Citation: Li Congming, Chen Kuo, Wang Xiaoyue, Xue Nan, Yang Hengquan. Understanding the Role of Cu/ZnO Interaction in CO2 Hydrogenation to Methanol[J]. Acta Physico-Chimica Sinica, ;2021, 37(5): 200910. doi: 10.3866/PKU.WHXB202009101 shu

Understanding the Role of Cu/ZnO Interaction in CO2 Hydrogenation to Methanol

  • Corresponding author: Li Congming, licongming0523@163.com Yang Hengquan, hqyang@sxu.edu.cn
  • Received Date: 30 September 2020
    Revised Date: 29 October 2020
    Accepted Date: 30 October 2020
    Available Online: 6 November 2020

    Fund Project: the National Natural Science Foundation of China 21676176the Foundation of State Key Laboratory of Coal Conversion J20-21-610This work was supported by the National Natural Science Foundation of China (21676176), and Major Scientific and Technological Project of Shanxi Province of China (20201102005), the Foundation of State Key Laboratory of Coal Conversion (J20-21-610) and the Fund of State Key Laboratory of Catalysis in DICP, China (N-15-05)the Fund of State Key Laboratory of Catalysis in DICP, China N-15-05Major Scientific and Technological Project of Shanxi Province of China 20201102005

  • Using renewable green hydrogen and carbon dioxide (CO2) to produce methanol is one of the fundamental ways to reduce CO2 emissions in the future, and research and development related to catalysts for efficient and stable methanol synthesis is one of the key factors in determining the entire synthesis process. Metal nanoparticles stabilized on a support are frequently employed to catalyze the methanol synthesis reaction. Metal-support interactions (MSIs) in these supported catalysts can play a significant role in catalysis. Tuning the MSI is an effective strategy to modulate the activity, selectivity, and stability of heterogeneous catalysts. Numerous studies have been conducted on this topic; however, a systematic understanding of the role of various strengths of MSI is lacking. Herein, three Cu/ZnO-SiO2 catalysts with different strengths of MSI, namely, normal precipitation Cu/ZnO-SiO2 (Nor-CZS), co-precipitation Cu/ZnO-SiO2 (Co-CZS), and reverse precipitation Cu/ZnO-SiO2 (Re-CZS), were successfully prepared to determine the role of such interactions in the hydrogenation of CO2 to methanol. The results of temperature-programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS) characterization illustrated that the MSI of the catalysts was considerably affected by the precipitation sequence. Fourier transform infrared reflection spectroscopy (FT-IR) results indicated that the Cu species existed as CuO in all cases and that copper phyllosilicate was absent (except for strong Cu-SiO2 interaction). Transmission electron microscopy (TEM), X-ray diffraction (XRD), and N2O chemical titration results revealed that strong interactions between the Cu and Zn species would promote the dispersion of Cu species, thereby leading to a higher CO2 conversion rate and improved catalytic stability. As expected, the Re-CZS catalyst exhibited the highest activity with 12.4% CO2 conversion, followed by the Co-CZS catalyst (12.1%), and the Nor-CZS catalyst (9.8%). After the same reaction time, the normalized CO2 conversion of the three catalysts decreased in the following order: Re-CZS (75%) > Co-CZS (70%) > Nor-CZS (65%). Notably, the methanol selectivity of the Re-CZS catalyst was found to level off after a prolonged period, in contrast to that of Co-CZS and Nor-CZS. Investigation of the structural evolution of the catalyst with time on stream revealed that the high methanol selectivity of the catalyst was caused by the reconstruction of the catalyst, which was induced by the strong MSI between the Cu and Zn species, and the migration of ZnO onto Cu species, which caused an enlargement of the Cu/ZnO interface. This work offers an alternative strategy for the rational and optimized design of efficient catalysts.
  • 加载中
    1. [1]

      García-Trenco, A.; Regoutz, A.; White, E. R.; Payne, D. J.; Shaffer, M. S. P.; Williams, C. K. Appl. Catal. B 2018, 220, 9. doi: 10.1016/j.apcatb.2017.07.069  doi: 10.1016/j.apcatb.2017.07.069

    2. [2]

      Reichenbach, T.; Walter, M.; Moseler, M.; Hammer, B.; Bruix, A. J. Phys. Chem. C 2019, 123, 30903. doi: 10.1021/acs.jpcc.9b07715  doi: 10.1021/acs.jpcc.9b07715

    3. [3]

      Li, M. M. -J.; Tsang, S. C. E. Catal. Sci. Technol. 2018, 8, 3450. doi: 10.1039/C8CY00304A  doi: 10.1039/C8CY00304A

    4. [4]

      Grabow, L. C.; Mavrikakis, M. ACS Catal. 2011, 1, 365. doi: 10.1021/cs200055d  doi: 10.1021/cs200055d

    5. [5]

      Zhong, J.; Yang, X.; Wu, Z.; Liang, B.; Huang, Y.; Zhang, T. Chem. Soc. Rev. 2020, 49, 1385. doi: 10.1039/c9cs00614a  doi: 10.1039/c9cs00614a

    6. [6]

      van Deelen, T. W.; Hernández Mejía, C.; de Jong, K. P. Nat. Catal. 2019, 2, 955. doi: 10.1038/s41929-019-0364-x  doi: 10.1038/s41929-019-0364-x

    7. [7]

      Yoshihara, J.; Parker, S. C.; Schafer, A.; Campbell, C. T. Catal. Lett. 1995, 31, 313. doi: 10.1007/BF00808595  doi: 10.1007/BF00808595

    8. [8]

      Yoshihara, J.; Campbell, C. T. J. Catal. 1996, 161, 776. doi: 10.1006/jcat.1996.0240  doi: 10.1006/jcat.1996.0240

    9. [9]

      Fujitani, T.; Matsuda, T.; Kushida, Y.; Ogihara, S.; Uchijima, T.; Nakamura, J. Catal. Lett. 1997, 49, 175. doi: 10.1023/A:1019069708459  doi: 10.1023/A:1019069708459

    10. [10]

      Choia, Y.; Futagamia, K.; Fujitani, T.; Nakamuraa, J. Appl. Catal. A 2001, 208, 163. doi: 10.1016/S0926-860X(00)00712-2  doi: 10.1016/S0926-860X(00)00712-2

    11. [11]

      Kuld, S.; Thorhauge, M.; Falsig, H.; Elkjær C. F.; Helveg, S.; Chorkendorff, I.; Sehested, J. Science 2016, 352, 969. doi: 10.1126/science.aaf0718  doi: 10.1126/science.aaf0718

    12. [12]

      Xie, C.; Niu, Z.; Kim, D.; Li, M.; Yang, P. Chem. Rev. 2020, 120, 1184. doi: 10.1021/acs.chemrev.9b00220  doi: 10.1021/acs.chemrev.9b00220

    13. [13]

      Kattel, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Science 2017, 355, 1296. doi: 10.1126/science.aal3573  doi: 10.1126/science.aal3573

    14. [14]

      Liao, F.; Huang, Y.; Ge, J.; Zheng, W.; Tedsree, K.; Collier, P.; Hong, X.; Tsang, S. C. Angew. Chem. Int. Ed. 2011, 50, 2162. doi: 10.1002/anie.201007108  doi: 10.1002/anie.201007108

    15. [15]

      Heenemann, M.; Millet, M. -M.; Girgsdies, F.; Eichelbaum, M.; Risse, T.; Schlögl, R.; Jones, T.; Frei, E. ACS Catal. 2020, 10, 5672. doi: 10.1021/acscatal.0c024000574  doi: 10.1021/acscatal.0c024000574

    16. [16]

      Lunkenbein, T.; Schumann, J.; Behrens, M.; Schlogl, R.; Willinger, M. G. Angew. Chem. Int. Ed. 2015, 54, 4544. doi: 10.1002/anie.201411581  doi: 10.1002/anie.201411581

    17. [17]

      Martin, O.; Mondelli, C.; Curulla-Ferré, D.; Drouilly, C.; Hauert, R.; Pérez-Ramírez, J. ACS Catal. 2015, 5, 5607. doi: 10.1021/acscatal.5b00877  doi: 10.1021/acscatal.5b00877

    18. [18]

      Sun, Y.; Huang, C.; Chen, L.; Zhang, Y.; Fu, M.; Wu, J.; Ye, D. J. CO2 Util. 2020, 37, 55. doi: 10.1016/j.jcou.2019.11.029  doi: 10.1016/j.jcou.2019.11.029

    19. [19]

      Chen, K.; Yu, J.; Liu, B.; Si, C.; Ban, H.; Cai, W.; Li, C.; Li, Z.; Fujimoto, K. J. Catal. 2019, 372, 163. doi: 10.1016/j.jcat.2019.02.035  doi: 10.1016/j.jcat.2019.02.035

    20. [20]

      Xin, Q.; Papavasiliou, A.; Boukos, N.; Glisenti, A.; Li, J. P. H.; Yang, Y.; Philippopoulos, C. J.; Poulakis, E.; Katsaros, F. K.; Meynen, V.; et al. Appl. Catal. B 2018, 223, 103. doi: 10.1016/j.apcatb.2017.03.071  doi: 10.1016/j.apcatb.2017.03.071

    21. [21]

      Yin, A.; Guo, X.; Dai, W. L.; Fan, K. J. Phys. Chem. C 2009, 113, 11003. doi: 10.1021/jp902688b  doi: 10.1021/jp902688b

    22. [22]

      Batista, J.; Pintar, A.; Mandrino, D.; Jenko, M.; Martin, V. Appl. Catal. A 2001, 206, 113. doi: 10.1016/S0926-860X(00)00589-5  doi: 10.1016/S0926-860X(00)00589-5

    23. [23]

      Zhao, Y.; Zhang, Y.; Wang, Y.; Zhang, J.; Xu, Y.; Wang, S.; Ma, X. Appl. Catal. A 2017, 539, 59. doi: 10.1016/j.apcata.2017.04.001  doi: 10.1016/j.apcata.2017.04.001

    24. [24]

      Tian, J.; Chen, W.; Wu, P.; Zhu, Z.; Li, X. Catal. Sci. Technol. 2018, 8, 2624. doi: 10.1039/c8cy00023a  doi: 10.1039/c8cy00023a

    25. [25]

      Chen, L.; Guo, P.; Qiao, M.; Yan, S.; Li, H.; Shen, W.; Xu, H.; Fan, K. J. Catal. 2008, 257, 172. doi: 10.1016/j.jcat.2008.04.021  doi: 10.1016/j.jcat.2008.04.021

    26. [26]

      Wang, Y.; Shen, Y.; Zhao, Y.; Lv, J.; Wang, S.; Ma, X. ACS Catal. 2015, 5, 6200. doi: 10.1021/acscatal.5b01678  doi: 10.1021/acscatal.5b01678

    27. [27]

      Yue, H.; Zhao, Y.; Zhao, S.; Wang, B.; Ma, X.; Gong, J. Nat. Commun. 2013, 4, 2339. doi: 10.1038/ncomms3339  doi: 10.1038/ncomms3339

    28. [28]

      Xu, X.; Cao, X.; Zhao, L.; Wang, H.; Yu, H.; Gao, B. Environ. Sci. Pollut. Res. Int. 2013, 20, 358. doi: 10.1007/s11356-012-0873-5  doi: 10.1007/s11356-012-0873-5

    29. [29]

      Constantinou, D. A.; Fierro, J. L. G.; Efstathiou, A. M. Appl. Catal. B 2010, 95, 255. doi: 10.1016/j.apcatb.2010.01.003  doi: 10.1016/j.apcatb.2010.01.003

    30. [30]

      Ai, P.; Tan, M.; Reubroycharoen, P.; Wang, Y.; Feng, X.; Liu, G.; Yang, G.; Tsubaki, N. Catal. Sci. Technol. 2018, 8, 6441. doi: 10.1039/C8CY02093K  doi: 10.1039/C8CY02093K

    31. [31]

      Witoon, T.; Permsirivanich, T.; Donphai, W.; Jaree, A.; Chareonpanich, M. Fuel Process. Technol. 2013, 116, 72. doi: 10.1016/j.fuproc.2013.04.024  doi: 10.1016/j.fuproc.2013.04.024

    32. [32]

      d'Alnoncourt, R. N.; Xia, X.; Strunk, J.; Loffler, E.; Hinrichsen, O.; Muhler, M. Phys. Chem. Chem. Phys. 2006, 8, 1525. doi: 10.1039/B515487A  doi: 10.1039/B515487A

    33. [33]

      Karelovic, A.; Ruiz, P. Catal. Sci. Technol. 2015, 5, 869. doi: 10.1039/C4CY00848K  doi: 10.1039/C4CY00848K

    34. [34]

      van den Berg, R.; Prieto, G.; Korpershoek, G.; van der Wal, L. I.; van Bunningen, A. J.; Lægsgaard-Jørgensen, S.; de Jongh, P. E.; de Jong, K. P. Nat. Commun. 2016, 7, 13057. doi: 10.1038/ncomms13057  doi: 10.1038/ncomms13057

    35. [35]

      Liu, C.; Yang, B.; Tyo, E.; Seifert, S.; DeBartolo, J.; von Issendorff, B.; Zapol, P.; Vajda, S.; Curtiss, L. A. J. Am. Chem. Soc. 2015, 137, 8676. doi: 10.1021/jacs.5b03668  doi: 10.1021/jacs.5b03668

    36. [36]

      Numpilai, T.; Wattanakit, C.; Chareonpanich, M.; Limtrakul, J.; Witoon, T. Energy Convers. Manage. 2019, 180, 511. doi: 10.1016/j.enconman.2018.11.011  doi: 10.1016/j.enconman.2018.11.011

    37. [37]

      Fujitani, T.; Nakamura, J. Catal. Lett. 1998, 56, 119. doi: 10.1023/A:1019000927366  doi: 10.1023/A:1019000927366

    38. [38]

      van den Berg, R.; Parmentier, T. E.; Elkjær, C. F.; Gommes, C. J.; Sehested, J.; Helveg, S.; de Jongh, P. E.; de Jong, K. P. ACS Catal. 2015, 5, 4439. doi: 10.1021/acscatal.5b00833  doi: 10.1021/acscatal.5b00833

    39. [39]

      Tisseraud, C.; Comminges, C.; Belin, T.; Ahouari, H.; Soualah, A.; Pouilloux, Y.; Le Valant, A. J. Catal. 2016, 343, 106. doi: 10.1016/j.jcat.2015.12.005  doi: 10.1016/j.jcat.2015.12.005

    40. [40]

      Gao, P.; Xie, R.; Wang, H.; Zhong, L.; Xia, L.; Zhang, Z.; Wei, W.; Sun, Y. H. J. CO2 Util. 2015, 11, 41. doi: 10.1016/j.jcou.2014.12.008  doi: 10.1016/j.jcou.2014.12.008

    41. [41]

      Gao, P.; Li, F.; Zhan, H.; Zhao, N.; Xiao, F.; Wei, W.; Zhong, L.; Wang, H.; Sun, Y. J. Catal. 2013, 298, 51. doi: 10.1016/j.jcat.2012.10.030  doi: 10.1016/j.jcat.2012.10.030

    42. [42]

      Hu, B.; Yin, Y.; Liu, G.; Chen, S.; Hong, X.; Tsang, S. C. E. J. Catal. 2018, 359, 17. doi: 10.1016/j.jcat.2017.12.029  doi: 10.1016/j.jcat.2017.12.029

    43. [43]

      Hansen, P. L.; Wagner, J. B.; Helveg, S.; Rostrup-Nielsen, J. R.; Clausen, B. S.; Topsoe, H. Science 2002, 295, 2053. doi: 10.1126/science.1069325  doi: 10.1126/science.1069325

    44. [44]

      Behrens, M.; Studt, F.; Kasatkin, I.; Kuehl, S.; Haevecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. -L.; et al. Science 2012, 336, 893. doi: 10.1126/science.1219831  doi: 10.1126/science.1219831

    45. [45]

      Zhan, H.; Li, F.; Gao, P.; Zhao, N.; Xiao, F.; Wei, W.; Zhong, L.; Sun, Y. J. Power Sources 2014, 251, 113. doi: 10.1016/j.jpowsour.2013.11.037  doi: 10.1016/j.jpowsour.2013.11.037

    46. [46]

      Natesakhawat, S.; Ohodnicki, P. R.; Howard, B. H.; Lekse, J. W.; Baltrus, J. P.; Matranga, C. Top. Catal. 2013, 56, 1752. doi: 10.1007/s11244-013-0111-5  doi: 10.1007/s11244-013-0111-5

  • 加载中
    1. [1]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    2. [2]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    3. [3]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    6. [6]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    7. [7]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    8. [8]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    9. [9]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    10. [10]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    11. [11]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    12. [12]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    13. [13]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    14. [14]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    15. [15]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    16. [16]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    17. [17]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    18. [18]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    19. [19]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    20. [20]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

Metrics
  • PDF Downloads(22)
  • Abstract views(464)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return