobs, D. L.; Zang, L.; Wang, C. Appl. Catal. B 2017, 218, 515. doi: 10.1016/j.apcatb.2017.07.010  doi: 10.1016/j.apcatb.2017.07.010

    21. [21]

      She, X.; Liu, L.; Ji, H.; Mo, Z.; Li, Y.; Huang, L.; Du, D.; Xu, H.; Li, H. Appl. Catal. B 2016, 187, 144. doi: 10.1016/j.apcatb.2015.12.046  doi: 10.1016/j.apcatb.2015.12.046

    22. [22]

      Wang, K.; Zhang, G.; Li, J.; Li, Y.; Wu, X. ACS Appl. Mater. Interface 2017, 9, 43704. doi: 10.1021/acsami.7b14275  doi: 10.1021/acsami.7b14275

    23. [23]

      Zhang, P.; Wang, J.; Gong, J.; Wang, K.; Li, Y.; Wu, X.; Zhang, G. Funct. Mater. Lett. 2020, 13, 2051033. doi: 10.1142/S1793604720510339  doi: 10.1142/S1793604720510339

    24. [24]

      Gong, J.; Li, Y.; Zhao, Y.; Wu, X.; Wang, J.; Zhang, G. Chem. Eng. J. 2020, 402, 126147. doi: 10.1016/j.cej.2020.126147  doi: 10.1016/j.cej.2020.126147

    25. [25]

      Shi, Y.; Xu, Y.; Zhuo, S.; Zhang, J.; Zhang, B. ACS Appl. Mater. Inter. 2015, 7, 2376. doi: 10.1021/am5069547  doi: 10.1021/am5069547

    26. [26]

      Holst, J. R.; Gillan, E. G. J. Am. Chem. Soc. 2008, 130, 7373. doi: 10.1021/ja709992s  doi: 10.1021/ja709992s

    27. [27]

      Zhu, Y.; Ren, T.; Yuan, Z. ACS Appl. Mater. Interface 2015, 7, 16850. doi: 10.1021/acsami.5b04947  doi: 10.1021/acsami.5b04947

    28. [28]

      Ran, J.; Guo, W.; Wang, H.; Zhu, B.; Yu, J.; Qiao, S. Z. Adv. Mater. 2018, 30, 1800128. doi: 10.1002/adma.201800128  doi: 10.1002/adma.201800128

    29. [29]

      Ye, P.; Liu, X.; Iocozzia, J.; Yuan, Y.; Gu, L.; Xu, G.; Lin, Z. J. Mater. Chem. A 2017, 5, 8493. doi: 10.1039/C7TA01031A  doi: 10.1039/C7TA01031A

    30. [30]

      Cao, S.; Fan, B.; Feng, Y.; Chen, H.; Jiang, F.; Wang, X. Chem. Eng. J. 2018, 353, 147. doi: 10.1016/j.cej.2018.07.116  doi: 10.1016/j.cej.2018.07.116

    31. [31]

      Xu, C.; Li, K.; Zhang, W. J. Colloid Interface Sci. 2017, 495, 27. doi: 10.1016/j.jcis.2017.01.111  doi: 10.1016/j.jcis.2017.01.111

    32. [32]

      Li, K.; Wang, R.; Chen, J. Energy & Fuels 2011, 25, 854. doi: 10.1021/ef101258j  doi: 10.1021/ef101258j

    33. [33]

      Niu, P.; Liu, G.; Cheng, H. J. Phys. Chem. C 2012, 116, 11013. doi: 10.1021/jp301026y  doi: 10.1021/jp301026y

    34. [34]

      Lu, L.; Xu, X.; An, K.; Wang, Y.; Shi, F. ACS Sustain. Chem. Eng. 2018, 6, 11869. doi: 10.1021/acssuschemeng.8b02153  doi: 10.1021/acssuschemeng.8b02153

    35. [35]

      Li, J.; Wang, J.; Zhang, G.; Li, Y.; Wang, K. Appl. Catal. B 2018, 234, 167. doi: 10.1016/j.apcatb.2018.04.016  doi: 10.1016/j.apcatb.2018.04.016

    36. [36]

      Chang, J.; Feng, L.; Liu, C.; Xing, W.; Hu, X. Energy Environ. Sci. 2014, 7, 1628. doi: 10.1039/c4ee00100a  doi: 10.1039/c4ee00100a

    37. [37]

      You, B.; Jiang, N.; Sheng, M.; Bhushan, M. W.; Sun, Y. ACS Catal. 2016, 6, 714. doi: 10.1021/acscatal.5b02193  doi: 10.1021/acscatal.5b02193

    38. [38]

      Liu, X.; Wang, R.; Zhang, M.; Yuan, Y.; Xue, C. APL Mater. 2015, 3, 104403. doi: 10.1063/1.4922151  doi: 10.1063/1.4922151

    39. [39]

      Hao, X.; Zhou, J.; Cui, Z.; Wang, Y.; Wang, Y.; Zou, Z. Appl. Catal. B 2018, 229, 41. doi: 10.1016/j.apcatb.2018.02.006  doi: 10.1016/j.apcatb.2018.02.006

    40. [40]

      Zhang, J.; Zhu, Q.; Wang, L.; Nasir, M.; Cho, S.; Zhang, J. Int. J. Hydrog. Energy 2020, 45, 21331. doi: 10.1016/j.ijhydene.2020.05.171  doi: 10.1016/j.ijhydene.2020.05.171

    41. [41]

      Iqbal, W.; Yang, B.; Zhao, X.; Rauf, M.; Mohamed, I.; Zhang, J.; Mao, Y. Catal. Sci. Technol. 2020, 10, 5499. doi: 10.1039/C9CY02111F  doi: 10.1039/C9CY02111F

    42. [42]

      Zhu, Q.; Qiu, B.; Duan, H.; Gong, Y.; Qin, Z.; Shen, B.; Xing, M.; Zhang, J. Appl. Catal. B 2019, 259, 118078. doi: 10.1016/j.apcatb.2019.118078  doi: 10.1016/j.apcatb.2019.118078

  • 加载中
    1. [1]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    2. [2]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    3. [3]

      Haiyan Yin Abdusalam Ablez Zhuangzhuang Wang Weian Li Yanqi Wang Qianqian Hu Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560

    4. [4]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    5. [5]

      Liang DongJingkuo QuTuo ZhangGuanghui ZhuNingning MaChang ZhaoYi YuanXiangjiu GuanLiejin Guo . MOF-derived NiCo bimetallic cocatalyst for enhanced photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(3): 110397-. doi: 10.1016/j.cclet.2024.110397

    6. [6]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    7. [7]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    8. [8]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    9. [9]

      Liangbo ZhangJun ChengYahui ShiKunjie HouQi AnJingyi LiBaohui CuiFei Chen . Efficient removal of tetracycline hydrochloride by ZnO/HNTs composites under visible light: Kinetics, degradation pathways and mechanism. Chinese Chemical Letters, 2025, 36(7): 110400-. doi: 10.1016/j.cclet.2024.110400

    10. [10]

      Yan-Ling LiYue XuChen-Hong WangRui WangShuang-Quan Zang . Dye-stabilized atomically precise copper clusters for enhanced photocatalytic hydrogen evolution. Chinese Chemical Letters, 2025, 36(10): 111256-. doi: 10.1016/j.cclet.2025.111256

    11. [11]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    12. [12]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    13. [13]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    14. [14]

      Jiangyuan Qiu TaoYu Junxin Chen Wenxuan Li Xiaoxuan Zhang jinsheng Li Rui Guo Zaiyin Huang Xuanwen Liu . Modulate surface potential well depth of Bi12O17Cl2 by FeOOH in Bi12O17Cl2@FeOOH heterojunction to boost piezoelectric charge transfer and piezo-self-Fenton catalysis. Acta Physico-Chimica Sinica, 2026, 42(1): 100157-. doi: 10.1016/j.actphy.2025.100157

    15. [15]

      Ruiyun LiuPing WangXuefei WangFeng ChenHuogen Yu . Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100137-0. doi: 10.1016/j.actphy.2025.100137

    16. [16]

      Xiaxi YaoXiuli HuFangcheng HuangXuhong WangXuekun HongDawei Wang . Improved hydrogen and oxygen evolution rates in Pt@TiO2@RuO2 hollow nanoshells through dielectric Mie resonance and spatial cocatalyst separation. Chinese Chemical Letters, 2025, 36(5): 110192-. doi: 10.1016/j.cclet.2024.110192

    17. [17]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    18. [18]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    19. [19]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    20. [20]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

Metrics
  • PDF Downloads(7)
  • Abstract views(503)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return