Citation: Fan Runlin, Peng Yuhang, Tian Hao, Zheng Junsheng, Ming Pingwen, Zhang Cunman. Graphite-Filled Composite Bipolar Plates for Fuel Cells: Material, Structure, and Performance[J]. Acta Physico-Chimica Sinica, ;2021, 37(9): 200909. doi: 10.3866/PKU.WHXB202009095 shu

Graphite-Filled Composite Bipolar Plates for Fuel Cells: Material, Structure, and Performance

  • Corresponding author: Zheng Junsheng, jszheng@tongji.edu.cn Ming Pingwen, pwming@tongji.edu.cn
  • Received Date: 29 September 2020
    Revised Date: 23 October 2020
    Accepted Date: 23 October 2020
    Available Online: 9 November 2020

    Fund Project: the National Key R & D Program of China 2020YFB1505904the Shanghai Committee of Science and Technology, China 17DZ1200403The project was supported by the National Key R & D Program of China (2020YFB1505904) and the Shanghai Committee of Science and Technology, China (17DZ1200403)

  • Bipolar plates (BPs) are one of the key components of proton exchange membrane fuel cell (PEMFC) stacks. To ensure that such a stack operates stably, a BP needs to meet exhibit electrical conductivity, heat conduction, H2 airtight, flexural strength, and durability. Based on these requirements, the BP should also be as thin as possible to reduce the overall cost of PEMFCs, while improving their volumetric energy density. A composite bipolar plate (CBP) exhibits the advantages of a low production cost, low processing difficulty, and corrosion resistance; it is produced using polymers and graphite as the main materials. Moreover, channel structures can be formed directly after a compression molding process. However, the trade-off that exists between electrical conductivity and flexural strength is a major challenge. The electrical conductivity of a CBP is realized through the network formed by graphite materials. Therefore, it not only depends on the filler concentration, but also on the network structure. At the same time, microstructures such as accumulation polymers and graphite/resin interface are directly related to the gas tightness and flexural strength of CBP. This review summarizes the conductive fillers and polymers that are commonly used for fabricating CBPs. The universal modification methods for both (fillers and polymers) are discussed, and a brief description of the conductive theoretical model has also been included. In addition, the advanced production technology of CBP is summarized, which includes the organization of the conductive network, elimination of the polymer on the plate surface, and preparation technology of the layered plates. The relationship between the production process and the performance of the plate was also analyzed. Some studies indicate that the conductive network can be optimized by combining kinds of carbon-based filler or electric field inducing, which could significantly promote the electrical conductivity of CBP. Flexural strength and H2 permeation rates were increased by introducing carbon-based materials such as carbon fabric and graphite foil. The modification of the filler and polymer could facilitate their bonding with each other, which reduces agglomeration and increases the performance. It is worth noting that the structure had a notable influence on the performance of CBP, which was reflected in the filler/polymer interface or the hybrid layer structure. Based on this results, some ideas have been provided as the next steps that can be taken for the optimization and production of a CBP. We believe that the optimization of the CBP structure will be the key point for its future research.
  • 加载中
    1. [1]

      Mah, A. X. Y.; Ho, W. S.; Bong, C. P. C.; Hassim, M. H.; Liew, P. Y.; Asli, U. A.; Kamaruddin, M. J.; Chemmangattuvalappil, N. G. Int. J. Hydrogen Energ. 2019, 44, 5661. doi: 10.1016/j.ijhydene.2019.01.077  doi: 10.1016/j.ijhydene.2019.01.077

    2. [2]

      Liu, B.; Liu, S.; Guo, S.; Zhang, S. Int. J. Hydrogen Energ. 2020, 42, 1385. doi: 10.1016/j.ijhydene.2019.11.056  doi: 10.1016/j.ijhydene.2019.11.056

    3. [3]

      Garcia, D. A.; Barbanera, F.; Cumo F.; Matteo U. D.; Nastasi, B. Energies 2016, 9, 963. doi: 10.3390/en9110963  doi: 10.3390/en9110963

    4. [4]

      Sinigaglia, T.; Lewiski, F.; Martins, M. E. S.; Siluk, J. C. M. Int. J. Hydrogen Energ. 2017, 42, 24597. doi: 10.1016/j.ijhydene.2017.08.063  doi: 10.1016/j.ijhydene.2017.08.063

    5. [5]

      Liu, J.; Zhong, C. F. Energy of China 2019, 41, 32.  doi: 10.3969/j.issn.1003-2355.2019.02.007

    6. [6]

      Badea, G.; Naghiu, G. S.; Giurca, I.; Aşchilean, I.; Megyesi, E. Energy Procedia 2017, 112, 418. doi: 10.1016/j.egypro.2017.03.1097  doi: 10.1016/j.egypro.2017.03.1097

    7. [7]

      Vincent, I.; Bessarabov, D. Renew Sust. Energ. Rev. 2018, 81, 1690. doi: 10.1016/j.rser.2017.05.258  doi: 10.1016/j.rser.2017.05.258

    8. [8]

      Møllera, K. T.; Jensena, T. R.; Akibab, E.; Li, H. W. Prog. Nat. Sci. Mater. 2017, 27, 34. doi: 10.1016/j.pnsc.2016.12.014  doi: 10.1016/j.pnsc.2016.12.014

    9. [9]

      Marchenko, O. V.; Solomin, S. V. Int. J. Hydrogen Energ. 2017, 42, 9361. doi: 10.1016/j.ijhydene.2017.02.076  doi: 10.1016/j.ijhydene.2017.02.076

    10. [10]

      Budak, Y.; Devrim, Y. Energ. Convers. Manage 2018, 160, 486. doi: 10.1016/j.enconman.2018.01.077  doi: 10.1016/j.enconman.2018.01.077

    11. [11]

      Li, Y.; Yang, J.; Song, J. Renew. Sust. Energ. Rev. 2017, 67, 160. doi: 10.1016/j.rser.2016.09.030  doi: 10.1016/j.rser.2016.09.030

    12. [12]

      Li, J. C.; Wang, Q.; Jiang, R.; Wu, A. M.; Lin, G. Q.; Dong, C. Mater. Rev. 2018, 32, 2584.  doi: 10.11896/j.issn.1005-023X.2018.15.008

    13. [13]

      Dafalla, A. M.; Jiang, F. Int. J. Hydrogen Energ. 2018, 43, 2327. doi: 10.1016/j.ijhydene.2017.12.033  doi: 10.1016/j.ijhydene.2017.12.033

    14. [14]

      Radzuan, N. A. M.; Sulong, A. B.; Somalu, M. R. Sains. Malays 2019, 48, 669. doi: 10.17576/jsm-2019-4803-21  doi: 10.17576/jsm-2019-4803-21

    15. [15]

      Leng, Y.; Ming, P.; Yang, D.; Zhang, C. J. Power Sources 2020, 451, 227783. doi: 10.1016/j.jpowsour.2020.227783  doi: 10.1016/j.jpowsour.2020.227783

    16. [16]

      Liu, F.; Yi, B.; Xing, D.; Yu, J.; Zhang, H. J. Membrane Sci. 2003, 212, 213. doi: 10.1016/S0376-7388(02)00503-3  doi: 10.1016/S0376-7388(02)00503-3

    17. [17]

      Kim, M.; Lim, J. W.; Kim, K. H.; Lee, D. G. Compos. Struct. 2013, 96, 569. doi: 10.1016/j.compstruct.2012.09.017  doi: 10.1016/j.compstruct.2012.09.017

    18. [18]

      Singh, R. S.; Gautam, A.; Rai, V. Front. Mater. Sci. 2019, 13, 217. doi: 10.1007/s11706-019-0465-0  doi: 10.1007/s11706-019-0465-0

    19. [19]

      Stein, T.; Ein-Eli, Y. Energy Technol. 2020, 8, 2000007. doi: 10.1002/ente.202000007  doi: 10.1002/ente.202000007

    20. [20]

      Wang, H.; Turner, J. A. Fuel Cells 2010, 10, 510. doi: 10.1002/fuce.200900187  doi: 10.1002/fuce.200900187

    21. [21]

      Hermann, A.; Chaudhuri, T.; Spagnol, P. Int. J. Hydrogen Energ. 2005, 30, 1297. doi: 10.1016/j.ijhydene.2005.04.016  doi: 10.1016/j.ijhydene.2005.04.016

    22. [22]

      Li, Y.; Jia, X.; Zhang, W.; Fang, C.; Wang, X.; Qin, F.; Yamaura, S.; Yokoyama, Y. Metall. Mater. Trans. A 2013, 45, 2393. doi: 10.1007/s11661-013-2071-6  doi: 10.1007/s11661-013-2071-6

    23. [23]

      Liang, P.; Xu, H. F.; Liu, M.; Lu, L.; Fu, J. Acta Phys. -Chim. Sin. 2010, 26, 595.  doi: 10.3866/PKU.WHXB20100329

    24. [24]

      Wilberforce, T.; Ijaodola, O.; Ogungbemi, E.; Khatib, F. N.; Leslie, T.; El-Hassan, Z.; Thomposon, J.; Olabi, A. G. Renew. Sust. Energ. Rev. 2019, 113, 109286. doi: 10.1016/j.rser.2019.109286  doi: 10.1016/j.rser.2019.109286

    25. [25]

      Vlaskin, M. S.; Grigorenko, A. V.; Shkolnikov, E. I.; Ilyukhin, A. S. Surf. Rev. Lett. 2019, 26, 1950038. doi: 10.1142/S0218625X19500380  doi: 10.1142/S0218625X19500380

    26. [26]

      Qian, Y.; Xu, J. Acta Phys. -Chim. Sin. 2015, 31, 291.  doi: 10.3866/PKU.WHXB201411262

    27. [27]

      Kim, M.; Lim, J. W.; Lee, D. G. Compos. Struct. 2015, 119, 630. doi: 10.1016/j.compstruct.2014.09.010  doi: 10.1016/j.compstruct.2014.09.010

    28. [28]

      Ji, S.; Hwang, Y. S.; Park, T.; Lee, Y. H.; Paek, J. Y.; Chang, I.; Lee, M. H.; Cha, S. W. Int. J. Precis. Eng. Man. 2012, 13, 2183. doi: 10.1007/s12541-012-0289-7  doi: 10.1007/s12541-012-0289-7

    29. [29]

      Tripathi, B. P.; Shahi, V. K. Prog. Polym. Sci. 2011, 36, 945. doi: 10.1016/j.progpolymsci.2010.12.005  doi: 10.1016/j.progpolymsci.2010.12.005

    30. [30]

      Clingerman, M. L.; King, J. A.; Schulz, K. H.; Meyers, J. D. J. Appl. Polym. Sci. 2002, 83, 1341. doi: 10.1002/app.10014  doi: 10.1002/app.10014

    31. [31]

      Zakaria, M. Y.; Sulong, A. B.; Sahari, J.; Suherman, H. Compos. Pt. B-Eng. 2015, 83, 75. doi: 10.1016/j.compositesb.2015.08.034  doi: 10.1016/j.compositesb.2015.08.034

    32. [32]

      Phuangngamphan, M.; Okhawilai, M.; Hiziroglu, S.; Rimdusit, S. J. Appl. Polym. Sci. 2019, 136, 47183. doi: 10.1002/app.47183  doi: 10.1002/app.47183

    33. [33]

      Kim, M.; Lim, J. W.; Lee, D. G. Compos. Struct. 2018, 189, 79. doi: 10.1016/j.compstruct.2018.01.067  doi: 10.1016/j.compstruct.2018.01.067

    34. [34]

      Dweiri, R.; Suherman, H.; Sulong, A. B.; Al-Sharab, J. F. Sci. Eng. Compos. Mater. 2018, 25, 1177. doi: 10.1515/secm-2017-0122  doi: 10.1515/secm-2017-0122

    35. [35]

      Akhtar, M. N.; Sulong, A. B.; Umer, A.; Yousaf, A. B.; Khan, M. A. Ceram. Int. 2018, 44, 14457. doi: 10.1016/j.ceramint.2018.05.059  doi: 10.1016/j.ceramint.2018.05.059

    36. [36]

      Radzuan, N. A. M.; Zakaria, M. Y.; Sulong, A. B.; Sahari, J. Compos. Pt. B-Eng. 2017, 110, 153. doi: 10.1016/j.compositesb.2016.11.021  doi: 10.1016/j.compositesb.2016.11.021

    37. [37]

      Chen, H.; Liu, H. B.; Xia, X. H.; Yang, L.; He, Y. D. Acta Mater. Compos. Sin. 2015, 32, 744.  doi: 10.13801/j.cnki.fhclxb.201503.008

    38. [38]

      Suherman, H.; Sulong, A. B.; Sahari, J. Ceram. Int. 2013, 39, 1277. doi: 10.1016/j.ceramint.2012.07.059  doi: 10.1016/j.ceramint.2012.07.059

    39. [39]

      Antunes, R. A.; Oliveira, M. C. L. D.; Ett, G.; Ett, V. J.Power Sources 2011, 196, 2945. doi: 10.1016/j.jpowsour.2010.12.041  doi: 10.1016/j.jpowsour.2010.12.041

    40. [40]

      Petrach, E.; Abu-Isa, I.; Xia, W. J. Compos. Mater. 2010, 44, 1665. doi: 10.1177/0021998309357088  doi: 10.1177/0021998309357088

    41. [41]

      Diaz, J.; Rigail-Cedeño, A.; Barzola-Monteses, J.; Espinoza-Andaluz, M. Energy Procedia 2019, 158, 1502. doi: 10.1016/j.egypro.2019.01.358  doi: 10.1016/j.egypro.2019.01.358

    42. [42]

      Jiang, X.; Drzal, L. T. J. Power Sources 2012, 218, 297. doi: 10.1016/j.jpowsour.2012.07.001  doi: 10.1016/j.jpowsour.2012.07.001

    43. [43]

      Fukushima, H.; Drzal, L. T.; Rook, B. P.; Rich, M. J. J. Therm. Anal. Calorim. 2006, 85, 235. doi: 10.1007/s10973-005-7344-x  doi: 10.1007/s10973-005-7344-x

    44. [44]

      Biswas, S.; Fukushima, H.; Drzal, L. T. Compos. Pt. A-Appl. Sci. Manuf. 2011, 42, 371. doi: 10.1016/j.compositesa.2010.12.006  doi: 10.1016/j.compositesa.2010.12.006

    45. [45]

      Kim, M.; Yu, H. N.; Lim, J. W.; Lee, D. G. Int. J. Hydrogen Energ. 2012, 37, 4300. doi: 10.1016/j.ijhydene.2011.11.125  doi: 10.1016/j.ijhydene.2011.11.125

    46. [46]

      Lee, H. E.; Han, S. H.; Song, S. A.; Kim, S. S. Compos. Struct. 2015, 134, 44. doi: 10.1016/j.compstruct.2015.08.037  doi: 10.1016/j.compstruct.2015.08.037

    47. [47]

      Naji, A.; Krause, B.; Pötschke, P.; Ameli, A. Smart Mater. Struct. 2019, 28, 064004. doi: 10.1088/1361-665X/ab19cb  doi: 10.1088/1361-665X/ab19cb

    48. [48]

      Wei, T.; Song, L.; Zheng, C.; Wang, K.; Yan, J.; Shao, B.; Fan, Z. J. Mater. Lett. 2010, 64, 2376. doi: 10.1016/j.matlet.2010.07.061  doi: 10.1016/j.matlet.2010.07.061

    49. [49]

      Yu, H. N.; Lim, J. W.; Suh, J. D.; Lee, D. G. J. Power Sources 2011, 196, 9868. doi: 10.1016/j.jpowsour.2011.06.102  doi: 10.1016/j.jpowsour.2011.06.102

    50. [50]

      Hwang, I. U.; Yu, H. N.; Kim, S. S.; Lee, D. G.; Suh, J. D.; Lee, S. H.; Ahn, B. K.; Kim, S. H.; Lim, T. W. J. Power Sources 2008, 184, 90. doi: 10.1016/j.jpowsour.2008.05.088  doi: 10.1016/j.jpowsour.2008.05.088

    51. [51]

      Kang, K.; Park, S.; Jo, A.; Lee, K.; Ju, H. Int. J. Hydrogen Energ. 2017, 42, 1691. doi: 10.1016/j.ijhydene.2016.05.027  doi: 10.1016/j.ijhydene.2016.05.027

    52. [52]

      Yao, K; Adams, D. L.; Hao A.; Zheng, J. P.; Liang, R. ECS Trans. 2017, 77, 1303. doi: 10.1149/07711.1303ecst  doi: 10.1149/07711.1303ecst

    53. [53]

      Kim, J. W.; Kim, N. H.; Kuilla, T.; Kim, T. J.; Rhee, K. Y.; Lee, J. H. J. Power Sources 2010, 195, 5474. doi: 10.1016/j.jpowsour.2010.03.083  doi: 10.1016/j.jpowsour.2010.03.083

    54. [54]

      Kim, K. H.; Lim, J. W.; Kim, M.; Lee, D. G. Compos. Struct. 2013, 98, 103. doi: 10.1016/j.compstruct.2012.10.043  doi: 10.1016/j.compstruct.2012.10.043

    55. [55]

      Di, J. T.; Hu, D. M.; Chen, H. Y.; Yong, Z. Z.; Chen, M. H.; Feng, Z. H.; Zhu, Y. T.; Li, Q. W. ACS Nano 2012, 6, 5457. doi: 10.1021/nn301321j  doi: 10.1021/nn301321j

    56. [56]

      Yao, K.; Adams, D.; Hao, A.; Zheng, J. P.; Liang, Z. Y.; Nguyen, N. Energ. Fuel 2017, 31, 14320. doi: 10.1021/acs.energyfuels.7b02678  doi: 10.1021/acs.energyfuels.7b02678

    57. [57]

      Fiedler, B.; Gojny, F. H.; Wichmann, M. H. G.; Nolte, M. C. M.; Schulte, K. J. Compos. Sci. Technol. 2006, 66, 3115. doi: 10.1016/j.compscitech.2005.01.014  doi: 10.1016/j.compscitech.2005.01.014

    58. [58]

      Sham, M. L.; Kim, J. K. Carbon 2006, 44, 768. doi: 10.1016/j.carbon.2005.09.013  doi: 10.1016/j.carbon.2005.09.013

    59. [59]

      Yin, Q.; Sun, K. N.; Li, A. J.; Shao, L.; Liu, S. M.; Sun, C. J Power Sources 2008, 175, 861. doi: 10.1016/j.jpowsour.2007.10.013  doi: 10.1016/j.jpowsour.2007.10.013

    60. [60]

      Athmouni, N.; Mighri, F.; Elkoun, S. Polym. Advan. Technol. 2018, 29, 294. doi: 10.1002/pat.4114  doi: 10.1002/pat.4114

    61. [61]

      Lee, M. H.; Kim, H. Y.; Kim, J.; Han, J. T.; Lee, Y. S.; Woo, J. S. Carbon Lett. 2019, 30, 345. doi: 10.1007/s42823-019-00103-2  doi: 10.1007/s42823-019-00103-2

    62. [62]

      Liao, S. H.; Weng, C. C.; Yen, C. Y.; Hsiao, M. C.; Ma, C. C. M.; Tsai, M. C.; Su, A.; Yen, M. Y.; Lin, Y. F.; Liu, P. L. J. Power Sources 2010, 195, 263. doi: 10.1016/j.jpowsour.2009.06.064  doi: 10.1016/j.jpowsour.2009.06.064

    63. [63]

      Li, J.; Vaisman, L.; Marom, G.; Kim, J. K. Carbon 2007, 45, 744. doi: 10.1016/j.carbon.2006.11.031  doi: 10.1016/j.carbon.2006.11.031

    64. [64]

      Matsumoto, R.; Okabe, Y. Synthetic Met. 2016, 222, 351. doi: 10.1016/j.synthmet.2016.11.020  doi: 10.1016/j.synthmet.2016.11.020

    65. [65]

      Kalaitzidou, K.; Fukushima, H.; Drzal, L. Materials 2010, 3, 1089. doi: 10.3390/ma3021089  doi: 10.3390/ma3021089

    66. [66]

      Taherian, R. Compos. Sci. Technol. 2016, 123, 17. doi: 10.1016/j.compscitech.2015.11.029  doi: 10.1016/j.compscitech.2015.11.029

    67. [67]

      Radzuan, M.; Afiqah, N.; Sulong, A. B.; Sahari, J. Int. J. Hydrogen Energ. 2017, 42, 9262. doi: 10.1016/j.ijhydene.2016.03.045  doi: 10.1016/j.ijhydene.2016.03.045

    68. [68]

      Mclachlan, D. S.; Blaszkiewicz, M.; Newnham, R. E. J. Am. Ceram. Soc. 1990, 73, 2187. doi: 10.1111/j.1151-2916.1990.tb07576.x  doi: 10.1111/j.1151-2916.1990.tb07576.x

    69. [69]

      Mamunya, E. P.; Davidenko, V. V.; Lebedev, E. V. Compos. Interface 2012, 4, 169. doi: 10.1163/156855497x00145  doi: 10.1163/156855497x00145

    70. [70]

      Nielsen, L. E. J. Ind. Eng. Chem. 1974, 13, 17. doi: 10.1021/i160049a004  doi: 10.1021/i160049a004

    71. [71]

      Lee, D.; Lee, D. G. J. Power Sources 2016, 327, 119. doi: 10.1016/j.jpowsour.2016.07.045  doi: 10.1016/j.jpowsour.2016.07.045

    72. [72]

      Ouyang, T.; Yin, S. F.; Xie, Z. Y.; Gao, P. P.; Tao, T.; Huang, Q. Z. Acta Mater. Compos. Sin. 2018, 35, 2950.  doi: 10.13801/j.cnki.fhclxb.20180316.002

    73. [73]

      San, F. G. B.; Tekin, G. Int. J. Energ. Res. 2013, 37, 283. doi: 10.1002/er.3005  doi: 10.1002/er.3005

    74. [74]

      Dweiri, R.; Sahari, J. J. Power Sources 2007, 171, 424. doi: 10.1016/j.jpowsour.2007.05.106  doi: 10.1016/j.jpowsour.2007.05.106

    75. [75]

      Mahyoedin, Y.; Sahari, J.; Mukhtar, A.; Mohammad, N.; Suryadimal. MATEC Web of Conferences 2018, 248, 01007. doi: 10.1051/matecconf/201824801007  doi: 10.1051/matecconf/201824801007

    76. [76]

      Lim, J. W.; Kim, M.; Yu, Y. H.; Lee, D. G. Compos. Struct. 2014, 118, 519. doi: 10.1016/j.compstruct.2014.08.011  doi: 10.1016/j.compstruct.2014.08.011

    77. [77]

      Martins, J. N.; Kersch, M.; Altstädt, V.; Oliveira, R. V. B. Polym. Test. 2013, 32, 1511. doi: 10.1016/j.polymertesting.2013.10.001  doi: 10.1016/j.polymertesting.2013.10.001

    78. [78]

      Ansari, S.; Giannelis, E. P. J. Polym. Sci. Pol. Phy. 2009, 47, 888. doi: 10.1002/polb.21695  doi: 10.1002/polb.21695

    79. [79]

      Liao, S. H.; Yen, C. Y.; Weng, C. C.; Lin, Y. F.; Ma, C. C. M.; Yang, C. H.; Tsai, M. C.; Yen, M. Y.; Hsiao, M. C.; Lee, S.J. J. Power Sources 2008, 185, 1225. doi: 10.1016/j.jpowsour.2008.06.097  doi: 10.1016/j.jpowsour.2008.06.097

    80. [80]

      Adloo, A.; Sadeghi, M.; Masoomi, M.; Pazhooh, H. N. Renew. Energ. 2016, 99, 867. doi: 10.1016/j.renene.2016.07.062  doi: 10.1016/j.renene.2016.07.062

    81. [81]

      Caglar, B.; Fischer, P.; Kauranen, P.; Karttunen, M.; Elsner, P. J. Power Sources 2014, 256, 88. doi: 10.1016/j.jpowsour.2014.01.060  doi: 10.1016/j.jpowsour.2014.01.060

    82. [82]

      Lee, M. H.; Kim, H. Y.; Oh, S. M.; Kim, B. C.; Bang, D.; Han, J. T.; Woo, J. S. Int. J. Hydrogen Energ. 2018, 43, 21918. doi: 10.1016/j.ijhydene.2018.09.104  doi: 10.1016/j.ijhydene.2018.09.104

    83. [83]

      Hopmann, C.; Windeck, C.; Cohnen, A.; Onken, J.; Krause, B.; Pötschke, P.; Hickmann, T. AIP Conference Proceedings 2016, 1779, 030017. doi: 10.1063/1.4965487  doi: 10.1063/1.4965487

    84. [84]

      Yeetsorn, R.; Fowler, M.; Tzoganakis, C.; Yuhua, W.; Taylor, M. Macromol. Symp. 2008, 264, 34. doi: 10.1002/masy.200850406  doi: 10.1002/masy.200850406

    85. [85]

      Alo, O. A.; Otunniyi, I. O.; Pienaar, H. Polym. Compos. 2020, 41, 3364. doi: 10.1002/pc.25625  doi: 10.1002/pc.25625

    86. [86]

      Simaafrookhteh, S.; Khorshidian, M.; Momenifar, M. Int. J. Hydrogen Energ. 2020, 45, 14119. doi: 10.1016/j.ijhydene.2020.03.105  doi: 10.1016/j.ijhydene.2020.03.105

    87. [87]

      Park, H. J.; Woo, J. S.; Kim, S. H.; Park, K. S.; Park, S. H.; Park, S. Y. Macromol. Res. 2019, 27, 1161. doi: 10.1007/s13233-019-7156-7  doi: 10.1007/s13233-019-7156-7

    88. [88]

      Liao, W.; Jiang, F.; Zhang, Y.; Zhou, X.; He, Z. Renew. Energ. 2020, 152, 1310. doi: 10.1016/j.renene.2020.01.155  doi: 10.1016/j.renene.2020.01.155

    89. [89]

      Kim, S. H.; Woo, J. S.; Park, S. Y. Macromol. Res. 2020. doi: 10.1007/s13233-020-8140-y  doi: 10.1007/s13233-020-8140-y

    90. [90]

      Radzuan, M.; Afiqah, N.; Sulong, A. B.; Somalu, M. R.; Abdullah, A. T.; Husaini, T.; Rosli, R. E.; Majlan, E. H.; Rosli, M. I. Int. J. Hydrogen Energ. 2019, 44, 30618. doi: 10.1016/j.ijhydene.2019.01.063  doi: 10.1016/j.ijhydene.2019.01.063

    91. [91]

      Huang, J.; Rodrigue, D. Mater. Design 2014, 55, 653. doi: 10.1016/j.matdes.2013.10.039  doi: 10.1016/j.matdes.2013.10.039

    92. [92]

      Martin, C. A.; Sandler, J. K. W.; Windle, A. H.; Schwarz, M. K.; Bauhofer, W.; Schulte, K.; Shaffer, M. S. P. Polymer 2005, 46, 877. doi: 10.1016/j.polymer.2004.11.081  doi: 10.1016/j.polymer.2004.11.081

    93. [93]

      Senis, E. C.; Golosnoy, I. O.; Andritsch, T.; Dulieu-Barton, J. M.; Thomsen, O. T. Polym. Compos. 2020, 41, 3510. doi: 10.1002/pc.25637  doi: 10.1002/pc.25637

    94. [94]

      Gupta, P.; Rajput, M.; Singla, N.; Kumar, V.; Lahiri, D. Polymer 2016, 89, 119. doi: 10.1016/j.polymer.2016.02.025  doi: 10.1016/j.polymer.2016.02.025

    95. [95]

      Wang, Q.; Dai, J.; Li, W.; Wei, Z.; Jiang, J. Compos. Sci. Technol. 2008, 68, 1644. doi: 10.1016/j.compscitech.2008.02.024  doi: 10.1016/j.compscitech.2008.02.024

    96. [96]

      Ma, C. G.; Liu, H. Y.; Du, X. S.; Mach, L. T.; Xu, F.; Mai, Y. W. Compos. Sci. Technol. 2015, 114, 126. doi: 10.1016/j.compscitech.2015.04.007  doi: 10.1016/j.compscitech.2015.04.007

    97. [97]

      Tanabi, H.; Erdal, M. Results Phys. 2019, 12, 486. doi: 10.1016/j.rinp.2018.11.081  doi: 10.1016/j.rinp.2018.11.081

    98. [98]

      Liu, N.; Liu, Y. Z.; Zhao, Y. L.; Liu, Y. T.; Lan, Q.; Qin, J.; Song, Z. P.; Zhan, H. ACS Appl. Mater. Inter. 2019, 11, 467264. doi: 10.1021/acsami.9b15462  doi: 10.1021/acsami.9b15462

    99. [99]

      Zabihi, O.; Shafei, S.; Fakhrhoseini, S. M.; Ahmadi, M.; Nazarloo, H. A.; Stanger, R.; Tran, Q. A.; Lucas, J.; Wall, T.; Naebe, M. Materials 2019, 12, 1281. doi: 10.3390/ma12081281  doi: 10.3390/ma12081281

    100. [100]

      Sen, R.; Zhao, B.; Perea, D.; Itkis, M. E.; Hu, H.; Love, J.; Bekyarova, E.; Haddon, R. C. Nano Lett. 2004, 4, 459. doi: 10.1021/nl035135s  doi: 10.1021/nl035135s

    101. [101]

      Avasarala, B.; Haldar, P. J. Power Sources 2009, 188, 225. doi: 10.1016/j.jpowsour.2008.11.063  doi: 10.1016/j.jpowsour.2008.11.063

    102. [102]

      Lee, D.; Lee, D. G. Compos. Struct. 2016, 140, 77. doi: 10.1016/j.compstruct.2015.12.066  doi: 10.1016/j.compstruct.2015.12.066

    103. [103]

      Lee, D.; Lee, D. G.; Lim, J. W. J. Intel. Mat. Syst. Str. 2017, 29, 3386. doi: 10.1177/1045389x17708345  doi: 10.1177/1045389x17708345

    104. [104]

      Yu, H. N.; Lim, J. W.; Kim, M. K.; Lee, D. G. Compos. Struct. 2012, 94, 1911. doi: 10.1016/j.compstruct.2011.12.024  doi: 10.1016/j.compstruct.2011.12.024

    105. [105]

      Li, B.; Liu, D.; Li, G.; Yang, X. J. Mater. Sci. 2018, 53, 15939. doi: 10.1007/s10853-018-2753-y  doi: 10.1007/s10853-018-2753-y

    106. [106]

      Ang, K. K.; Ahmed, K. S. Compos. Pt. B-Eng. 2013, 50, 7. doi: 10.1016/j.compositesb.2013.01.016  doi: 10.1016/j.compositesb.2013.01.016

    107. [107]

      Xu, F.; Liu, H. Y.; Du, X. Polumers 2018, 10, 863. doi: 10.3390/polym10060683  doi: 10.3390/polym10060683

    108. [108]

      Naya, F.; Molina-Aldareguia, J.; Lopes, C. S.; González, C.; Llorca, J. J. Miner. Met. Mater. Soc. 2016, 69, 13. doi: 10.1007/s11837-016-2128-2  doi: 10.1007/s11837-016-2128-2

    109. [109]

      Paul, R.; Dai, L. Compos. Interface 2018, 25, 539. doi: 10.1080/09276440.2018.1439632  doi: 10.1080/09276440.2018.1439632

    110. [110]

      Xiong, Y. H.; Wu, H.; Gao, J. S.; Chen, W.; Zhang, J. C.; Yue, Y. N. Acta Phys. -Chim. Sin. 2019, 35, 1150.  doi: 10.3866/PKU.WHXB201901002

    111. [111]

      Wang, Y.; Zhan, H. F.; Xiang, Y.; Yang, C.; Wang, C. M.; Zhang, Y. Y. J. Phys. Chem. C 2015, 119, 12731. doi: 10.1021/acs.jpcc.5b02920  doi: 10.1021/acs.jpcc.5b02920

    112. [112]

      Jia, M. D.; Pememann, K. V.; Behlmg, R. D. J. Membrane Sci. 1992, 73, 199. doi: 10.1016/0376-7388(92)80122-Z  doi: 10.1016/0376-7388(92)80122-Z

    113. [113]

      Takahashi, S.; Paul, D. R. Polyer 2006, 47, 7519. doi: 10.1016/j.polymer.2006.08.029  doi: 10.1016/j.polymer.2006.08.029

    114. [114]

      Wang, M.; Wang, Z.; Li, N.; Liao, J. Y.; Zhao, S.; Wang, J. X.; Wang, S. C. J. Membrane Sci. 2015, 495, 252. doi: 10.1016/j.memsci.2015.08.019  doi: 10.1016/j.memsci.2015.08.019

    115. [115]

      Du, C.; Ming, P.; Hou, M.; Fu, J.; Fu, Y.; Luo, X.; Shen, Q.; Shao, Z.; Yi, B. J. Power Sources 2010, 195, 5312. doi: 10.1016/j.jpowsour.2010.03.005  doi: 10.1016/j.jpowsour.2010.03.005

    116. [116]

      Kim, M. Y.; Choi, S. W.; Boo, S. J.; Lee, J. H.; Noh, H. S.; Kim, H. S. J. Nanosci. Nanotechnol. 2015, 15, 8055. doi: 10.1166/jnn.2015.11245  doi: 10.1166/jnn.2015.11245

    117. [117]

      Guo, J.; Zhang, Q. J.; Gao, L.; Zhong, W. H.; Sui, G.; Yang, X. P. Compos. Pt. A-Appl. Sci. Manuf. 2017, 95, 294. doi: 10.1016/j.compositesa.2017.01.021  doi: 10.1016/j.compositesa.2017.01.021

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    6. [6]

      Ling Zhang Jing Kang . Turn Waste into Valuable: Preparation of High-Strength Water-Based Adhesives from Polymethylmethacrylate Wastes: a Comprehensive Chemical Experiments. University Chemistry, 2024, 39(2): 221-226. doi: 10.3866/PKU.DXHX202306075

    7. [7]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    11. [11]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    17. [17]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    18. [18]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    19. [19]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    20. [20]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

Metrics
  • PDF Downloads(31)
  • Abstract views(1129)
  • HTML views(350)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return