Citation: Zihui Mei, Guohong Wang, Suding Yan, Juan Wang. Rapid Microwave-Assisted Synthesis of 2D/1D ZnIn2S4/TiO2 S-Scheme Heterojunction for Catalyzing Photocatalytic Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2021, 37(6): 200909. doi: 10.3866/PKU.WHXB202009097 shu

Rapid Microwave-Assisted Synthesis of 2D/1D ZnIn2S4/TiO2 S-Scheme Heterojunction for Catalyzing Photocatalytic Hydrogen Evolution

  • Corresponding author: Guohong Wang, wanggh2003@163.com
  • Received Date: 29 September 2020
    Revised Date: 21 October 2020
    Accepted Date: 31 October 2020
    Available Online: 10 November 2020

    Fund Project: the National Natural Science Foundation of China 22075072the National Natural Science Foundation of China 52003079Hubei Provincial Natural Science Foundation of China 2019CFB568

  • The threat and global concern of energy crises have significantly increased over the last two decades. Because solar light and water are abundant on earth, photocatalytic hydrogen evolution through water splitting has been considered as a promising route to produce green energy. Therefore, semiconductor photocatalysts play a key role in transforming sunlight and water to hydrogen energy. To date, various photocatalysts have been studied. Among them, TiO2 has been extensively investigated because of its non-toxicity, high chemical stability, controllable morphology, and high photocatalytic activity. In particular, 1D TiO2 nanofibers (NFs) have attracted increasing attention as effective photocatalysts because of their unique 1D electron transfer pathway, high adsorption capacity, and high photoinduced electron–hole pair transfer capability. However, TiO2 NFs are considered as an inefficient photocatalyst for the hydrogen evolution reaction (HER) because of their disadvantages such as a large band gap (~3.2 eV) and fast recombination of photoinduced electron–hole pairs. Therefore, the development of a high-performance TiO2 NF photocatalyst is required for efficient solar light conversion. In recent years, several strategies have been explored to improve the photocatalytic activity of TiO2 NFs, including coupling with narrow-bandgap semiconductors (such as ZnIn2S4). Recently, microwave (MW)-assisted synthesis has been considered as an important strategy for the preparation of photocatalyst semiconductors because of its low cost, environment-friendliness, simplicity, and high reaction rate. Herein, to overcome the above-mentioned limiting properties of TiO2 NFs, we report a 2D/1D ZnIn2S4/TiO2 S-scheme heterojunction synthesized through a microwave (MW)-assisted process. Herein, the 2D/1D ZnIn2S4/TiO2 S-scheme heterojunction was constructed rapidly by using in situ 2D ZnIn2S4nanosheets decorated on 1D TiO2 NFs. The loading of ZnIn2S4 nanoplates on the TiO2 NFs could be easily controlled by adjusting the molar ratios of ZnIn2S4 precursors to TiO2 NFs. The photocatalytic activity of the as-prepared samples for water splitting under simulated solar light irradiation was assessed. The experimental results showed that the photocatalytic performance of the ZnIn2S4/TiO2 composites was significantly improved, and the obtained ZnIn2S4/TiO2 composites showed increased optical absorption. Under optimal conditions, the highest HER rate of the ZT-0.5 (molar ratio of ZnIn2S4/TiO2= 0.5) sample was 8774 μmol·g-1·h-1, which is considerably higher than those of pure TiO2 NFs (3312 μmol·g-1·h-1) and ZnIn2S4nanoplates (3114 μmol·g-1·h-1) by factors of 2.7 and 2.8, respectively. Based on the experimental data and Mott-Schottky analysis, a possible mechanism for the formation of the S-scheme heterojunction between ZnIn2S4 and TiO2 was proposed to interpret the enhanced HER activity of the ZnIn2S4/TiO2heterojunctionphotocatalysts.
  • 加载中
    1. [1]

      Zhang, T. M.; Wan, Y. Y.; Xie, H. Y.; Mu, Y.; Du, P. W.; Wang, D.; Wu, X. J.; Ji, H. X.; Wan, L. J. J. Am. Chem. Soc. 2018, 140 (24), 7561. doi: 10.1021/jacs.8b02156  doi: 10.1021/jacs.8b02156

    2. [2]

      Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Adv. Mater. 2019, 31 (30), 1807660. doi: 10.1002/adma.201807660  doi: 10.1002/adma.201807660

    3. [3]

      Di, T. M.; Xu, Q. L.; Ho, W. K.; Tang, H.; Xiang, Q. J.; Yu, J. G. ChemCatChem 2019, 11 (5), 1394. doi: 10.1002/cctc.201802024  doi: 10.1002/cctc.201802024

    4. [4]

      Xu, Q. L.; Ma, D. K.; Yang, S. B.; Tian, Z. F.; Cheng, B.; Fan, J. J. Appl. Surf. Sci. 2019, 495, 143555. doi: 10.1016/j.apsusc.2019.143555  doi: 10.1016/j.apsusc.2019.143555

    5. [5]

      Sadowski, R.; Wach, A.; Buchalska, M.; Kuśtrowski, P.; Macyk, W. Appl. Surf. Sci. 2019, 475, 710. doi: 10.1016/j.apsusc.2018.12.286  doi: 10.1016/j.apsusc.2018.12.286

    6. [6]

      Zhang, C.; Wu, Z. J.; Liu, J. J.; Piao, L. Y. Acta Phys. -Chim. Sin. 2017, 33, 1492.  doi: 10.3866/PKU.WHXB201704141

    7. [7]

      Ji, Y. C.; Yang, R. Q.; Wang, L. W.; Song, G. X.; Wang, A. Z.; Lv, Y. W.; Gao, M. M.; Zhang, J.; Yu, X. Chem. Eng. J. 2020, 40, 126226. doi: 10.1016/j.cej.2020.126226  doi: 10.1016/j.cej.2020.126226

    8. [8]

      Xu, F. Y.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Xu, J. S. Adv. Opt. Mater. 2018, 6 (23), 180911. doi: 10.1002/adom.201800911  doi: 10.1002/adom.201800911

    9. [9]

      Wu, J.; Liu, J.; Xia, W.; Ren, Y. Y.; Wang, F. Acta Phys. -Chim. Sin. 2021, 37, 2008043.  doi: 10.3866/PKU.WHXB202008043

    10. [10]

      Liu, G.; Wang, G. H.; Hu, Z. H.; Su, Y. R.; Zhao, L. Appl. Surf. Sci. 2019, 465, 902. doi: 10.1016/j.apsusc.2018.09.216  doi: 10.1016/j.apsusc.2018.09.216

    11. [11]

      Chu, Z. D.; Qiu, L. L.; Chen, Y.; Zhuang, Z. S.; Du, P. F.; Xiong, J. J. Phys. Chem. Solids. 2020, 136, 109138. doi: 10.1016/j.jpcs.2019.109138  doi: 10.1016/j.jpcs.2019.109138

    12. [12]

      Liu, Y.; Hao, X. Q.; Hu, H, Q.; Ging, Z. L. Acta Phys. -Chim. Sin. 2021, 37, 2008030.  doi: 10.3866/PKU.WHXB202008030

    13. [13]

      Li, X. Z.; Yan, X. Y.; Lu, X. W.; Zuo, S. X.; Li, Z. Y.; Yao, C.; Ni, C. Y. J. Catal. 2018, 357, 59. doi: 10.1016/j.jcat.2017.10.024  doi: 10.1016/j.jcat.2017.10.024

    14. [14]

      Li, H. F.; Yu, H. T.; Quan, X.; Chen, S.; Zhang, Y. B. ACS Appl. Mater. Interface 2016, 8 (3), 2111. doi: 10.1021/acsami.5b10613  doi: 10.1021/acsami.5b10613

    15. [15]

      Shen, J.; Wang, R.; Liu, Q. Q.; Yang, X. F.; Tang, H.; Yang, J. Chin. J. Catal. 2019, 40 (3), 380. doi: 10.1016/S1872-2067(18)63166-3  doi: 10.1016/S1872-2067(18)63166-3

    16. [16]

      Pan, J. B.; Shen, S.; Zhou, W.; Tang, J.; Ding, H. Z.; Wang, J. B.; Chen, L.; Au, C. T.; Yin, S. F. Acta Phys. -Chim. Sin. 2020, 36, 1905068.  doi: 10.3866/PKU.WHXB201905068

    17. [17]

      Huang, J. J.; Du, J. M.; Du, H. W.; Xu, G. S.; Yuan, Y. P. Acta Phys. -Chim. Sin. 2020, 36, 1905056.  doi: 10.3866/PKU.WHXB201905056

    18. [18]

      Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Angew. Chem. Int. Ed. 2020, 59 (13), 5218. doi: 10.1002/ange.201916012  doi: 10.1002/ange.201916012

    19. [19]

      Li, Z. J.; Wang, X. H.; Tian, W. L.; Meng, A. L.; Yang, L. N. ACS Sustain. Chem. Eng. 2019, 7 (24), 20190. doi: 10.1021/acssuschemeng.9b06430  doi: 10.1021/acssuschemeng.9b06430

    20. [20]

      He, F.; Meng, A. Y.; Cheng, B.; Ho, W. K.; Yu, J. G. Chin. J. Catal. 2020, 41 (1), 9. doi: 10.1016/S1872-2067(19)63382-6  doi: 10.1016/S1872-2067(19)63382-6

    21. [21]

      Luo, J. H.; Lin, Z. X.; Zhao, Y.; Jiang, S. J.; Song, S. Q. Chin. J. Catal. 2020, 41 (1), 122. doi: 10.1016/S1872-2067(19)63490-X  doi: 10.1016/S1872-2067(19)63490-X

    22. [22]

      Wang, J.; Wang, G. H.; Cheng, B.; Yu, J. G.; Fan, J. J. Chin. J. Catal. 2021, 42 (1), 56. doi: 10.1016/S1872-2067(20)63634-8  doi: 10.1016/S1872-2067(20)63634-8

    23. [23]

      Wei, J. X.; Chen, Y. W.; Zhang, H. Y.; Zhuang, Z. Y.; Yu, Y. Chin. J. Catal. 2021, 42 (1), 78. doi: 10.1016/S1872-2067(20)63661-0  doi: 10.1016/S1872-2067(20)63661-0

    24. [24]

      Peng, J. J.; Shen, J.; Yu, X. H.; Tang, H.; Zulfiqar; Liu, Q. Q. Chin. J. Catal. 2021, 42 (1), 87. doi: 10.1016/S1872-2067(20)63595-1  doi: 10.1016/S1872-2067(20)63595-1

    25. [25]

      Wang, Z. L.; Chen, Y. F.; Zhang, L. Y.; Cheng, B.; Yu, J. G.; Fan, J. J. J. Mater. Sci. Technol. 2020, 56, 143. doi: 10.1016/j.jmst.2020.02.062  doi: 10.1016/j.jmst.2020.02.062

    26. [26]

      Li, Z. F.; Wu, Z. H.; He, R. A.; Wan, L.; Zhang, S. Y. J. Mater. Sci. Technol. 2020, 56, 151. doi: 10.1016/j.jmst.2020.02.061  doi: 10.1016/j.jmst.2020.02.061

    27. [27]

      Wang, Y. Y.; Wang, K.; Wang, J. L.; Wu, X. Y.; Zhang, G. K. J. Mater. Sci. Technol. 2020, 56, 236. doi: 10.1016/j.jmst.2020.03.039  doi: 10.1016/j.jmst.2020.03.039

    28. [28]

      Liu, H.; Yu, D.Q.; Sun, T. B.; Du, H. Y.; Jiang, W. T.; Yaseen, M.; Huang, L. Appl. Surf. Sci. 2019, 473, 855. doi: 10.1016/j.apsusc.2018.12.162  doi: 10.1016/j.apsusc.2018.12.162

    29. [29]

      Nasr, M.; Eid, C.; Habchi, R.; Miele, P.; Bechelany, M. ChemSusChem 2018, 11 (18), 3023. doi: 10.1002/cssc.201800874  doi: 10.1002/cssc.201800874

    30. [30]

      Chen, W.; Liu, T. Y.; Huang, T.; Liu, X. H.; Yang, X. J. Nanoscale 2016, 8 (6), 3711. doi: 10.1039/c5nr07695a  doi: 10.1039/c5nr07695a

    31. [31]

      Xia, Y.; Li, Q.; Lv, K. L.; Li, M. Appl. Surf. Sci. 2017, 398, 81. doi: 10.1016/j.apsusc.2016.12.006  doi: 10.1016/j.apsusc.2016.12.006

    32. [32]

      Wei, N.; Wu, Y. H.; Wang, M. L.; Sun, W. X.; Li, Z. K.; Ding, L.; Cui, H. Z. Nanotechnology 2018, 30 (4), 045701. doi: 10.1088/1361-6528/aaecc6  doi: 10.1088/1361-6528/aaecc6

    33. [33]

      Zhu, Y. J.; Chen, F. Chem. Rev. 2014, 114 (12), 6462. doi: 10.1021/cr400366s  doi: 10.1021/cr400366s

    34. [34]

      Lin, B.; Li, H.; An, H.; Hao, W. B.; Wei, J. J.; Dai, Y. Z.; Ma, C. S.; Yang, G. D. Appl. Catal. B-Environ. 2018, 220, 542. doi: 10.1016/j.apcatb.2017.08.071  doi: 10.1016/j.apcatb.2017.08.071

    35. [35]

      Sing, K. S. Pure Appl. Chem. 1985, 57 (4), 603. doi: 10.1351/pac198254112201  doi: 10.1351/pac198254112201

    36. [36]

      Wang, J.; Wang, G. H.; Wang, X.; Su, Y. R.; Tang, H. Carbon 2019, 149, 618. doi: 10.1016/j.carbon.2019.04.088  doi: 10.1016/j.carbon.2019.04.088

    37. [37]

      Zhou, X. J.; Shao, C. L.; Li, X. H.; Wang, X. X.; Guo, X. H.; Liu, Y. C. J. Hazard. Mater. 2018, 344, 113. doi: 10.1016/j.jhazmat.2017.10.006  doi: 10.1016/j.jhazmat.2017.10.006

    38. [38]

      Cao, S. W.; Shen, B. J.; Tong, T.; Fu, J. W.; Yu, J. G. Adv. Funct. Mater. 2018, 28 (21), 1800136. doi: 10.1002/adfm.201800136  doi: 10.1002/adfm.201800136

    39. [39]

      Liu, J. J. J. Phys. Chem. C 2015, 119 (51), 28417. doi: 10.1021/acs.jpcc.5b09092  doi: 10.1021/acs.jpcc.5b09092

    40. [40]

      Gao, D. D.; Yuan, R. R.; Fan, J. J.; Hong, X. K.; Yu, H. G. J. Mater. Sci. Technol. 2020, 56, 122. doi: 10.1016/j.jmst.2020.02.031  doi: 10.1016/j.jmst.2020.02.031

    41. [41]

      He, R. G.; Liu, H. J.; Liu, H. M.; Xu, D. F.; Zhang, L. Y. J. Mater. Sci. Technol. 2020, 52, 145. doi: 10.1016/j.jmst.2020.03.027  doi: 10.1016/j.jmst.2020.03.027

    42. [42]

      Xu, F. Y.; Zhang, J. J.; Zhu, B. C.; Yu, J. G.; Xu, J. S. Appl. Catal. B-Environ. 2018, 230, 194. doi: 10.1016/j.apcatb.2018.02.042  doi: 10.1016/j.apcatb.2018.02.042

    43. [43]

      Xu, Q. L.; Zhang, L. Y.; Yu, J. G.; Wageh, S.; Al-Ghamdi, A. A.; Jaroniec, M. Mater. Today 2018, 21 (10), 1042. doi: 10.1016/j.mattod.2018.04.008  doi: 10.1016/j.mattod.2018.04.008

    44. [44]

      Xia, Y.; Tian, Z. H.; Heil, T.; Meng, A. Y.; Cheng, B.; Cao, S. W.; Yu, J. G.; Antonietti, M. Joule 2019, 3 (11), 2792. doi: 10.1016/j.joule.2019.08.011  doi: 10.1016/j.joule.2019.08.011

    45. [45]

      Ge, H. N.; Xu, F. Y.; Cheng, B.; Yu, J. G.; Ho, W. K. ChemCatChem 2019, 11 (24), 6301. doi: 10.1002/cctc.201901486  doi: 10.1002/cctc.201901486

    46. [46]

      Zhang, T.; Low, J. X.; Yu, J. G.; Tyryshkin, A. M.; Mikmekova, E.; Asefa, T. Angew. Chem. Int. Ed. 2020, 59 (35), 15000. doi: 10.1002/anie.202005143  doi: 10.1002/anie.202005143

    47. [47]

      Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Nat. Commun. 2020, 11, 4613. doi: 10.1038/s41467-020-18350-7  doi: 10.1038/s41467-020-18350-7

    48. [48]

      Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. Chem 2020, 6 (7), 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

  • 加载中
    1. [1]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    2. [2]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    3. [3]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    4. [4]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    6. [6]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    8. [8]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    9. [9]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    11. [11]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    12. [12]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    20. [20]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

Metrics
  • PDF Downloads(45)
  • Abstract views(1890)
  • HTML views(462)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return