Performance of Polymer Electrolyte Membrane Fuel Cells at Ultra-Low Platinum Loadings
- Corresponding author: Ding Wei, dingwei128@cqu.edu.cn Wei Zidong, zdwei@cqu.edu.cn
Citation: Wang Jian, Ding Wei, Wei Zidong. Performance of Polymer Electrolyte Membrane Fuel Cells at Ultra-Low Platinum Loadings[J]. Acta Physico-Chimica Sinica, ;2021, 37(9): 200909. doi: 10.3866/PKU.WHXB202009094
Gong, Y. Synthesis, Characterization and Performance Testing of Pt-Based Electrocatalysts for Low Temperature Pem Fuel Cells. In Chemical Engineering, Energy; ProQuest Dissertations Publishing: Ann Arbor, 2008; p. 0176.
Nie, Y.; Li, L.; Wei, Z. Chem. Soc. Rev. 2015, 44, 2168. doi: 10.1002/chin.201525299
doi: 10.1002/chin.201525299
Stephens, I. E. L.; Rossmeisl, J.; Chorkendorff, I. Science 2016, 354, 1378. doi: 10.1126/science.aal3303
doi: 10.1126/science.aal3303
Gasteiger, H. A.; Marković, N. M. Science 2009, 324, 48. doi: 10.1126/science.1172083
doi: 10.1126/science.1172083
Middelman, E. Fuel Cells Bull. 2002, 2002, 9. doi: 10.1016/S1464-2859(02)11028-5
doi: 10.1016/S1464-2859(02)11028-5
Lin, R.; Cai, X.; Zeng, H.; Yu, Z. Adv. Mater. 2018, 30, e1705332. doi: 10.1002/adma.201705332
doi: 10.1002/adma.201705332
Sui, S.; Wang, X.; Zhou, X.; Su, Y.; Riffat, S.; Liu, C. J. J. Mater. Chem. A 2017, 5, 1808.doi: 10.1039/C6TA08580F
doi: 10.1039/C6TA08580F
Markovic, N.; Adžic, R. R.; Cahan, B. D.; Yeager, E. J. Electroanal. Chem. 1994, 377, 249. doi: 10.1016/0022-0728(94)03467-2
doi: 10.1016/0022-0728(94)03467-2
Markovic, N. M.; Gasteiger, H. A.; Ross, P. N. J. Phys. Chem. 1996, 100, 6715. doi: 10.1021/j100011a001
doi: 10.1021/j100011a001
Markovic, N. M.; Gasteiger, H. A.; Ross, P. N. J. Phys. Chem. 1995, 99, 3411. doi: 10.1021/j100011a001
doi: 10.1021/j100011a001
Wu, J.; Yang, H. Nano Res. 2010, 4, 72. doi: 10.1007/s12274-010-0049-x
doi: 10.1007/s12274-010-0049-x
Wu, J.; Qi, L.; You, H.; Gross, A.; Li, J.; Yang, H. J. Am. Chem. Soc. 2012, 134, 11880. doi: 10.1021/ja303950v
doi: 10.1021/ja303950v
Tian, N.; Zhou, Z.; Sun, S.; Ding, Y.; Wang, Z. L. Science 2007, 316, 732. doi: 10.1126/science.1140484
doi: 10.1126/science.1140484
Lee, S. W.; Chen, S.; Sheng, W.; Yabuuchi, N.; Kim, Y.; Mitani, T.; Vescovo, E.; Shaohorn, Y. J. Am. Chem. Soc. 2009, 131, 15669. doi: 10.1021/ja9025648
doi: 10.1021/ja9025648
Zhou, Z.; Huang, Z.; Chen, D.; Wang, Q.; Tian, N.; Sun, S. Angew. Chem. Int. Ed. 2010, 49, 411.doi: 10.1002/ange.200905413
doi: 10.1002/ange.200905413
Han, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Science 2007. doi: 10.1126/science.1140484
doi: 10.1126/science.1140484
Liu, S.; Tian, N.; Xie, A. Y.; Du, J. H.; Xiao, J.; Liu, L.; Sun, H. Y.; Cheng, Z. Y.; Zhou, Z. Y.; Sun, S. G. J. Am. Chem. Soc. 2016, 138, 5753. doi: 10.1021/jacs.5b13473
doi: 10.1021/jacs.5b13473
Yu, T.; Kim, D. Y.; Zhang, H.; Xia, Y. Angew. Chem. Int. Ed. 2011, 50, 2773. doi: 10.1002/anie.201007859
doi: 10.1002/anie.201007859
Landsman, D. A.; Luczak, F. J., Noble Metal-Chromium Alloy Catalysts and Electrochemical Cell. US Patent, US06/160517, 1982.
Jia, Q.; Liang, W.; Bates, M. K.; Mani, P.; Lee, W.; Mukerjee, S. ACS Nano 2015, 9, 387. doi: 10.1021/nn506721f
doi: 10.1021/nn506721f
Stephens, I. E. L.; Bondarenko, A. S.; Grønbjerg, U.; Rossmeisl, J.; Chorkendorff, I. Energ. Environ. Sci. 2012, 5, 6744. doi: 10.1039/C2EE03590A
doi: 10.1039/C2EE03590A
Kugler, E.; Boudart, M. J. Catal. 1979, 59, 201. doi: 10.1016/S0021-9517(79)80025-1
doi: 10.1016/S0021-9517(79)80025-1
Lim, J.; Shin, H.; Kim, M.; Lee, H.; Lee, K. S.; Kwon, Y.; Song, D.; Oh, S.; Kim, H.; Cho, E. Nano Lett. 2018, 18, 2450. doi: 10.1021/acs.nanolett.8b00028
doi: 10.1021/acs.nanolett.8b00028
Huang, X.; Zhao, Z.; Cao, L.; Chen, Y.; Zhu, E.; Lin, Z.; Li, M.; Yan, A.; Zettl, A.; Wang, Y. M. Science 2015, 348, 1230. doi: 10.1126/science.aaa8765
doi: 10.1126/science.aaa8765
Koh, S.; Strasser, P. J. Am. Chem. Soc. 2007, 129, 42, 12624. doi: 10.1021/ja0742784
doi: 10.1021/ja0742784
Wang, H.; Xu, S.; Tsai, C.; Li, Y.; Liu, C.; Zhao, J.; Liu, Y.; Yuan, H.; Abild-Pedersen, F.; Prinz, F. B. Science 2016, 354, 1031. doi: 10.1126/science.aaf7680
doi: 10.1126/science.aaf7680
Bu, L.; Zhang, N.; Guo, S.; Zhang, X.; Li, J.; Yao, J.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. Science 2016, 354, 1410. doi: 10.1126/science.aah6133
doi: 10.1126/science.aah6133
Wang, X. X.; Hwang, S.; Pan, Y. T.; Chen, K.; He, Y.; Karakalos, S.; Zhang, H.; Spendelow, J. S.; Su, D.; Wu, G. Nano Lett. 2018, 18, 4163. doi: 10.1021/acs.nanolett.8b00978
doi: 10.1021/acs.nanolett.8b00978
Wang, Q.; Wang, Q.; Chen, S.; Shi, F.; Chen, K.; Nie, Y.; Wang, Y.; Wu, R.; Li, J.; Zhang, Y.; Ding, W.; Li, Y.; Li, L.; Wei, Z. Adv. Mater. 2016, 28, 10673. doi: 10.1002/adma.201603509
doi: 10.1002/adma.201603509
Feng, Y.; Huang, B.; Yang, C.; Shao, Q.; Huang, X. Adv. Funct. Mater. 2019, 29, 1904429. doi: 10.1002/adfm.201904429
doi: 10.1002/adfm.201904429
Tian, X.; Zhao, X.; Su, Y. Q.; Wang, L.; Wang, H.; Dang, D.; Chi, B.; Liu, H.; Hensen, E. J. M.; Lou, X. W. Science. 2019, 366, 850. doi: 10.1126/science.aaw7493
doi: 10.1126/science.aaw7493
Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H. L.; Snyder, J.; Li, D.; Herron, J. A.; Mavrikakis, M. Science 2014, 343, 1339. doi: 10.1126/science.1249061
doi: 10.1126/science.1249061
Li, M.; Zhao, Z.; Cheng, T.; Fortunelli, A.; Chen, C.; Yu, R.; Zhang, Q.; Gu, L.; Merinov, B. V.; Lin, Z. Science 2016, 354, 1414. doi: 10.1126/science.aaf9050
doi: 10.1126/science.aaf9050
Zeng, X.; Shui, J.; Liu, X.; Liu, Q.; Li, Y.; Shang, J.; Zheng, L.; Yu, R. Adv. Energy Mater. 2018, 8, 1701345. doi: 10.1002/aenm.201701345
doi: 10.1002/aenm.201701345
Cui, L.; Li, Z.; Wang, H.; Cui, L.; Zhang, J.; Lu, S.; Xiang, Y. ACS Appl. Energy Mater. 2020, 3, 3807. doi: 10.1021/acsaem.0c00255
doi: 10.1021/acsaem.0c00255
Chong, L.; Wen, J.; Kubal, J.; Sen, F.; Zou, J.; Greeley, J. P.; Chan, M. K. Y.; Barkholtz, H. M.; Ding, W.; Liu, D. Science 2018, 362, 1276. doi: 10.1126/science.aau0630
doi: 10.1126/science.aau0630
Ao, X.; Zhang, W.; Zhao, B.; Ding, Y.; Nam, G.; Soule, L.; Abdelhafiz, A.; Wang, C.; Liu, M. Energ. Environ. Sci. 2020. doi: 10.1039/D0EE00832J
doi: 10.1039/D0EE00832J
Chen, Y.; Ji, S.; Wang, Y.; Dong, J.; Chen, W.; Li, Z.; Shen R.; Zheng L.; Zhuang Z.; Wang, D.; Li, Y. Angew. Chem. Int. Ed. 2017, 56, 6937. doi: 10.1002/ange.201702473
doi: 10.1002/ange.201702473
Yin, P.; Yao, T.; Wu, Y.; Zheng, L.; Lin, Y.; Liu, W.; Ju, H.; Zhu, J.; Hong, X.; Deng, Z. Zhou, G.; Wei, S.; Li, Y. Angew. Chem. Int. Ed. 2016, 55, 10800. doi: 10.1002/anie.201604802
doi: 10.1002/anie.201604802
Qu, Y.; Li, Z.; Chen, W.; Lin, Y.; Yuan, T.; Yang, Z.; Zhao, C.; Wang, J.; Zhao, C.; Wang, X.; Zhou, F.; Zhuang, Z.; Wu, Y.; Li, Y. Nat. Catal. 2018, 1, 781. doi: 10.1038/s41929-018-0146-x
doi: 10.1038/s41929-018-0146-x
Wan, C.; Duan, X.; Huang, Y. Adv. Energy Mater. 2020, 10, 1903815. doi: 10.1002/aenm.201903815
doi: 10.1002/aenm.201903815
Wei, S. J.; Li, A.; Liu, J. C.; Li, Z.; Chen, W. X.; Gong, Y.; Zhang, Q.H.; Cheong, W. C.; Wang, Y.; Zheng, L. R.; Xiao, H.; Chen, C.; Wang, D. S.; Peng, Q.; Gu, L.; Han, X. D.; Li, J.; Li, Y. D. Nat. Nanotechnol. 2018, 13, 856. doi: 10.1038/s41565-018-0197-9
doi: 10.1038/s41565-018-0197-9
Fu, Q.; Saltsburg, H.; Flytzani-tephanopoulos, M. Science 2003, 301, 935. doi: 10.1126/science.1085721
doi: 10.1126/science.1085721
Liu, J.; Jiao, M.; Lu, L.; Barkholtz, H. M.; Li, Y.; Wang, Y.; Jiang, L.; Wu, Z.; Liu, D.; Zhuang, L.; Ma, C.; Zeng, J.; Zhang, B.; Su, D.; Song, P.; Xing, W.; Xu, W.; Wang, Y.; Jiang, Z.; Sun, G. Nat. Commun. 2017, 8, 15938. doi: 10.1038/ncomms16160
doi: 10.1038/ncomms16160
Liu, J.; Jiao, M.; Mei, B.; Tong, Y.; Li, Y.; Ruan, M.; Song, P.; Sun, G.; Jiang, L.; Wang, Y.; Jiang, Z.; Gu, L.; Zhou, Z.; Xu, W.; Angew. Chem. Int. Ed. 2019, 58, 1163. doi: 10.1002/anie.201812423
doi: 10.1002/anie.201812423
Zhao, J.; Deng, Q.; Bachmatiuk, A.; Sandeep, G.; Popov, A. A.; Eckert, J.; Rummeli, M. H. Science 2014, 343, 1228. doi: 10.1126/science.1245273
doi: 10.1126/science.1245273
Huang, X.; Tang, S.; Mu, X.; Dai, Y.; Chen, G.; Zhou, Z.; Ruan, F.; Yang, Z.; Zheng, N. Nat. Nanotechnol. 2011, 6, 28. doi: 10.1038/nnano.2010.235
doi: 10.1038/nnano.2010.235
Duan, H.; Yan, N.; Yu, R.; Chang, C.; Zhou, G.; Hu, H.; Rong, H.; Niu, Z.; Mao, J.; Asakura, H. Nat. Commun. 2014, 5, 3093. doi: 10.1038/ncomms4093
doi: 10.1038/ncomms4093
Niu, J.; Wang, D.; Qin, H.; Xiong, X.; Tan, P.; Li, Y.; Liu, R.; Lu, X.; Wu, J.; Zhang, T. Nat. Commun. 2014, 5, 3313. doi: 10.1038/ncomms4313
doi: 10.1038/ncomms4313
Jang, K.; Kim, H. J.; Son, S. U. Chem. Mater. 2010, 22, 1273. doi: 10.1021/cm902948v
doi: 10.1021/cm902948v
Jiang, J.; Ding, W.; Li, W.; Wei, Z. Chem 2020, 6, 431. doi: 10.1016/j.chempr.2019.11.003
doi: 10.1016/j.chempr.2019.11.003
Lang, X. Y.; Han, G. F.; Xiao, B. B.; Gu, L.; Yang, Z. Z.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Jiang, Q. Adv. Funct. Mater. 2015, 25, 230. doi: 10.1002/adfm.201401868
doi: 10.1002/adfm.201401868
Liu, X.; Wang, H.; Chen, S.; Qi, X.; Gao, H.; Hui, Y.; Bai, Y.; Guo, L.; Ding, W.; Wei, Z. J. Energy Chem. 2014, 23, 358. doi: 10.1016/S2095-4956(14)60158-3
doi: 10.1016/S2095-4956(14)60158-3
Najam, T.; Shah, S. S. A.; Ding, W.; Jiang, J.; Jia, L.; Yao, W.; Li, L.; Wei, Z. Angew. Chem. Int. Ed. 2018, 57, 15101. doi: 10.1002/anie.201808383
doi: 10.1002/anie.201808383
Harzer, G. S.; SchwMmlein, J. N.; Damjanovi, A. M.; Ghosh, S.; Gasteiger, H. A. J. Electrochem. Soc. 2018, 165, F3118. doi: 10.1149/2.0161806jes
doi: 10.1149/2.0161806jes
Wang, J.; Wu, G.; Wang, W.; Xuan, W.; Jiang, J.; Wang, J.; Li, L.; Lin, W. F.; Ding, W.; Wei, Z. J. Mater. Chem. A 2019, 7, 19786. doi: 10.1039/C9TA06712D
doi: 10.1039/C9TA06712D
Yarlagadda, V.; Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Koestner, R.; Gu, W.; Thompson, L.; Kongkanand, A. ACS Energy Lett. 2018, 3, 618.doi: 10.1021/acsenergylett.8b00186
doi: 10.1021/acsenergylett.8b00186
Muzaffar, T.; Kadyk, T.; Eikerling, M. Sustain. Energy Fuels 2018, 2, 1189. doi: 10.1039/C8SE00026C
doi: 10.1039/C8SE00026C
Wang, J.; Wu, G.; Xuan, W.; Wang, W.; Ding, W.; Wei, Z. Int. J. Hydrogen Energ. 2020, 45, 22649. doi: 10.1016/j.ijhydene.2020.06.047
doi: 10.1016/j.ijhydene.2020.06.047
Chen, S.; Wei, Z.; Li, H.; Li, L. Chem. Commun. 2010, 46, 8782. doi: 10.1039/c0cc02802a
doi: 10.1039/c0cc02802a
Wang, M.; Rome, G.; Medina, S.; Pfeilsticker, J. R.; Kang, Z.; Pylypenko, S.; Ulsh, M.; Bender, G. J. Power Sources 2020, 466, 228344. doi: 10.1016/j.jpowsour.2020.228344
doi: 10.1016/j.jpowsour.2020.228344
Wang, Q.; Eikerling, M.; Song, D.; Liu, Z.; Navessin, T.; Zhong, X.; Holdcroft, S. J. Electrochem. Soc. 2005, 151, A1171. doi: 10.1149/1.1753580
doi: 10.1149/1.1753580
Yu, H.; Baricci, A.; Casalegno, A.; Guetaz, L.; Bonville, L.; Maric, R. Electrochim. Acta 2017, 247, 1169. doi: 10.1016/j.electacta.2017.06.145
doi: 10.1016/j.electacta.2017.06.145
Yu, H.; Baricci, A.; Bisello, A.; Casalegno, A.; Guetaz, L.; Bonville, L.; Maric, R. Electrochim. Acta 2017, 247, 1155. doi: 10.1016/j.electacta.2017.07.093
doi: 10.1016/j.electacta.2017.07.093
Zheng, Z.; Yang, F.; Lin, C.; Zhu, F.; Shen, S.; Wei, G.; Zhang, J. J. Power Sources, 2020, 451, 227729. doi: 10.1016/j.jpowsour.2020.227729
doi: 10.1016/j.jpowsour.2020.227729
Tian, Z. Q.; Lim, S.; Poh, C.; Tang, z.; Xia, Z.; Luo, Z.; Shen, P.; Chua, Y.; Feng, Y.; Shen, Z.; Lin, J. Adv. Energy Mater. 2011, 1, 1205. doi: 10.1002/aenm.201100371
doi: 10.1002/aenm.201100371
Murata, S.; Imanishi, M.; Hasegawa, S.; Namba, R. J. Power Sources 2014, 253, 104. doi: 10.1016/j.jpowsour.2013.11.073
doi: 10.1016/j.jpowsour.2013.11.073
Debe, M. K. J. Electrochem. Soc. 2013, 160, F522. doi: 10.1149/2.049306jes
doi: 10.1149/2.049306jes
Zeng, Y.; Shao, Z.; Zhang, H.; Wang, Z.; Hong, S.; Yu, H.; Yi, B. Nano Energy 2017, 34, 344. doi: 10.1016/j.nanoen.2017.02.038
doi: 10.1016/j.nanoen.2017.02.038
Ji, M. B.; Wei, Z. D.; Chen, S. G.; Li, L. J. Phys. Chem. C 2009, 113, 765. doi: 10.1021/jp807773m
doi: 10.1021/jp807773m
Wang, M. J.; Zhao, T.; Luo, W.; Mao, Z. X.; Chen, S.; Ding, W.; Deng, Y.; Li, W.; Li, J.; Wei, Z. AIChE J. 2018, 64, 2881. doi: 10.1002/aic.16140
doi: 10.1002/aic.16140
Chen, W. H.; Chen, S. L. Acta Phys. -Chim. Sin. 2018, 35, 517.
doi: 10.3866/PKU.WHXB201806011
Passos, R. R.; Paganin, V. A.; Ticianelli, E. A. Electrochim. Acta 2006, 51, 5239. doi: 10.1016/j.electacta.2006.01.044
doi: 10.1016/j.electacta.2006.01.044
Suzuki, A.; Sen, U.; Hattori, T.; Mima, R.; Nagumo, R.; Tsuboi, H.; Hatakeyama, N.; Endou, A.; Takab, H.; Williams, M.; Miyamoto, A. Int. J. Hydrogen Energ. 2011, 36, 2221. doi: 10.1016/j.ijhydene.2010.11.076
doi: 10.1016/j.ijhydene.2010.11.076
Lee, D.; Hwang, S. Int. J. Hydrogen Energ. 2008, 33, 2790. doi: 10.1016/j.ijhydene.2008.03.046
doi: 10.1016/j.ijhydene.2008.03.046
Zhao, X.; Li, W.; Fu, Y.; Manthiram, A. Int. J. Hydrogen Energ. 2012, 37, 9845. doi: 10.1016/j.ijhydene.2012.03.107
doi: 10.1016/j.ijhydene.2012.03.107
Passalacqua, E.; Lufrano, F.; Squadrito, G.; Patti, A.; Giorgi, L. Electrochim. Acta 2002, 46, 799. doi: 10.1016/S0013-4686(00)00679-4
doi: 10.1016/S0013-4686(00)00679-4
Liu, F.; Yi, B.; Xing, D.; Yu, J.; Zhang, H. J. Membrane Sci. 2003, 212, 213. doi: 10.1016/S0376-7388(02)00503-3
doi: 10.1016/S0376-7388(02)00503-3
Adachi, M.; Navessin, T.; Xie, Z.; Li, F. H.; Tanaka, S.; Holdcroft, S. J. Membrane Sci. 2010, 364, 183. doi: 10.1016/j.memsci.2010.08.011
doi: 10.1016/j.memsci.2010.08.011
Klingele, M.; Breitwieser, M.; Zengerle, R.; Thiele, S. J. Mater. Chem. A 2015, 3, 11239. doi: 10.1039/C5TA01341K
doi: 10.1039/C5TA01341K
Breitwieser, M.; Klingele, M.; Britton, B.; Holdcroft, S.; Zengerle, R.; Thiele, S. Electrochem. Commun. 2015, 60, 168. doi: 10.1016/j.elecom.2015.09.006
doi: 10.1016/j.elecom.2015.09.006
Omosebi, A.; Besser, R. S. J. Power Sources 2013, 228, 151. doi: 10.1016/j.jpowsour.2012.11.076
doi: 10.1016/j.jpowsour.2012.11.076
Chi, W. S.; Jeon, Y.; Park, S. J.; Kim, J. H.; Shul, Y. G. ChemPlusChem 2014, 79, 1109. doi: 10.1002/cplu.201402083
doi: 10.1002/cplu.201402083
Paul, M. T. Y.; Saha, M. S.; Qi, W. L.; Stumper, J.; Gates, B. D. Int. J. Hydrogen Energ. 2020, 45, 1304. doi: 10.1016/j.ijhydene.2019.05.186
doi: 10.1016/j.ijhydene.2019.05.186
Omosebi, A.; Besser, R. S. Fuel Cells 2017, 17, 762. doi: 10.1002/fuce.201600183
doi: 10.1002/fuce.201600183
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434