Citation: Wang Jian, Ding Wei, Wei Zidong. Performance of Polymer Electrolyte Membrane Fuel Cells at Ultra-Low Platinum Loadings[J]. Acta Physico-Chimica Sinica, ;2021, 37(9): 200909. doi: 10.3866/PKU.WHXB202009094 shu

Performance of Polymer Electrolyte Membrane Fuel Cells at Ultra-Low Platinum Loadings

  • Corresponding author: Ding Wei, dingwei128@cqu.edu.cn Wei Zidong, zdwei@cqu.edu.cn
  • Received Date: 29 September 2020
    Revised Date: 27 October 2020
    Accepted Date: 30 October 2020
    Available Online: 6 November 2020

    Fund Project: the National Natural Science Foundation of China 22022502the Program for the Top Young Innovative Talents of Chongqing 02200011130003the National Natural Science Foundation of China 21776024The project was supported by the National Natural Science Foundation of China (22022502, 21776024) and the Program for the Top Young Innovative Talents of Chongqing (02200011130003)

  • Proton exchange membrane fuel cells (PEMFCs) generate electricity from hydrogen, powering a range of applications while emitting nothing but water. Therefore, PEMFCs are regarded as an environmentally friendly alternative to internal combustion engines for the future. Nevertheless, the high cost and scarcity of platinum (Pt) sources prevent the widespread adoption of fuel cells. With the development of fuel cell manufacturing technology, current Pt utilization has increased to a relatively high level of 0.2 g·kW-1 in PEMFCs. However, according to the PGM market report from Johnson Matthey (2020), current Pt utilization in fuel cells is still too low to meet the need for its large-scale application in the automotive industry, unless the Pt utilization can be further reduced to an ultra-low level (0.01 g·kW-1). Therefore, higher Pt mass activity and higher Pt utilization must be realized in membrane electrode assemblies (MEA) to achieve ultra-low Pt loadings and a reduced Pt usage. Many key variables affect the performance of MEA, such as the activity of electrocatalysts, conductivity and distribution of ionomers, gas diffusion in carbon papers, and the thickness of the proton exchange membrane. For example, a wide variety of highly promising catalysts have been developed, such as shape-controlled Pt nanocrystals, Pt alloy/de-alloys, core-shells, the synergetic effect of active supports, single atom/single-atom layer catalysts for improving the utilization of Pt, and anti-poisoning catalysts. However, the super-high activity of a Pt catalyst is elusive in a real fuel cell because of the lack of a fundamental understanding of the reaction interface structure and mass transfer properties in real cells. For instance, the recently developed Pt-Ni nanoframes that exhibited an extremely high mass activity of 5.7 A·mg-1 for the oxygen reduction reaction (ORR) in a liquid half-cell only showed about one-tenth the activity in a real fuel cell (0.76 A·mg-1 Pt at 0.90 V). To achieve widespread adoption of Pt in fuel cells, we urgently need to explore new combinations of electrocatalysts, ionomers, gas diffusion layers, and proton exchange membranes. Taking into account all these factors, recent advances have enhanced the performance of MEA, such as a neural-network-like catalyst structure for higher Pt utilization, a highly order-structured with vertically aligned carbon nanotubes as a highly ordered catalyst layer that exhibits higher mass transfer efficiency, a novel anti-flooding electrode, a higher oxygen permeability and ionic conductivity ionomer, and an ultrathin MEA with low Pt loading that exhibits higher fuel cell output efficiency. This review mainly focuses on the recent progress in fuel cell cathode performance at ultra-low Pt loadings. To achieve the ultimate goal of Pt utilization (0.01 g·kW-1), further efforts to accelerate this progress are urgently needed, including improving catalytic performance by using highly active and stable supports, decreasing the gas diffusion resistance, enhancing the water management in the catalytic layer, improving the anti-poisoning property, and establishing an integrated ultra-thin and low platinum film electrode.
  • 加载中
    1. [1]

      Gong, Y. Synthesis, Characterization and Performance Testing of Pt-Based Electrocatalysts for Low Temperature Pem Fuel Cells. In Chemical Engineering, Energy; ProQuest Dissertations Publishing: Ann Arbor, 2008; p. 0176.

    2. [2]

      Nie, Y.; Li, L.; Wei, Z. Chem. Soc. Rev. 2015, 44, 2168. doi: 10.1002/chin.201525299  doi: 10.1002/chin.201525299

    3. [3]

      Stephens, I. E. L.; Rossmeisl, J.; Chorkendorff, I. Science 2016, 354, 1378. doi: 10.1126/science.aal3303  doi: 10.1126/science.aal3303

    4. [4]

      Gasteiger, H. A.; Marković, N. M. Science 2009, 324, 48. doi: 10.1126/science.1172083  doi: 10.1126/science.1172083

    5. [5]

      Middelman, E. Fuel Cells Bull. 2002, 2002, 9. doi: 10.1016/S1464-2859(02)11028-5  doi: 10.1016/S1464-2859(02)11028-5

    6. [6]

      Lin, R.; Cai, X.; Zeng, H.; Yu, Z. Adv. Mater. 2018, 30, e1705332. doi: 10.1002/adma.201705332  doi: 10.1002/adma.201705332

    7. [7]

      Sui, S.; Wang, X.; Zhou, X.; Su, Y.; Riffat, S.; Liu, C. J. J. Mater. Chem. A 2017, 5, 1808.doi: 10.1039/C6TA08580F  doi: 10.1039/C6TA08580F

    8. [8]

      Markovic, N.; Adžic, R. R.; Cahan, B. D.; Yeager, E. J. Electroanal. Chem. 1994, 377, 249. doi: 10.1016/0022-0728(94)03467-2  doi: 10.1016/0022-0728(94)03467-2

    9. [9]

      Markovic, N. M.; Gasteiger, H. A.; Ross, P. N. J. Phys. Chem. 1996, 100, 6715. doi: 10.1021/j100011a001  doi: 10.1021/j100011a001

    10. [10]

      Markovic, N. M.; Gasteiger, H. A.; Ross, P. N. J. Phys. Chem. 1995, 99, 3411. doi: 10.1021/j100011a001  doi: 10.1021/j100011a001

    11. [11]

      Wu, J.; Yang, H. Nano Res. 2010, 4, 72. doi: 10.1007/s12274-010-0049-x  doi: 10.1007/s12274-010-0049-x

    12. [12]

      Wu, J.; Qi, L.; You, H.; Gross, A.; Li, J.; Yang, H. J. Am. Chem. Soc. 2012, 134, 11880. doi: 10.1021/ja303950v  doi: 10.1021/ja303950v

    13. [13]

      Tian, N.; Zhou, Z.; Sun, S.; Ding, Y.; Wang, Z. L. Science 2007, 316, 732. doi: 10.1126/science.1140484  doi: 10.1126/science.1140484

    14. [14]

      Lee, S. W.; Chen, S.; Sheng, W.; Yabuuchi, N.; Kim, Y.; Mitani, T.; Vescovo, E.; Shaohorn, Y. J. Am. Chem. Soc. 2009, 131, 15669. doi: 10.1021/ja9025648  doi: 10.1021/ja9025648

    15. [15]

      Zhou, Z.; Huang, Z.; Chen, D.; Wang, Q.; Tian, N.; Sun, S. Angew. Chem. Int. Ed. 2010, 49, 411.doi: 10.1002/ange.200905413  doi: 10.1002/ange.200905413

    16. [16]

      Han, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Science 2007. doi: 10.1126/science.1140484  doi: 10.1126/science.1140484

    17. [17]

      Liu, S.; Tian, N.; Xie, A. Y.; Du, J. H.; Xiao, J.; Liu, L.; Sun, H. Y.; Cheng, Z. Y.; Zhou, Z. Y.; Sun, S. G. J. Am. Chem. Soc. 2016, 138, 5753. doi: 10.1021/jacs.5b13473  doi: 10.1021/jacs.5b13473

    18. [18]

      Yu, T.; Kim, D. Y.; Zhang, H.; Xia, Y. Angew. Chem. Int. Ed. 2011, 50, 2773. doi: 10.1002/anie.201007859  doi: 10.1002/anie.201007859

    19. [19]

      Landsman, D. A.; Luczak, F. J., Noble Metal-Chromium Alloy Catalysts and Electrochemical Cell. US Patent, US06/160517, 1982.

    20. [20]

      Jia, Q.; Liang, W.; Bates, M. K.; Mani, P.; Lee, W.; Mukerjee, S. ACS Nano 2015, 9, 387. doi: 10.1021/nn506721f  doi: 10.1021/nn506721f

    21. [21]

      Stephens, I. E. L.; Bondarenko, A. S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Energ. Environ. Sci. 2012, 5, 6744. doi: 10.1039/C2EE03590A  doi: 10.1039/C2EE03590A

    22. [22]

      Kugler, E.; Boudart, M. J. Catal. 1979, 59, 201. doi: 10.1016/S0021-9517(79)80025-1  doi: 10.1016/S0021-9517(79)80025-1

    23. [23]

      Lim, J.; Shin, H.; Kim, M.; Lee, H.; Lee, K. S.; Kwon, Y.; Song, D.; Oh, S.; Kim, H.; Cho, E. Nano Lett. 2018, 18, 2450. doi: 10.1021/acs.nanolett.8b00028  doi: 10.1021/acs.nanolett.8b00028

    24. [24]

      Huang, X.; Zhao, Z.; Cao, L.; Chen, Y.; Zhu, E.; Lin, Z.; Li, M.; Yan, A.; Zettl, A.; Wang, Y. M. Science 2015, 348, 1230. doi: 10.1126/science.aaa8765  doi: 10.1126/science.aaa8765

    25. [25]

      Koh, S.; Strasser, P. J. Am. Chem. Soc. 2007, 129, 42, 12624. doi: 10.1021/ja0742784  doi: 10.1021/ja0742784

    26. [26]

      Wang, H.; Xu, S.; Tsai, C.; Li, Y.; Liu, C.; Zhao, J.; Liu, Y.; Yuan, H.; Abild-Pedersen, F.; Prinz, F. B. Science 2016, 354, 1031. doi: 10.1126/science.aaf7680  doi: 10.1126/science.aaf7680

    27. [27]

      Bu, L.; Zhang, N.; Guo, S.; Zhang, X.; Li, J.; Yao, J.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. Science 2016, 354, 1410. doi: 10.1126/science.aah6133  doi: 10.1126/science.aah6133

    28. [28]

      Wang, X. X.; Hwang, S.; Pan, Y. T.; Chen, K.; He, Y.; Karakalos, S.; Zhang, H.; Spendelow, J. S.; Su, D.; Wu, G. Nano Lett. 2018, 18, 4163. doi: 10.1021/acs.nanolett.8b00978  doi: 10.1021/acs.nanolett.8b00978

    29. [29]

      Wang, Q.; Wang, Q.; Chen, S.; Shi, F.; Chen, K.; Nie, Y.; Wang, Y.; Wu, R.; Li, J.; Zhang, Y.; Ding, W.; Li, Y.; Li, L.; Wei, Z. Adv. Mater. 2016, 28, 10673. doi: 10.1002/adma.201603509  doi: 10.1002/adma.201603509

    30. [30]

      Feng, Y.; Huang, B.; Yang, C.; Shao, Q.; Huang, X. Adv. Funct. Mater. 2019, 29, 1904429. doi: 10.1002/adfm.201904429  doi: 10.1002/adfm.201904429

    31. [31]

      Tian, X.; Zhao, X.; Su, Y. Q.; Wang, L.; Wang, H.; Dang, D.; Chi, B.; Liu, H.; Hensen, E. J. M.; Lou, X. W. Science. 2019, 366, 850. doi: 10.1126/science.aaw7493  doi: 10.1126/science.aaw7493

    32. [32]

      Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H. L.; Snyder, J.; Li, D.; Herron, J. A.; Mavrikakis, M. Science 2014, 343, 1339. doi: 10.1126/science.1249061  doi: 10.1126/science.1249061

    33. [33]

      Li, M.; Zhao, Z.; Cheng, T.; Fortunelli, A.; Chen, C.; Yu, R.; Zhang, Q.; Gu, L.; Merinov, B. V.; Lin, Z. Science 2016, 354, 1414. doi: 10.1126/science.aaf9050  doi: 10.1126/science.aaf9050

    34. [34]

      Zeng, X.; Shui, J.; Liu, X.; Liu, Q.; Li, Y.; Shang, J.; Zheng, L.; Yu, R. Adv. Energy Mater. 2018, 8, 1701345. doi: 10.1002/aenm.201701345  doi: 10.1002/aenm.201701345

    35. [35]

      Cui, L.; Li, Z.; Wang, H.; Cui, L.; Zhang, J.; Lu, S.; Xiang, Y. ACS Appl. Energy Mater. 2020, 3, 3807. doi: 10.1021/acsaem.0c00255  doi: 10.1021/acsaem.0c00255

    36. [36]

      Chong, L.; Wen, J.; Kubal, J.; Sen, F.; Zou, J.; Greeley, J. P.; Chan, M. K. Y.; Barkholtz, H. M.; Ding, W.; Liu, D. Science 2018, 362, 1276. doi: 10.1126/science.aau0630  doi: 10.1126/science.aau0630

    37. [37]

      Ao, X.; Zhang, W.; Zhao, B.; Ding, Y.; Nam, G.; Soule, L.; Abdelhafiz, A.; Wang, C.; Liu, M. Energ. Environ. Sci. 2020. doi: 10.1039/D0EE00832J  doi: 10.1039/D0EE00832J

    38. [38]

      Chen, Y.; Ji, S.; Wang, Y.; Dong, J.; Chen, W.; Li, Z.; Shen R.; Zheng L.; Zhuang Z.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2017, 56, 6937. doi: 10.1002/ange.201702473  doi: 10.1002/ange.201702473

    39. [39]

      Yin, P.; Yao, T.; Wu, Y.; Zheng, L.; Lin, Y.; Liu, W.; Ju, H.; Zhu, J.; Hong, X.; Deng, Z. Zhou, G.; Wei, S.; Li, Y. Angew. Chem. Int. Ed. 2016, 55, 10800. doi: 10.1002/anie.201604802  doi: 10.1002/anie.201604802

    40. [40]

      Qu, Y.; Li, Z.; Chen, W.; Lin, Y.; Yuan, T.; Yang, Z.; Zhao, C.; Wang, J.; Zhao, C.; Wang, X.; Zhou, F.; Zhuang, Z.; Wu, Y.; Li, Y. Nat. Catal. 2018, 1, 781. doi: 10.1038/s41929-018-0146-x  doi: 10.1038/s41929-018-0146-x

    41. [41]

      Wan, C.; Duan, X.; Huang, Y. Adv. Energy Mater. 2020, 10, 1903815. doi: 10.1002/aenm.201903815  doi: 10.1002/aenm.201903815

    42. [42]

      Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q.H.; Cheong, W. C.; Wang, Y.; Zheng, L. R.; Xiao, H.; Chen, C.; Wang, D. S.; Peng, Q.; Gu, L.; Han, X. D.; Li, J.; Li, Y. D. Nat. Nanotechnol. 2018, 13, 856. doi: 10.1038/s41565-018-0197-9  doi: 10.1038/s41565-018-0197-9

    43. [43]

      Fu, Q.; Saltsburg, H.; Flytzani-tephanopoulos, M. Science 2003, 301, 935. doi: 10.1126/science.1085721  doi: 10.1126/science.1085721

    44. [44]

      Liu, J.; Jiao, M.; Lu, L.; Barkholtz, H. M.; Li, Y.; Wang, Y.; Jiang, L.; Wu, Z.; Liu, D.; Zhuang, L.; Ma, C.; Zeng, J.; Zhang, B.; Su, D.; Song, P.; Xing, W.; Xu, W.; Wang, Y.; Jiang, Z.; Sun, G. Nat. Commun. 2017, 8, 15938. doi: 10.1038/ncomms16160  doi: 10.1038/ncomms16160

    45. [45]

      Liu, J.; Jiao, M.; Mei, B.; Tong, Y.; Li, Y.; Ruan, M.; Song, P.; Sun, G.; Jiang, L.; Wang, Y.; Jiang, Z.; Gu, L.; Zhou, Z.; Xu, W.; Angew. Chem. Int. Ed. 2019, 58, 1163. doi: 10.1002/anie.201812423  doi: 10.1002/anie.201812423

    46. [46]

      Zhao, J.; Deng, Q.; Bachmatiuk, A.; Sandeep, G.; Popov, A. A.; Eckert, J.; Rummeli, M. H. Science 2014, 343, 1228. doi: 10.1126/science.1245273  doi: 10.1126/science.1245273

    47. [47]

      Huang, X.; Tang, S.; Mu, X.; Dai, Y.; Chen, G.; Zhou, Z.; Ruan, F.; Yang, Z.; Zheng, N. Nat. Nanotechnol. 2011, 6, 28. doi: 10.1038/nnano.2010.235  doi: 10.1038/nnano.2010.235

    48. [48]

      Duan, H.; Yan, N.; Yu, R.; Chang, C.; Zhou, G.; Hu, H.; Rong, H.; Niu, Z.; Mao, J.; Asakura, H. Nat. Commun. 2014, 5, 3093. doi: 10.1038/ncomms4093  doi: 10.1038/ncomms4093

    49. [49]

      Niu, J.; Wang, D.; Qin, H.; Xiong, X.; Tan, P.; Li, Y.; Liu, R.; Lu, X.; Wu, J.; Zhang, T. Nat. Commun. 2014, 5, 3313. doi: 10.1038/ncomms4313  doi: 10.1038/ncomms4313

    50. [50]

      Jang, K.; Kim, H. J.; Son, S. U. Chem. Mater. 2010, 22, 1273. doi: 10.1021/cm902948v  doi: 10.1021/cm902948v

    51. [51]

      Jiang, J.; Ding, W.; Li, W.; Wei, Z. Chem 2020, 6, 431. doi: 10.1016/j.chempr.2019.11.003  doi: 10.1016/j.chempr.2019.11.003

    52. [52]

      Lang, X. Y.; Han, G. F.; Xiao, B. B.; Gu, L.; Yang, Z. Z.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Jiang, Q. Adv. Funct. Mater. 2015, 25, 230. doi: 10.1002/adfm.201401868  doi: 10.1002/adfm.201401868

    53. [53]

      Liu, X.; Wang, H.; Chen, S.; Qi, X.; Gao, H.; Hui, Y.; Bai, Y.; Guo, L.; Ding, W.; Wei, Z. J. Energy Chem. 2014, 23, 358. doi: 10.1016/S2095-4956(14)60158-3  doi: 10.1016/S2095-4956(14)60158-3

    54. [54]

      Najam, T.; Shah, S. S. A.; Ding, W.; Jiang, J.; Jia, L.; Yao, W.; Li, L.; Wei, Z. Angew. Chem. Int. Ed. 2018, 57, 15101. doi: 10.1002/anie.201808383  doi: 10.1002/anie.201808383

    55. [55]

      Harzer, G. S.; SchwMmlein, J. N.; Damjanovi, A. M.; Ghosh, S.; Gasteiger, H. A. J. Electrochem. Soc. 2018, 165, F3118. doi: 10.1149/2.0161806jes  doi: 10.1149/2.0161806jes

    56. [56]

      Wang, J.; Wu, G.; Wang, W.; Xuan, W.; Jiang, J.; Wang, J.; Li, L.; Lin, W. F.; Ding, W.; Wei, Z. J. Mater. Chem. A 2019, 7, 19786. doi: 10.1039/C9TA06712D  doi: 10.1039/C9TA06712D

    57. [57]

      Yarlagadda, V.; Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Koestner, R.; Gu, W.; Thompson, L.; Kongkanand, A. ACS Energy Lett. 2018, 3, 618.doi: 10.1021/acsenergylett.8b00186  doi: 10.1021/acsenergylett.8b00186

    58. [58]

      Muzaffar, T.; Kadyk, T.; Eikerling, M. Sustain. Energy Fuels 2018, 2, 1189. doi: 10.1039/C8SE00026C  doi: 10.1039/C8SE00026C

    59. [59]

      Wang, J.; Wu, G.; Xuan, W.; Wang, W.; Ding, W.; Wei, Z. Int. J. Hydrogen Energ. 2020, 45, 22649. doi: 10.1016/j.ijhydene.2020.06.047  doi: 10.1016/j.ijhydene.2020.06.047

    60. [60]

      Chen, S.; Wei, Z.; Li, H.; Li, L. Chem. Commun. 2010, 46, 8782. doi: 10.1039/c0cc02802a  doi: 10.1039/c0cc02802a

    61. [61]

      Wang, M.; Rome, G.; Medina, S.; Pfeilsticker, J. R.; Kang, Z.; Pylypenko, S.; Ulsh, M.; Bender, G. J. Power Sources 2020, 466, 228344. doi: 10.1016/j.jpowsour.2020.228344  doi: 10.1016/j.jpowsour.2020.228344

    62. [62]

      Wang, Q.; Eikerling, M.; Song, D.; Liu, Z.; Navessin, T.; Zhong, X.; Holdcroft, S. J. Electrochem. Soc. 2005, 151, A1171. doi: 10.1149/1.1753580  doi: 10.1149/1.1753580

    63. [63]

      Yu, H.; Baricci, A.; Casalegno, A.; Guetaz, L.; Bonville, L.; Maric, R. Electrochim. Acta 2017, 247, 1169. doi: 10.1016/j.electacta.2017.06.145  doi: 10.1016/j.electacta.2017.06.145

    64. [64]

      Yu, H.; Baricci, A.; Bisello, A.; Casalegno, A.; Guetaz, L.; Bonville, L.; Maric, R. Electrochim. Acta 2017, 247, 1155. doi: 10.1016/j.electacta.2017.07.093  doi: 10.1016/j.electacta.2017.07.093

    65. [65]

      Zheng, Z.; Yang, F.; Lin, C.; Zhu, F.; Shen, S.; Wei, G.; Zhang, J. J. Power Sources, 2020, 451, 227729. doi: 10.1016/j.jpowsour.2020.227729  doi: 10.1016/j.jpowsour.2020.227729

    66. [66]

      Tian, Z. Q.; Lim, S.; Poh, C.; Tang, z.; Xia, Z.; Luo, Z.; Shen, P.; Chua, Y.; Feng, Y.; Shen, Z.; Lin, J. Adv. Energy Mater. 2011, 1, 1205. doi: 10.1002/aenm.201100371  doi: 10.1002/aenm.201100371

    67. [67]

      Murata, S.; Imanishi, M.; Hasegawa, S.; Namba, R. J. Power Sources 2014, 253, 104. doi: 10.1016/j.jpowsour.2013.11.073  doi: 10.1016/j.jpowsour.2013.11.073

    68. [68]

      Debe, M. K. J. Electrochem. Soc. 2013, 160, F522. doi: 10.1149/2.049306jes  doi: 10.1149/2.049306jes

    69. [69]

      Zeng, Y.; Shao, Z.; Zhang, H.; Wang, Z.; Hong, S.; Yu, H.; Yi, B. Nano Energy 2017, 34, 344. doi: 10.1016/j.nanoen.2017.02.038  doi: 10.1016/j.nanoen.2017.02.038

    70. [70]

      Ji, M. B.; Wei, Z. D.; Chen, S. G.; Li, L. J. Phys. Chem. C 2009, 113, 765. doi: 10.1021/jp807773m  doi: 10.1021/jp807773m

    71. [71]

      Wang, M. J.; Zhao, T.; Luo, W.; Mao, Z. X.; Chen, S.; Ding, W.; Deng, Y.; Li, W.; Li, J.; Wei, Z. AIChE J. 2018, 64, 2881. doi: 10.1002/aic.16140  doi: 10.1002/aic.16140

    72. [72]

      Chen, W. H.; Chen, S. L. Acta Phys. -Chim. Sin. 2018, 35, 517.  doi: 10.3866/PKU.WHXB201806011

    73. [73]

      Passos, R. R.; Paganin, V. A.; Ticianelli, E. A. Electrochim. Acta 2006, 51, 5239. doi: 10.1016/j.electacta.2006.01.044  doi: 10.1016/j.electacta.2006.01.044

    74. [74]

      Suzuki, A.; Sen, U.; Hattori, T.; Mima, R.; Nagumo, R.; Tsuboi, H.; Hatakeyama, N.; Endou, A.; Takab, H.; Williams, M.; Miyamoto, A. Int. J. Hydrogen Energ. 2011, 36, 2221. doi: 10.1016/j.ijhydene.2010.11.076  doi: 10.1016/j.ijhydene.2010.11.076

    75. [75]

      Lee, D.; Hwang, S. Int. J. Hydrogen Energ. 2008, 33, 2790. doi: 10.1016/j.ijhydene.2008.03.046  doi: 10.1016/j.ijhydene.2008.03.046

    76. [76]

      Zhao, X.; Li, W.; Fu, Y.; Manthiram, A. Int. J. Hydrogen Energ. 2012, 37, 9845. doi: 10.1016/j.ijhydene.2012.03.107  doi: 10.1016/j.ijhydene.2012.03.107

    77. [77]

      Passalacqua, E.; Lufrano, F.; Squadrito, G.; Patti, A.; Giorgi, L. Electrochim. Acta 2002, 46, 799. doi: 10.1016/S0013-4686(00)00679-4  doi: 10.1016/S0013-4686(00)00679-4

    78. [78]

      Liu, F.; Yi, B.; Xing, D.; Yu, J.; Zhang, H. J. Membrane Sci. 2003, 212, 213. doi: 10.1016/S0376-7388(02)00503-3  doi: 10.1016/S0376-7388(02)00503-3

    79. [79]

      Adachi, M.; Navessin, T.; Xie, Z.; Li, F. H.; Tanaka, S.; Holdcroft, S. J. Membrane Sci. 2010, 364, 183. doi: 10.1016/j.memsci.2010.08.011  doi: 10.1016/j.memsci.2010.08.011

    80. [80]

      Klingele, M.; Breitwieser, M.; Zengerle, R.; Thiele, S. J. Mater. Chem. A 2015, 3, 11239. doi: 10.1039/C5TA01341K  doi: 10.1039/C5TA01341K

    81. [81]

      Breitwieser, M.; Klingele, M.; Britton, B.; Holdcroft, S.; Zengerle, R.; Thiele, S. Electrochem. Commun. 2015, 60, 168. doi: 10.1016/j.elecom.2015.09.006  doi: 10.1016/j.elecom.2015.09.006

    82. [82]

      Omosebi, A.; Besser, R. S. J. Power Sources 2013, 228, 151. doi: 10.1016/j.jpowsour.2012.11.076  doi: 10.1016/j.jpowsour.2012.11.076

    83. [83]

      Chi, W. S.; Jeon, Y.; Park, S. J.; Kim, J. H.; Shul, Y. G. ChemPlusChem 2014, 79, 1109. doi: 10.1002/cplu.201402083  doi: 10.1002/cplu.201402083

    84. [84]

      Paul, M. T. Y.; Saha, M. S.; Qi, W. L.; Stumper, J.; Gates, B. D. Int. J. Hydrogen Energ. 2020, 45, 1304. doi: 10.1016/j.ijhydene.2019.05.186  doi: 10.1016/j.ijhydene.2019.05.186

    85. [85]

      Omosebi, A.; Besser, R. S. Fuel Cells 2017, 17, 762. doi: 10.1002/fuce.201600183  doi: 10.1002/fuce.201600183

  • 加载中
    1. [1]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    2. [2]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    3. [3]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(22)
  • Abstract views(1371)
  • HTML views(386)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return