Recent Progress on Electrocatalyst for High-Temperature Polymer Exchange Membrane Fuel Cells
- Corresponding author: Yang Zehui, yeungzehui@gmail.com
Citation: Luo Fang, Pan Shuyuan, Yang Zehui. Recent Progress on Electrocatalyst for High-Temperature Polymer Exchange Membrane Fuel Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(9): 200908. doi: 10.3866/PKU.WHXB202009087
Li, Q.; Jensen, J. O.; Savinell, R. F.; Bjerrum, N. J. Prog. Polym. Sci. 2009, 34, 449. doi: 10.1016/j.progpolymsci.2008.12.003
doi: 10.1016/j.progpolymsci.2008.12.003
Asensio, J. A.; Sánchez, E. M.; Gómez-Romero, P. Chem. Soc. Rev. 2010, 39, 3210. doi: 10.1039/B922650H
doi: 10.1039/B922650H
Aili, D.; Zhang, J.; Dalsgaard Jakobsen, M. T.; Zhu, H.; Yang, T.; Liu, J.; Forsyth, M.; Pan, C.; Jensen, J. O.; Cleemann, L. N.; et al. J. Mater. Chem. A 2016, 4, 4019. doi: 10.1039/C6TA01562J
doi: 10.1039/C6TA01562J
Liu, S.; Rasinski, M.; Rahim, Y.; Zhang, S.; Wippermann, K.; Reimer, U.; Lehnert, W. J. Power Sources 2019, 439, 227090. doi: 10.1016/j.jpowsour.2019.227090
doi: 10.1016/j.jpowsour.2019.227090
Li, Q.; He, R.; Jensen, J. O.; Bjerrum, N. J. Fuel Cells 2004, 4, 147. doi: 10.1002/fuce.200400020
doi: 10.1002/fuce.200400020
Araya, S. S.; Zhou, F.; Liso, V.; Sahlin, S. L.; Vang, J. R.; Thomas, S.; Gao, X.; Jeppesen, C.; Kær, S. K. Int. J. Hydrogen Energy 2016, 41, 21310. doi: 10.1016/j.ijhydene.2016.09.024
doi: 10.1016/j.ijhydene.2016.09.024
Singdeo, D.; Dey, T.; Gaikwad, S.; Andreasen, S. J.; Ghosh, P. C. Appl. Energy 2017, 195, 13. doi: 10.1016/j.apenergy.2017.03.022
doi: 10.1016/j.apenergy.2017.03.022
Bai, H.; Peng, H.; Xiang, Y.; Zhang, J.; Wang, H.; Lu, S.; Zhuang, L. J. Power Sources 2019, 443, 227219. doi: 10.1016/j.jpowsour.2019.227219
doi: 10.1016/j.jpowsour.2019.227219
Yu, S.; Benicewicz, B. C. Macromolecules 2009, 42, 8640. doi: 10.1021/ma9015664
doi: 10.1021/ma9015664
Holst-Olesen, K.; Reda, M.; Hansen, H. A.; Vegge, T.; Arenz, M. ACS Catal. 2018, 8, 7104. doi: 10.1021/acscatal.8b01584
doi: 10.1021/acscatal.8b01584
Cheng, Y.; He, S.; Lu, S.; Veder, J. P.; Johannessen, B.; Thomsen, L.; Saunders, M.; Becker, T.; De Marco, R.; Li, Q.; et al. Adv. Sci. 2019, 6, 1802066. doi: 10.1002/advs.201802066
doi: 10.1002/advs.201802066
Strickland, K.; Pavlicek, R.; Miner, E.; Jia, Q.; Zoller, I.; Ghoshal, S.; Liang, W.; Mukerjee, S. ACS Catal. 2018, 8, 3833. doi: 10.1021/acscatal.8b00390
doi: 10.1021/acscatal.8b00390
Kodama, K.; Motobayashi, K.; Shinohara, A.; Hasegawa, N.; Kudo, K.; Jinnouchi, R.; Osawa, M.; Morimoto, Y. ACS Catal. 2018, 8, 694. doi: 10.1021/acscatal.7b03571
doi: 10.1021/acscatal.7b03571
Bahlakeh, G.; Hasani-Sadrabadi, M. M.; Emami, S. H.; Eslami, S. N. S.; Dashtimoghadam, E.; Shokrgozar, M. A.; Jacob, K. I. J. Membr. Sci. 2017, 535, 221. doi: 10.1016/j.memsci.2017.04.045
doi: 10.1016/j.memsci.2017.04.045
Hu, Y.; Jiang, Y.; Jensen, J. O.; Cleemann, L. N.; Li, Q. J. Power Sources 2018, 375, 77. doi: 10.1016/j.jpowsour.2017.11.054
doi: 10.1016/j.jpowsour.2017.11.054
Kaserer, S.; Caldwell, K. M.; Ramaker, D. E.; Roth, C. J. Phys. Chem. C 2013, 117, 6210. doi: 10.1021/jp311924q
doi: 10.1021/jp311924q
Mamtani, K.; Jain, D.; Zemlyanov, D.; Celik, G.; Luthman, J.; Renkes, G.; Co, A. C.; Ozkan, U. S. ACS Catal. 2016, 6, 7249. doi: 10.1021/acscatal.6b01786
doi: 10.1021/acscatal.6b01786
Li, Y.; Jiang, L.; Wang, S.; Sun, G. Chin. J. Catal. 2016, 37, 1134. doi: 10.1016/S1872-2067(16)62472-5
doi: 10.1016/S1872-2067(16)62472-5
Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Science 2007, 315, 493. doi: 10.1126/science.1135941
doi: 10.1126/science.1135941
Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Nat. Chem. 2009, 1, 552. doi: 10.1038/nchem.367
doi: 10.1038/nchem.367
Srivastava, R.; Mani, P.; Hahn, N.; Strasser, P. Angew. Chem. Int. Ed. 2007, 46, 8988. doi: 10.1002/anie.200703331
doi: 10.1002/anie.200703331
Yang, T. Y.; Cui, C.; Rong, H. P.; Zhang, J. T.; Wang, D. S. Acta Phys. -Chim. Sin. 2020, 36, 2003047.
doi: 10.3866/PKU.WHXB202003047
He, Q.; Yang, X.; Chen, W.; Mukerjee, S.; Koel, B.; Chen, S. Phy. Chem. Chem. Phy. 2010, 12, 12544. doi: 10.1039/C0CP00433B
doi: 10.1039/C0CP00433B
Li, D.; Wang, C.; Tripkovic, D.; Sun, S.; Markovic, N. M.; Stamenkovic, V. R. ACS Catal. 2012, 2, 1358. doi: 10.1021/cs300219j
doi: 10.1021/cs300219j
Wang, C.; Daimon, H.; Lee, Y.; Kim, J.; Sun, S. J. Am. Chem. Soc. 2007, 129, 6974. doi: 10.1021/ja070440r
doi: 10.1021/ja070440r
Peng, Z.; You, H.; Yang, H. ACS Nano 2010, 4, 1501. doi: 10.1021/nn9016795
doi: 10.1021/nn9016795
Zhang, J.; Fang, J. J. Am. Chem. Soc. 2009, 131, 18543. doi: 10.1021/ja908245r
doi: 10.1021/ja908245r
Chung, Y. H.; Chung, D. Y.; Jung, N.; Sung, Y. E. J. Phy. Chem. Lett. 2013, 4, 1304. doi: 10.1021/jz400574f
doi: 10.1021/jz400574f
Chung, Y. H.; Kim, S. J.; Chung, D. Y.; Park, H. Y.; Sung, Y. E.; Yoo, S. J.; Jang, J. H. Chem. Commun. 2015, 51, 2968. doi: 10.1039/C4CC09019E
doi: 10.1039/C4CC09019E
Luo, F.; Zhang, Q.; Yang, Z.; Guo, L.; Yu, X.; Qu, K.; Ling, Y.; Yang, J.; Cai, W. ChemCatChem 2018, 10, 5314. doi: 10.1002/cctc.201801256
doi: 10.1002/cctc.201801256
Zhang, Q.; Ling, Y.; Cai, W.; Yu, X.; Yang, Z. Int. J. Hydrogen Energy 2017, 42, 16714. doi: 10.1016/j.ijhydene.2017.05.070
doi: 10.1016/j.ijhydene.2017.05.070
Strmcnik, D.; Escudero-Escribano, M.; Kodama, K.; Stamenkovic, V. R.; Cuesta, A.; Marković, N. M. Nat. Chem. 2010, 2, 880. doi: 10.1038/nchem.771
doi: 10.1038/nchem.771
Jeong, D. C.; Mun, B.; Lee, H.; Hwang, S. J.; Yoo, S. J.; Cho, E.; Lee, Y.; Song, C. RSC Adv. 2016, 6, 60749. doi: 10.1039/C6RA13123A
doi: 10.1039/C6RA13123A
Delikaya, Ö.; Zeyat, M.; Lentz, D.; Roth, C. ChemElectroChem 2019, 6, 3892. doi: 10.1002/celc.201900251
doi: 10.1002/celc.201900251
Liu, G.; Zhang, H.; Zhai, Y.; Zhang, Y.; Xu, D.; Shao, Z. G. Electrochem. Commun. 2007, 9, 135. doi: 10.1016/j.elecom.2006.08.056
doi: 10.1016/j.elecom.2006.08.056
Hong, S. G.; Kwon, K.; Lee, M. J.; Yoo, D. Y. Electrochem. Commun. 2009, 11, 1124. doi: 10.1016/j.elecom.2009.03.028
doi: 10.1016/j.elecom.2009.03.028
Jung, N.; Shin, H.; Kim, M.; Jang, I.; Kim, H. J.; Jang, J.; Kim, H.; Yoo, S. Nano Energy 2015, 17, 152. doi: 10.1016/j.nanoen.2015.08.012
doi: 10.1016/j.nanoen.2015.08.012
Jeong, G.; Kim, M.; Han, J.; Kim, H. J.; Shul, Y. G.; Cho, E. J. Power Sources 2016, 323, 142, doi: 10.1016/j.jpowsour.2016.05.042
doi: 10.1016/j.jpowsour.2016.05.042
Mack, F.; Morawietz, T.; Hiesgen, R.; Kramer, D.; Gogel, V.; Zeis, R. Int. J. Hydrogen Energy 2016, 41, 7475. doi: 10.1016/j.ijhydene.2016.02.156
doi: 10.1016/j.ijhydene.2016.02.156
Liu, J.; Tang, J.; Gooding, J. J. J. Mater. Chem. 2012, 22, 12435. doi: 10.1039/C2JM31218B
doi: 10.1039/C2JM31218B
Berber, M. R.; Fujigaya, T.; Sasaki, K.; Nakashima, N. Sci. Rep. 2013, 3, 1764. doi: 10.1038/srep01764
doi: 10.1038/srep01764
Yang, Z.; Moriguchi, I.; Nakashima, N. ACS Appl. Mater. Interfaces 2015, 7, 9800. doi: 10.1021/acsami.5b01724
doi: 10.1021/acsami.5b01724
Stamatin, S. N.; Speder, J.; Dhiman, R.; Arenz, M.; Skou, E. M. ACS Appl. Mater. Interfaces 2015, 7, 6153. doi: 10.1021/am508982d
doi: 10.1021/am508982d
Yin, S.; Mu, S.; Lv, H.; Cheng, N.; Pan, M.; Fu, Z. Appl. Catal. B 2010, 93, 233. doi: 10.1016/j.apcatb.2009.09.034
doi: 10.1016/j.apcatb.2009.09.034
Lobato, J.; Zamora, H.; Plaza, J.; Cañizares, P.; Rodrigo, M. A. Appl. Catal. B 2016, 198, 516. doi: 10.1016/j.apcatb.2016.06.011
doi: 10.1016/j.apcatb.2016.06.011
Zamora, H.; Plaza, J.; Velhac, P.; Cañizares, P.; Rodrigo, M. A.; Lobato, J. Appl. Catal. B 2017, 207, 244. doi: 10.1016/j.apcatb.2017.02.019
doi: 10.1016/j.apcatb.2017.02.019
Kim, D. K.; Kim, H.; Park, H.; Oh, S.; Ahn, S. H.; Kim, H. J.; Kim, S. K. J. Power Sources 2019, 438, 227022. doi: 10.1016/j.jpowsour.2019.227022
doi: 10.1016/j.jpowsour.2019.227022
Yang, Z.; Nakashima, N. J. Mater. Chem. A 2015, 3, 23316. doi: 10.1039/C5TA06735A
doi: 10.1039/C5TA06735A
Yang, Z.; Berber, M. R.; Nakashima, N. Electrochim. Acta 2015, 170, 1. doi: 10.1016/j.electacta.2015.04.122
doi: 10.1016/j.electacta.2015.04.122
Park, H. Y.; Lim, D. H.; Yoo, S. J.; Kim, H. J.; Henkensmeier, D.; Kim, J. Y.; Ham, H. C.; Jang, J. H. Sci. Rep. 2017, 7, 7186. doi: 10.1038/s41598-017-06812-w
doi: 10.1038/s41598-017-06812-w
Millán, M.; Zamora, H.; Rodrigo, M. A.; Lobato, J. ACS Appl. Mater. Interfaces 2017, 9, 5927. doi: 10.1021/acsami.6b13071
doi: 10.1021/acsami.6b13071
Lim, J. E.; Lee, U. J.; Ahn, S. H.; Cho, E.; Kim, H. J.; Jang, J. H.; Son, H.; Kim, S. K. Appl. Catal. B 2015, 165, 495. doi: 10.1016/j.apcatb.2014.10.042
doi: 10.1016/j.apcatb.2014.10.042
Neyerlin, K. C.; Singh, A.; Chu, D. J. Power Sources 2008, 176, 112. doi: 10.1016/j.jpowsour.2007.10.030
doi: 10.1016/j.jpowsour.2007.10.030
Chung, Y. H.; Kim, S. J.; Chung, D. Y.; Lee, M. J.; Jang, J. H.; Sung, Y. E. Phys. Chem. Chem. Phys. 2014, 16, 13726. doi: 10.1039/C4CP00187G
doi: 10.1039/C4CP00187G
Lee, K. S.; Yoo, S. J.; Ahn, D.; Kim, S. K.; Hwang, S. J.; Sung, Y. E.; Kim, H. J.; Cho, E.; Henkensmeier, D.; Lim, T. H.; Jang, J. H. Electrochim. Acta 2011, 56, 8802. doi: 10.1016/j.electacta.2011.07.084
doi: 10.1016/j.electacta.2011.07.084
Park, H.; Kim, K. M.; Kim, H.; Kim, D. K.; Won, Y. S.; Kim, S. K. Korean J. Chem. Eng. 2018, 35, 1547. doi: 10.1007/s11814-018-0059-z
doi: 10.1007/s11814-018-0059-z
Park, H.; Kim, D. K.; Kim, H.; Oh, S.; Jung, W. S.; Kim, S. K. Appl. Surf. Sci. 2020, 510, 145444. doi: 10.1016/j.apsusc.2020.145444
doi: 10.1016/j.apsusc.2020.145444
Zagudaeva, N. M.; Tarasevich, M. R. Russ. J. Electrochem. 2010, 46, 530. doi: 10.1134/S102319351005006X
doi: 10.1134/S102319351005006X
Mamlouk, M.; Scott, K. J. Power Sources 2011, 196, 1084. doi: 10.1016/j.jpowsour.2010.08.021
doi: 10.1016/j.jpowsour.2010.08.021
Hu, Y.; Shen, T.; Zhao, X.; Zhang, J.; Lu, Y.; Shen, J.; Lu, S.; Tu, Z.; Xin, H. L.; Wang, D. Appl. Catal. B 2020, 279, 11937. doi: 10.1016/j.apcatb.2020.119370
doi: 10.1016/j.apcatb.2020.119370
Ghoshal, S.; Jia, Q.; Bates, M. K.; Li, J.; Xu, C.; Gath, K.; Yang, J.; Waldecker, J.; Che, H.; Liang, W.; et al. ACS Catal. 2017, 7, 4936. doi: 10.1021/acscatal.7b01061
doi: 10.1021/acscatal.7b01061
Yang, X. D.; Chen, C.; Zhou, Z. Y.; Sun, S. G. Acta Phys. -Chim. Sin. 2019, 35, 472.
doi: 10.3866/PKU.WHXB201806131
Wang, Q. Q.; Liu, D. J.; He, X. Q. Acta Phys. -Chim. Sin. 2019, 35, 740.
doi: 10.3866/PKU.WHXB201809003
Hu, Y.; Jensen, J. O.; Pan, C.; Cleemann, L. N.; Shypunov, I.; Li, Q. Appl. Catal. B 2018, 234, 357. doi: 10.1016/j.apcatb.2018.03.056
doi: 10.1016/j.apcatb.2018.03.056
Li, Q.; Wu, G.; Cullen, D. A.; More, K. L.; Mack, N. H.; Chung, H. T.; Zelenay, P. ACS Catal. 2014, 4, 3193. doi: 10.1021/cs500807v
doi: 10.1021/cs500807v
Jain, D.; Gustin, V.; Basu, D.; Gunduz, S.; Deka, D. J.; Co, A. C.; Ozkan, U. S. J. Catal. 2020, 390, 150. doi: 10.1016/j.jcat.2020.07.012
doi: 10.1016/j.jcat.2020.07.012
Najam, T.; Shah, S. S. A.; Ding, W.; Wei, Z. J. Phys. Chem. C 2019, 123, 16796. doi: 10.1021/acs.jpcc.9b03730
doi: 10.1021/acs.jpcc.9b03730
Fei, H. L.; Duan, X. F. Acta Phys. -Chim. Sin. 2019, 35, 559.
doi: 10.3866/PKU.WHXB201809016
Najam, T.; Shah, S. S. A.; Ding, W.; Jiang, J.; Jia, L.; Yao, W.; Li, L.; Wei, Z. Angew. Chem. Int. Ed. 2018, 57, 15101. doi: 10.1002/anie.201808383
doi: 10.1002/anie.201808383
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005