Citation: Luo Fang, Pan Shuyuan, Yang Zehui. Recent Progress on Electrocatalyst for High-Temperature Polymer Exchange Membrane Fuel Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(9): 200908. doi: 10.3866/PKU.WHXB202009087 shu

Recent Progress on Electrocatalyst for High-Temperature Polymer Exchange Membrane Fuel Cells

  • Corresponding author: Yang Zehui, yeungzehui@gmail.com
  • Received Date: 27 September 2020
    Revised Date: 24 October 2020
    Accepted Date: 27 October 2020
    Available Online: 4 November 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (21703212)the National Natural Science Foundation of China 21703212

  • High-temperature polymer exchange membrane fuel cells (HT-PEMFCs), promising and sustainable energy conversion devices, have received considerable attention ascribed to their high energy conversion efficiency and zero emission. Different from the traditional Nafion PEMFCs, the working temperature ranks from 120 to 250 ℃ for HT-PEMFCs; as a result, HT-PEFMCs show impressive merits, such as theoretically higher kinetics, simple water/heat management and better tolerance toward impurities in hydrogen fuel; especially the elimination of flooding issue in fuel cells. Moreover, the working temperature matches well with the temperature for hydrogen generation from methanol reforming revealing that the generated heat from HT-PEMFCs can be utilized for methanol reforming to generate hydrogen; in this case, hydrogen tank can be replaced by methanol reforming system for HT-PEMFCs leading to a higher safety. Similar to traditional Nafion PEMFCs, polymer electrolyte membrane (PEM) associated with two electrodes representing for anode and cathode compose the membrane electrode assembly (MEA). Electrocatalyst as heart of HT-PEMFCs significantly affects the output of fuel cells, especially the cathodic electrocatalyst since the oxygen reduction reaction (ORR) kinetics is substantially sluggish than hydrogen oxidation reaction (HOR). Phosphoric acid doped polybenzimidazole (PA-PBI) is the state-of-the-art PEM for HT-PEMFCs; while, due to the low interaction between PA and PBI, PA leaching to the catalyst layer is normally observed during the long-term operation resulting in blocking of active sites to reduce three-phase boundary (TPB); besides, oxygen dissolution/diffusion in PA is much lower compared to Nafion, thereby, lower fuel cell performance is customarily recorded than Nafion PEMFCs. Thus, construction of high-performance ORR electrocatalyst with exceptional tolerance toward phosphate and increasing of oxygen concentration at TPB are highly desirable to realize the commercialization of HT-PEMFCs. Additionally, the stability of electrocatalyst should be significantly considered because the coalescence of platinum (Pt) nanoparticles as well as carbon corrosion is accelerated at high working temperature. In this review, we have summarized the recently reported Pt, non-Pt and meta-free electrocatalysts in HT-PEMFCs application. Surficial modification, alloying effect as well as substrate effect have been invited to construct high-performance Pt electrocatalyst in phosphoric acid electrolyte since the adsorption of phosphate on Pt is alleviated by surface coating and modulation of electronic configuration of Pt. Due to the comparably lower interaction with phosphate than Pt and considerable catalytic activity toward ORR, non-Pt and metal-free electrocatalyst have also been systematically investigated as HT-PEMFCs cathodic electrocatalyst. Finally, the perspectives and challenges in HT-PEMFCs have been discussed.
  • 加载中
    1. [1]

      Li, Q.; Jensen, J. O.; Savinell, R. F.; Bjerrum, N. J. Prog. Polym. Sci. 2009, 34, 449. doi: 10.1016/j.progpolymsci.2008.12.003  doi: 10.1016/j.progpolymsci.2008.12.003

    2. [2]

      Asensio, J. A.; Sánchez, E. M.; Gómez-Romero, P. Chem. Soc. Rev. 2010, 39, 3210. doi: 10.1039/B922650H  doi: 10.1039/B922650H

    3. [3]

      Aili, D.; Zhang, J.; Dalsgaard Jakobsen, M. T.; Zhu, H.; Yang, T.; Liu, J.; Forsyth, M.; Pan, C.; Jensen, J. O.; Cleemann, L. N.; et al. J. Mater. Chem. A 2016, 4, 4019. doi: 10.1039/C6TA01562J  doi: 10.1039/C6TA01562J

    4. [4]

      Liu, S.; Rasinski, M.; Rahim, Y.; Zhang, S.; Wippermann, K.; Reimer, U.; Lehnert, W. J. Power Sources 2019, 439, 227090. doi: 10.1016/j.jpowsour.2019.227090  doi: 10.1016/j.jpowsour.2019.227090

    5. [5]

      Li, Q.; He, R.; Jensen, J. O.; Bjerrum, N. J. Fuel Cells 2004, 4, 147. doi: 10.1002/fuce.200400020  doi: 10.1002/fuce.200400020

    6. [6]

      Araya, S. S.; Zhou, F.; Liso, V.; Sahlin, S. L.; Vang, J. R.; Thomas, S.; Gao, X.; Jeppesen, C.; Kær, S. K. Int. J. Hydrogen Energy 2016, 41, 21310. doi: 10.1016/j.ijhydene.2016.09.024  doi: 10.1016/j.ijhydene.2016.09.024

    7. [7]

      Singdeo, D.; Dey, T.; Gaikwad, S.; Andreasen, S. J.; Ghosh, P. C. Appl. Energy 2017, 195, 13. doi: 10.1016/j.apenergy.2017.03.022  doi: 10.1016/j.apenergy.2017.03.022

    8. [8]

      Bai, H.; Peng, H.; Xiang, Y.; Zhang, J.; Wang, H.; Lu, S.; Zhuang, L. J. Power Sources 2019, 443, 227219. doi: 10.1016/j.jpowsour.2019.227219  doi: 10.1016/j.jpowsour.2019.227219

    9. [9]

      Yu, S.; Benicewicz, B. C. Macromolecules 2009, 42, 8640. doi: 10.1021/ma9015664  doi: 10.1021/ma9015664

    10. [10]

      Holst-Olesen, K.; Reda, M.; Hansen, H. A.; Vegge, T.; Arenz, M. ACS Catal. 2018, 8, 7104. doi: 10.1021/acscatal.8b01584  doi: 10.1021/acscatal.8b01584

    11. [11]

      Cheng, Y.; He, S.; Lu, S.; Veder, J. P.; Johannessen, B.; Thomsen, L.; Saunders, M.; Becker, T.; De Marco, R.; Li, Q.; et al. Adv. Sci. 2019, 6, 1802066. doi: 10.1002/advs.201802066  doi: 10.1002/advs.201802066

    12. [12]

      Strickland, K.; Pavlicek, R.; Miner, E.; Jia, Q.; Zoller, I.; Ghoshal, S.; Liang, W.; Mukerjee, S. ACS Catal. 2018, 8, 3833. doi: 10.1021/acscatal.8b00390  doi: 10.1021/acscatal.8b00390

    13. [13]

      Kodama, K.; Motobayashi, K.; Shinohara, A.; Hasegawa, N.; Kudo, K.; Jinnouchi, R.; Osawa, M.; Morimoto, Y. ACS Catal. 2018, 8, 694. doi: 10.1021/acscatal.7b03571  doi: 10.1021/acscatal.7b03571

    14. [14]

      Bahlakeh, G.; Hasani-Sadrabadi, M. M.; Emami, S. H.; Eslami, S. N. S.; Dashtimoghadam, E.; Shokrgozar, M. A.; Jacob, K. I. J. Membr. Sci. 2017, 535, 221. doi: 10.1016/j.memsci.2017.04.045  doi: 10.1016/j.memsci.2017.04.045

    15. [15]

      Hu, Y.; Jiang, Y.; Jensen, J. O.; Cleemann, L. N.; Li, Q. J. Power Sources 2018, 375, 77. doi: 10.1016/j.jpowsour.2017.11.054  doi: 10.1016/j.jpowsour.2017.11.054

    16. [16]

      Kaserer, S.; Caldwell, K. M.; Ramaker, D. E.; Roth, C. J. Phys. Chem. C 2013, 117, 6210. doi: 10.1021/jp311924q  doi: 10.1021/jp311924q

    17. [17]

      Mamtani, K.; Jain, D.; Zemlyanov, D.; Celik, G.; Luthman, J.; Renkes, G.; Co, A. C.; Ozkan, U. S. ACS Catal. 2016, 6, 7249. doi: 10.1021/acscatal.6b01786  doi: 10.1021/acscatal.6b01786

    18. [18]

      Li, Y.; Jiang, L.; Wang, S.; Sun, G. Chin. J. Catal. 2016, 37, 1134. doi: 10.1016/S1872-2067(16)62472-5  doi: 10.1016/S1872-2067(16)62472-5

    19. [19]

      Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Science 2007, 315, 493. doi: 10.1126/science.1135941  doi: 10.1126/science.1135941

    20. [20]

      Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Nat. Chem. 2009, 1, 552. doi: 10.1038/nchem.367  doi: 10.1038/nchem.367

    21. [21]

      Srivastava, R.; Mani, P.; Hahn, N.; Strasser, P. Angew. Chem. Int. Ed. 2007, 46, 8988. doi: 10.1002/anie.200703331  doi: 10.1002/anie.200703331

    22. [22]

      Yang, T. Y.; Cui, C.; Rong, H. P.; Zhang, J. T.; Wang, D. S. Acta Phys. -Chim. Sin. 2020, 36, 2003047.  doi: 10.3866/PKU.WHXB202003047

    23. [23]

      He, Q.; Yang, X.; Chen, W.; Mukerjee, S.; Koel, B.; Chen, S. Phy. Chem. Chem. Phy. 2010, 12, 12544. doi: 10.1039/C0CP00433B  doi: 10.1039/C0CP00433B

    24. [24]

      Li, D.; Wang, C.; Tripkovic, D.; Sun, S.; Markovic, N. M.; Stamenkovic, V. R. ACS Catal. 2012, 2, 1358. doi: 10.1021/cs300219j  doi: 10.1021/cs300219j

    25. [25]

      Wang, C.; Daimon, H.; Lee, Y.; Kim, J.; Sun, S. J. Am. Chem. Soc. 2007, 129, 6974. doi: 10.1021/ja070440r  doi: 10.1021/ja070440r

    26. [26]

      Peng, Z.; You, H.; Yang, H. ACS Nano 2010, 4, 1501. doi: 10.1021/nn9016795  doi: 10.1021/nn9016795

    27. [27]

      Zhang, J.; Fang, J. J. Am. Chem. Soc. 2009, 131, 18543. doi: 10.1021/ja908245r  doi: 10.1021/ja908245r

    28. [28]

      Chung, Y. H.; Chung, D. Y.; Jung, N.; Sung, Y. E. J. Phy. Chem. Lett. 2013, 4, 1304. doi: 10.1021/jz400574f  doi: 10.1021/jz400574f

    29. [29]

      Chung, Y. H.; Kim, S. J.; Chung, D. Y.; Park, H. Y.; Sung, Y. E.; Yoo, S. J.; Jang, J. H. Chem. Commun. 2015, 51, 2968. doi: 10.1039/C4CC09019E  doi: 10.1039/C4CC09019E

    30. [30]

      Luo, F.; Zhang, Q.; Yang, Z.; Guo, L.; Yu, X.; Qu, K.; Ling, Y.; Yang, J.; Cai, W. ChemCatChem 2018, 10, 5314. doi: 10.1002/cctc.201801256  doi: 10.1002/cctc.201801256

    31. [31]

      Zhang, Q.; Ling, Y.; Cai, W.; Yu, X.; Yang, Z. Int. J. Hydrogen Energy 2017, 42, 16714. doi: 10.1016/j.ijhydene.2017.05.070  doi: 10.1016/j.ijhydene.2017.05.070

    32. [32]

      Strmcnik, D.; Escudero-Escribano, M.; Kodama, K.; Stamenkovic, V. R.; Cuesta, A.; Marković, N. M. Nat. Chem. 2010, 2, 880. doi: 10.1038/nchem.771  doi: 10.1038/nchem.771

    33. [33]

      Jeong, D. C.; Mun, B.; Lee, H.; Hwang, S. J.; Yoo, S. J.; Cho, E.; Lee, Y.; Song, C. RSC Adv. 2016, 6, 60749. doi: 10.1039/C6RA13123A  doi: 10.1039/C6RA13123A

    34. [34]

      Delikaya, Ö.; Zeyat, M.; Lentz, D.; Roth, C. ChemElectroChem 2019, 6, 3892. doi: 10.1002/celc.201900251  doi: 10.1002/celc.201900251

    35. [35]

      Liu, G.; Zhang, H.; Zhai, Y.; Zhang, Y.; Xu, D.; Shao, Z. G. Electrochem. Commun. 2007, 9, 135. doi: 10.1016/j.elecom.2006.08.056  doi: 10.1016/j.elecom.2006.08.056

    36. [36]

      Hong, S. G.; Kwon, K.; Lee, M. J.; Yoo, D. Y. Electrochem. Commun. 2009, 11, 1124. doi: 10.1016/j.elecom.2009.03.028  doi: 10.1016/j.elecom.2009.03.028

    37. [37]

      Jung, N.; Shin, H.; Kim, M.; Jang, I.; Kim, H. J.; Jang, J.; Kim, H.; Yoo, S. Nano Energy 2015, 17, 152. doi: 10.1016/j.nanoen.2015.08.012  doi: 10.1016/j.nanoen.2015.08.012

    38. [38]

      Jeong, G.; Kim, M.; Han, J.; Kim, H. J.; Shul, Y. G.; Cho, E. J. Power Sources 2016, 323, 142, doi: 10.1016/j.jpowsour.2016.05.042  doi: 10.1016/j.jpowsour.2016.05.042

    39. [39]

      Mack, F.; Morawietz, T.; Hiesgen, R.; Kramer, D.; Gogel, V.; Zeis, R. Int. J. Hydrogen Energy 2016, 41, 7475. doi: 10.1016/j.ijhydene.2016.02.156  doi: 10.1016/j.ijhydene.2016.02.156

    40. [40]

      Liu, J.; Tang, J.; Gooding, J. J. J. Mater. Chem. 2012, 22, 12435. doi: 10.1039/C2JM31218B  doi: 10.1039/C2JM31218B

    41. [41]

      Berber, M. R.; Fujigaya, T.; Sasaki, K.; Nakashima, N. Sci. Rep. 2013, 3, 1764. doi: 10.1038/srep01764  doi: 10.1038/srep01764

    42. [42]

      Yang, Z.; Moriguchi, I.; Nakashima, N. ACS Appl. Mater. Interfaces 2015, 7, 9800. doi: 10.1021/acsami.5b01724  doi: 10.1021/acsami.5b01724

    43. [43]

      Stamatin, S. N.; Speder, J.; Dhiman, R.; Arenz, M.; Skou, E. M. ACS Appl. Mater. Interfaces 2015, 7, 6153. doi: 10.1021/am508982d  doi: 10.1021/am508982d

    44. [44]

      Yin, S.; Mu, S.; Lv, H.; Cheng, N.; Pan, M.; Fu, Z. Appl. Catal. B 2010, 93, 233. doi: 10.1016/j.apcatb.2009.09.034  doi: 10.1016/j.apcatb.2009.09.034

    45. [45]

      Lobato, J.; Zamora, H.; Plaza, J.; Cañizares, P.; Rodrigo, M. A. Appl. Catal. B 2016, 198, 516. doi: 10.1016/j.apcatb.2016.06.011  doi: 10.1016/j.apcatb.2016.06.011

    46. [46]

      Zamora, H.; Plaza, J.; Velhac, P.; Cañizares, P.; Rodrigo, M. A.; Lobato, J. Appl. Catal. B 2017, 207, 244. doi: 10.1016/j.apcatb.2017.02.019  doi: 10.1016/j.apcatb.2017.02.019

    47. [47]

      Kim, D. K.; Kim, H.; Park, H.; Oh, S.; Ahn, S. H.; Kim, H. J.; Kim, S. K. J. Power Sources 2019, 438, 227022. doi: 10.1016/j.jpowsour.2019.227022  doi: 10.1016/j.jpowsour.2019.227022

    48. [48]

      Yang, Z.; Nakashima, N. J. Mater. Chem. A 2015, 3, 23316. doi: 10.1039/C5TA06735A  doi: 10.1039/C5TA06735A

    49. [49]

      Yang, Z.; Berber, M. R.; Nakashima, N. Electrochim. Acta 2015, 170, 1. doi: 10.1016/j.electacta.2015.04.122  doi: 10.1016/j.electacta.2015.04.122

    50. [50]

      Park, H. Y.; Lim, D. H.; Yoo, S. J.; Kim, H. J.; Henkensmeier, D.; Kim, J. Y.; Ham, H. C.; Jang, J. H. Sci. Rep. 2017, 7, 7186. doi: 10.1038/s41598-017-06812-w  doi: 10.1038/s41598-017-06812-w

    51. [51]

      Millán, M.; Zamora, H.; Rodrigo, M. A.; Lobato, J. ACS Appl. Mater. Interfaces 2017, 9, 5927. doi: 10.1021/acsami.6b13071  doi: 10.1021/acsami.6b13071

    52. [52]

      Lim, J. E.; Lee, U. J.; Ahn, S. H.; Cho, E.; Kim, H. J.; Jang, J. H.; Son, H.; Kim, S. K. Appl. Catal. B 2015, 165, 495. doi: 10.1016/j.apcatb.2014.10.042  doi: 10.1016/j.apcatb.2014.10.042

    53. [53]

      Neyerlin, K. C.; Singh, A.; Chu, D. J. Power Sources 2008, 176, 112. doi: 10.1016/j.jpowsour.2007.10.030  doi: 10.1016/j.jpowsour.2007.10.030

    54. [54]

      Chung, Y. H.; Kim, S. J.; Chung, D. Y.; Lee, M. J.; Jang, J. H.; Sung, Y. E. Phys. Chem. Chem. Phys. 2014, 16, 13726. doi: 10.1039/C4CP00187G  doi: 10.1039/C4CP00187G

    55. [55]

      Lee, K. S.; Yoo, S. J.; Ahn, D.; Kim, S. K.; Hwang, S. J.; Sung, Y. E.; Kim, H. J.; Cho, E.; Henkensmeier, D.; Lim, T. H.; Jang, J. H. Electrochim. Acta 2011, 56, 8802. doi: 10.1016/j.electacta.2011.07.084  doi: 10.1016/j.electacta.2011.07.084

    56. [56]

      Park, H.; Kim, K. M.; Kim, H.; Kim, D. K.; Won, Y. S.; Kim, S. K. Korean J. Chem. Eng. 2018, 35, 1547. doi: 10.1007/s11814-018-0059-z  doi: 10.1007/s11814-018-0059-z

    57. [57]

      Park, H.; Kim, D. K.; Kim, H.; Oh, S.; Jung, W. S.; Kim, S. K. Appl. Surf. Sci. 2020, 510, 145444. doi: 10.1016/j.apsusc.2020.145444  doi: 10.1016/j.apsusc.2020.145444

    58. [58]

      Zagudaeva, N. M.; Tarasevich, M. R. Russ. J. Electrochem. 2010, 46, 530. doi: 10.1134/S102319351005006X  doi: 10.1134/S102319351005006X

    59. [59]

      Mamlouk, M.; Scott, K. J. Power Sources 2011, 196, 1084. doi: 10.1016/j.jpowsour.2010.08.021  doi: 10.1016/j.jpowsour.2010.08.021

    60. [60]

      Hu, Y.; Shen, T.; Zhao, X.; Zhang, J.; Lu, Y.; Shen, J.; Lu, S.; Tu, Z.; Xin, H. L.; Wang, D. Appl. Catal. B 2020, 279, 11937. doi: 10.1016/j.apcatb.2020.119370  doi: 10.1016/j.apcatb.2020.119370

    61. [61]

      Ghoshal, S.; Jia, Q.; Bates, M. K.; Li, J.; Xu, C.; Gath, K.; Yang, J.; Waldecker, J.; Che, H.; Liang, W.; et al. ACS Catal. 2017, 7, 4936. doi: 10.1021/acscatal.7b01061  doi: 10.1021/acscatal.7b01061

    62. [62]

      Yang, X. D.; Chen, C.; Zhou, Z. Y.; Sun, S. G. Acta Phys. -Chim. Sin. 2019, 35, 472.  doi: 10.3866/PKU.WHXB201806131

    63. [63]

      Wang, Q. Q.; Liu, D. J.; He, X. Q. Acta Phys. -Chim. Sin. 2019, 35, 740.  doi: 10.3866/PKU.WHXB201809003

    64. [64]

      Hu, Y.; Jensen, J. O.; Pan, C.; Cleemann, L. N.; Shypunov, I.; Li, Q. Appl. Catal. B 2018, 234, 357. doi: 10.1016/j.apcatb.2018.03.056  doi: 10.1016/j.apcatb.2018.03.056

    65. [65]

      Li, Q.; Wu, G.; Cullen, D. A.; More, K. L.; Mack, N. H.; Chung, H. T.; Zelenay, P. ACS Catal. 2014, 4, 3193. doi: 10.1021/cs500807v  doi: 10.1021/cs500807v

    66. [66]

      Jain, D.; Gustin, V.; Basu, D.; Gunduz, S.; Deka, D. J.; Co, A. C.; Ozkan, U. S. J. Catal. 2020, 390, 150. doi: 10.1016/j.jcat.2020.07.012  doi: 10.1016/j.jcat.2020.07.012

    67. [67]

      Najam, T.; Shah, S. S. A.; Ding, W.; Wei, Z. J. Phys. Chem. C 2019, 123, 16796. doi: 10.1021/acs.jpcc.9b03730  doi: 10.1021/acs.jpcc.9b03730

    68. [68]

      Fei, H. L.; Duan, X. F. Acta Phys. -Chim. Sin. 2019, 35, 559.  doi: 10.3866/PKU.WHXB201809016

    69. [69]

      Najam, T.; Shah, S. S. A.; Ding, W.; Jiang, J.; Jia, L.; Yao, W.; Li, L.; Wei, Z. Angew. Chem. Int. Ed. 2018, 57, 15101. doi: 10.1002/anie.201808383  doi: 10.1002/anie.201808383

  • 加载中
    1. [1]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    9. [9]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(32)
  • Abstract views(1154)
  • HTML views(371)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return