Understanding the Role of Cu/ZnO Interaction in CO2 Hydrogenation to Methanol
- Corresponding author: Li Congming, licongming0523@163.com Yang Hengquan, hqyang@sxu.edu.cn
Citation: Li Congming, Chen Kuo, Wang Xiaoyue, Xue Nan, Yang Hengquan. Understanding the Role of Cu/ZnO Interaction in CO2 Hydrogenation to Methanol[J]. Acta Physico-Chimica Sinica, ;2021, 37(5): 200910. doi: 10.3866/PKU.WHXB202009101
García-Trenco, A.; Regoutz, A.; White, E. R.; Payne, D. J.; Shaffer, M. S. P.; Williams, C. K. Appl. Catal. B 2018, 220, 9. doi: 10.1016/j.apcatb.2017.07.069
doi: 10.1016/j.apcatb.2017.07.069
Reichenbach, T.; Walter, M.; Moseler, M.; Hammer, B.; Bruix, A. J. Phys. Chem. C 2019, 123, 30903. doi: 10.1021/acs.jpcc.9b07715
doi: 10.1021/acs.jpcc.9b07715
Li, M. M. -J.; Tsang, S. C. E. Catal. Sci. Technol. 2018, 8, 3450. doi: 10.1039/C8CY00304A
doi: 10.1039/C8CY00304A
Grabow, L. C.; Mavrikakis, M. ACS Catal. 2011, 1, 365. doi: 10.1021/cs200055d
doi: 10.1021/cs200055d
Zhong, J.; Yang, X.; Wu, Z.; Liang, B.; Huang, Y.; Zhang, T. Chem. Soc. Rev. 2020, 49, 1385. doi: 10.1039/c9cs00614a
doi: 10.1039/c9cs00614a
van Deelen, T. W.; Hernández Mejía, C.; de Jong, K. P. Nat. Catal. 2019, 2, 955. doi: 10.1038/s41929-019-0364-x
doi: 10.1038/s41929-019-0364-x
Yoshihara, J.; Parker, S. C.; Schafer, A.; Campbell, C. T. Catal. Lett. 1995, 31, 313. doi: 10.1007/BF00808595
doi: 10.1007/BF00808595
Yoshihara, J.; Campbell, C. T. J. Catal. 1996, 161, 776. doi: 10.1006/jcat.1996.0240
doi: 10.1006/jcat.1996.0240
Fujitani, T.; Matsuda, T.; Kushida, Y.; Ogihara, S.; Uchijima, T.; Nakamura, J. Catal. Lett. 1997, 49, 175. doi: 10.1023/A:1019069708459
doi: 10.1023/A:1019069708459
Choia, Y.; Futagamia, K.; Fujitani, T.; Nakamuraa, J. Appl. Catal. A 2001, 208, 163. doi: 10.1016/S0926-860X(00)00712-2
doi: 10.1016/S0926-860X(00)00712-2
Kuld, S.; Thorhauge, M.; Falsig, H.; Elkjær C. F.; Helveg, S.; Chorkendorff, I.; Sehested, J. Science 2016, 352, 969. doi: 10.1126/science.aaf0718
doi: 10.1126/science.aaf0718
Xie, C.; Niu, Z.; Kim, D.; Li, M.; Yang, P. Chem. Rev. 2020, 120, 1184. doi: 10.1021/acs.chemrev.9b00220
doi: 10.1021/acs.chemrev.9b00220
Kattel, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Science 2017, 355, 1296. doi: 10.1126/science.aal3573
doi: 10.1126/science.aal3573
Liao, F.; Huang, Y.; Ge, J.; Zheng, W.; Tedsree, K.; Collier, P.; Hong, X.; Tsang, S. C. Angew. Chem. Int. Ed. 2011, 50, 2162. doi: 10.1002/anie.201007108
doi: 10.1002/anie.201007108
Heenemann, M.; Millet, M. -M.; Girgsdies, F.; Eichelbaum, M.; Risse, T.; Schlögl, R.; Jones, T.; Frei, E. ACS Catal. 2020, 10, 5672. doi: 10.1021/acscatal.0c024000574
doi: 10.1021/acscatal.0c024000574
Lunkenbein, T.; Schumann, J.; Behrens, M.; Schlogl, R.; Willinger, M. G. Angew. Chem. Int. Ed. 2015, 54, 4544. doi: 10.1002/anie.201411581
doi: 10.1002/anie.201411581
Martin, O.; Mondelli, C.; Curulla-Ferré, D.; Drouilly, C.; Hauert, R.; Pérez-Ramírez, J. ACS Catal. 2015, 5, 5607. doi: 10.1021/acscatal.5b00877
doi: 10.1021/acscatal.5b00877
Sun, Y.; Huang, C.; Chen, L.; Zhang, Y.; Fu, M.; Wu, J.; Ye, D. J. CO2 Util. 2020, 37, 55. doi: 10.1016/j.jcou.2019.11.029
doi: 10.1016/j.jcou.2019.11.029
Chen, K.; Yu, J.; Liu, B.; Si, C.; Ban, H.; Cai, W.; Li, C.; Li, Z.; Fujimoto, K. J. Catal. 2019, 372, 163. doi: 10.1016/j.jcat.2019.02.035
doi: 10.1016/j.jcat.2019.02.035
Xin, Q.; Papavasiliou, A.; Boukos, N.; Glisenti, A.; Li, J. P. H.; Yang, Y.; Philippopoulos, C. J.; Poulakis, E.; Katsaros, F. K.; Meynen, V.; et al. Appl. Catal. B 2018, 223, 103. doi: 10.1016/j.apcatb.2017.03.071
doi: 10.1016/j.apcatb.2017.03.071
Yin, A.; Guo, X.; Dai, W. L.; Fan, K. J. Phys. Chem. C 2009, 113, 11003. doi: 10.1021/jp902688b
doi: 10.1021/jp902688b
Batista, J.; Pintar, A.; Mandrino, D.; Jenko, M.; Martin, V. Appl. Catal. A 2001, 206, 113. doi: 10.1016/S0926-860X(00)00589-5
doi: 10.1016/S0926-860X(00)00589-5
Zhao, Y.; Zhang, Y.; Wang, Y.; Zhang, J.; Xu, Y.; Wang, S.; Ma, X. Appl. Catal. A 2017, 539, 59. doi: 10.1016/j.apcata.2017.04.001
doi: 10.1016/j.apcata.2017.04.001
Tian, J.; Chen, W.; Wu, P.; Zhu, Z.; Li, X. Catal. Sci. Technol. 2018, 8, 2624. doi: 10.1039/c8cy00023a
doi: 10.1039/c8cy00023a
Chen, L.; Guo, P.; Qiao, M.; Yan, S.; Li, H.; Shen, W.; Xu, H.; Fan, K. J. Catal. 2008, 257, 172. doi: 10.1016/j.jcat.2008.04.021
doi: 10.1016/j.jcat.2008.04.021
Wang, Y.; Shen, Y.; Zhao, Y.; Lv, J.; Wang, S.; Ma, X. ACS Catal. 2015, 5, 6200. doi: 10.1021/acscatal.5b01678
doi: 10.1021/acscatal.5b01678
Yue, H.; Zhao, Y.; Zhao, S.; Wang, B.; Ma, X.; Gong, J. Nat. Commun. 2013, 4, 2339. doi: 10.1038/ncomms3339
doi: 10.1038/ncomms3339
Xu, X.; Cao, X.; Zhao, L.; Wang, H.; Yu, H.; Gao, B. Environ. Sci. Pollut. Res. Int. 2013, 20, 358. doi: 10.1007/s11356-012-0873-5
doi: 10.1007/s11356-012-0873-5
Constantinou, D. A.; Fierro, J. L. G.; Efstathiou, A. M. Appl. Catal. B 2010, 95, 255. doi: 10.1016/j.apcatb.2010.01.003
doi: 10.1016/j.apcatb.2010.01.003
Ai, P.; Tan, M.; Reubroycharoen, P.; Wang, Y.; Feng, X.; Liu, G.; Yang, G.; Tsubaki, N. Catal. Sci. Technol. 2018, 8, 6441. doi: 10.1039/C8CY02093K
doi: 10.1039/C8CY02093K
Witoon, T.; Permsirivanich, T.; Donphai, W.; Jaree, A.; Chareonpanich, M. Fuel Process. Technol. 2013, 116, 72. doi: 10.1016/j.fuproc.2013.04.024
doi: 10.1016/j.fuproc.2013.04.024
d'Alnoncourt, R. N.; Xia, X.; Strunk, J.; Loffler, E.; Hinrichsen, O.; Muhler, M. Phys. Chem. Chem. Phys. 2006, 8, 1525. doi: 10.1039/B515487A
doi: 10.1039/B515487A
Karelovic, A.; Ruiz, P. Catal. Sci. Technol. 2015, 5, 869. doi: 10.1039/C4CY00848K
doi: 10.1039/C4CY00848K
van den Berg, R.; Prieto, G.; Korpershoek, G.; van der Wal, L. I.; van Bunningen, A. J.; Lægsgaard-Jørgensen, S.; de Jongh, P. E.; de Jong, K. P. Nat. Commun. 2016, 7, 13057. doi: 10.1038/ncomms13057
doi: 10.1038/ncomms13057
Liu, C.; Yang, B.; Tyo, E.; Seifert, S.; DeBartolo, J.; von Issendorff, B.; Zapol, P.; Vajda, S.; Curtiss, L. A. J. Am. Chem. Soc. 2015, 137, 8676. doi: 10.1021/jacs.5b03668
doi: 10.1021/jacs.5b03668
Numpilai, T.; Wattanakit, C.; Chareonpanich, M.; Limtrakul, J.; Witoon, T. Energy Convers. Manage. 2019, 180, 511. doi: 10.1016/j.enconman.2018.11.011
doi: 10.1016/j.enconman.2018.11.011
Fujitani, T.; Nakamura, J. Catal. Lett. 1998, 56, 119. doi: 10.1023/A:1019000927366
doi: 10.1023/A:1019000927366
van den Berg, R.; Parmentier, T. E.; Elkjær, C. F.; Gommes, C. J.; Sehested, J.; Helveg, S.; de Jongh, P. E.; de Jong, K. P. ACS Catal. 2015, 5, 4439. doi: 10.1021/acscatal.5b00833
doi: 10.1021/acscatal.5b00833
Tisseraud, C.; Comminges, C.; Belin, T.; Ahouari, H.; Soualah, A.; Pouilloux, Y.; Le Valant, A. J. Catal. 2016, 343, 106. doi: 10.1016/j.jcat.2015.12.005
doi: 10.1016/j.jcat.2015.12.005
Gao, P.; Xie, R.; Wang, H.; Zhong, L.; Xia, L.; Zhang, Z.; Wei, W.; Sun, Y. H. J. CO2 Util. 2015, 11, 41. doi: 10.1016/j.jcou.2014.12.008
doi: 10.1016/j.jcou.2014.12.008
Gao, P.; Li, F.; Zhan, H.; Zhao, N.; Xiao, F.; Wei, W.; Zhong, L.; Wang, H.; Sun, Y. J. Catal. 2013, 298, 51. doi: 10.1016/j.jcat.2012.10.030
doi: 10.1016/j.jcat.2012.10.030
Hu, B.; Yin, Y.; Liu, G.; Chen, S.; Hong, X.; Tsang, S. C. E. J. Catal. 2018, 359, 17. doi: 10.1016/j.jcat.2017.12.029
doi: 10.1016/j.jcat.2017.12.029
Hansen, P. L.; Wagner, J. B.; Helveg, S.; Rostrup-Nielsen, J. R.; Clausen, B. S.; Topsoe, H. Science 2002, 295, 2053. doi: 10.1126/science.1069325
doi: 10.1126/science.1069325
Behrens, M.; Studt, F.; Kasatkin, I.; Kuehl, S.; Haevecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. -L.; et al. Science 2012, 336, 893. doi: 10.1126/science.1219831
doi: 10.1126/science.1219831
Zhan, H.; Li, F.; Gao, P.; Zhao, N.; Xiao, F.; Wei, W.; Zhong, L.; Sun, Y. J. Power Sources 2014, 251, 113. doi: 10.1016/j.jpowsour.2013.11.037
doi: 10.1016/j.jpowsour.2013.11.037
Natesakhawat, S.; Ohodnicki, P. R.; Howard, B. H.; Lekse, J. W.; Baltrus, J. P.; Matranga, C. Top. Catal. 2013, 56, 1752. doi: 10.1007/s11244-013-0111-5
doi: 10.1007/s11244-013-0111-5
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Yuhao Guo , Na Li , Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Ruowen Liang , Chao Zhang , Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211
Weichen WANG , Chunhua GONG , Junyong ZHANG , Yanfeng BI , Hao XU , Jingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Jinglin CHENG , Xiaoming GUO , Tao MENG , Xu HU , Liang LI , Yanzhe WANG , Wenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415