Citation: Liu Yuan, Li Weidong, Wu Han, Lu Siyu. Carbon Dots Enhance Ruthenium Nanoparticles for Efficient Hydrogen Production in Alkaline[J]. Acta Physico-Chimica Sinica, ;2021, 37(7): 200908. doi: 10.3866/PKU.WHXB202009082 shu

Carbon Dots Enhance Ruthenium Nanoparticles for Efficient Hydrogen Production in Alkaline

  • Corresponding author: Lu Siyu, sylu2013@zzu.edu.cn
  • Received Date: 26 September 2020
    Revised Date: 21 October 2020
    Accepted Date: 22 October 2020
    Available Online: 27 October 2020

    Fund Project: This work was supported by the National Natural Science Foundation of China (51973200, 21905253) and the China Postdoctoral Science Foundation (2018M640681, 2019T120632)the National Natural Science Foundation of China 21905253the China Postdoctoral Science Foundation 2018M640681the China Postdoctoral Science Foundation 2019T120632the National Natural Science Foundation of China 51973200

  • In the 21st century, hydrogen energy is a novel energy source. Its use is expected to mitigate the problems of environmental pollution and global warming caused by the excessive use of conventional fossil fuels. The hydrogen evolution reaction (HER) for water splitting has attracted considerable attention because of its environmental friendliness. To improve electrocatalyst performance and reduce operation cost, carbon-based metal hybrid materials exhibiting high efficiency and catalytic activity have been developed. Among them, carbon dots (CDs) have garnered significant research attention and have been widely applied in biosensing, bioimaging, and energy conversion/storage because of their facile synthesis, biocompatibility, tunable photoluminescence, excellent stability, and good electronic properties. CDs are widely used as carriers in the construction of electrocatalysts prepared from carbon-based metal hybrid materials. At present, it is believed that CDs exhibit excellent confinement effects, which can effectively inhibit the growth and agglomeration of metal nanoparticles, thereby preparing well-distributed carbon-based metal hybrid materials with a uniform and controllable size. However, the formation process of the small-molecule raw materials of CDs has not been elucidated. In this study, CDs and small-molecule raw materials from synthetic CDs were used as precursors to prepare nitrogen-doped CD-supported ruthenium nanoparticle (Ru@CDs) and small-molecule-supported ruthenium nanoparticle (Ru@Molecule) hybrid materials, respectively. The interaction between the small molecules and Ru in the process of CD formation and the effect on HER performance were explored. Moreover, we prepared different carriers such as metal organic frameworks(MOF), carbon nanotubes (CNTs), and graphene (GO)-supported ruthenium nanoparticle hybrid materials. Among them, Ru@CDs exhibited controllable size and excellent dispersibility and exhibited outstanding HER activity and good stability. Ru@CDs were found to require a low overpotential of 22 mV to reach a current density of 10 mA·cm−2. Moreover, we observed the presence of an intermediate state between the molecules and CDs and demonstrated that the intermediate state exhibits no confinement effect. Furthermore, we found that with increasing calcination temperature, the intermediate state gradually changes to CDs. The unique spatial confinement between CDs and metal ions is key to the formation of monodisperse Ru nanoparticles. Our results confirmed that Ru@CDs serve as excellent HER catalyst supports. This work not only reveals the effect of the unique spatial confinement of CDs on the supported metals and their promoting effect on electrocatalytic activity but also provides guides the future development of CD-based metal hybrid electrocatalysts.
  • 加载中
    1. [1]

      Cheng, X.; Li, Y.; Zheng, L.; Yan, Y.; Zhang, Y.; Chen, G.; Sun, S.; Zhang, J. Energy Environ. Sci. 2017, 10, 2450. doi: 10.1039/C7EE02537H  doi: 10.1039/C7EE02537H

    2. [2]

      Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. Nat. Nanotechnol. 2017, 12, 441. doi: 10.1038/nnano.2016.304  doi: 10.1038/nnano.2016.304

    3. [3]

      Jiao, Y.; Zheng, Y.; Davey, K.; Qiao, S. Z. Nat. Energy 2016, 1, 16130. doi: 10.1038/nenergy.2016.130  doi: 10.1038/nenergy.2016.130

    4. [4]

      Xia, Z. Nat. Energy 2016, 1, 16155. doi: 10.1038/nenergy.2016.155  doi: 10.1038/nenergy.2016.155

    5. [5]

      Popczun, E. J.; Mckone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. S. J. Am. Chem. Soc. 2013, 135, 9267. doi: 10.1021/ja403440e  doi: 10.1021/ja403440e

    6. [6]

      Xing, Z.; Han, C.; Wang, D.; Li, Q.; Yang, X. ACS Catal. 2017, 7, 7131. doi: 10.1021/acscatal.7b01994  doi: 10.1021/acscatal.7b01994

    7. [7]

      Cao, Z.; Chen, Q.; Zhang, J.; Li, H.; Jiang, Y.; Shen, S.; Fu, G.; Lu, B. A.; Xie, Z.; Zheng, L. Nat. Commun. 2017, 8, 15131. doi: 10.1038/ncomms15131  doi: 10.1038/ncomms15131

    8. [8]

      Liu, Y.; Yong, X.; Liu, Z.; Chen, Z. M.; Kang, Z. H.; Lu, S. Y. Adv. Sustainable Syst. 2019, 3, 1800161. doi: 10.1002/adsu.201800161  doi: 10.1002/adsu.201800161

    9. [9]

      Huang, L.; Zhang, X.; Wang, Q.; Han, Y.; Fang, Y.; Dong, S. J. Am. Chem. Soc. 2018, 140, 1142. doi: 10.1021/jacs.7b12353  doi: 10.1021/jacs.7b12353

    10. [10]

      Geng, Z.; Liu, Y.; Kong, X.; Li, P.; Li, K.; Liu, Z.; Du, J.; Shu, M.; Si, R.; Zeng, J. Adv. Mater. 2018, 30, 1803498. doi: 10.1002/adma.201870301  doi: 10.1002/adma.201870301

    11. [11]

      Xu, F.; Li, Y. J.; Huang, C.; Xu, H. C. ACS Catal. 2018, 8, 3820. doi: 10.1021/acscatal.8b00373  doi: 10.1021/acscatal.8b00373

    12. [12]

      Song, Q.; Li, J.; Wang, S.; Liu, J.; Liu, X.; Pang, L.; Li, H.; Liu, H. Small 2019, 15, 1903395. doi: 10.1002/smll.201903395  doi: 10.1002/smll.201903395

    13. [13]

      Yang, X.; Sun, J. K.; Kitta, M.; Pang, H.; Xu, Q. Nat. Catal. 2018, 1, 214. doi: 10.1038/s41929-018-0030-8  doi: 10.1038/s41929-018-0030-8

    14. [14]

      Cui, X.; Li, W.; Ryabchuk, P.; Junge, K.; Belletr, M. Nat. Catal. 2018, 1, 385. doi: 10.1038/s41929-018-0090-9  doi: 10.1038/s41929-018-0090-9

    15. [15]

      Cheng, Q.; Han, S.; Mao, K.; Chen, C.; Yang, L.; Zou, Z.; Gu, M.; Hu, Z.; Yang, H. Nano Energy 2018, 52, 485. doi: 10.1016/j.nanoen.2018.08.005  doi: 10.1016/j.nanoen.2018.08.005

    16. [16]

      Ning, X.; Li, Y.; Dong, B.; Wang, H.; Yu, H.; Peng, F.; Yang, Y. J. Catal. 2017, 348, 100. doi: 10.1016/j.jcat.2017.02.011  doi: 10.1016/j.jcat.2017.02.011

    17. [17]

      Li, J.; Zhou, P.; Li, F.; Ren, R.; Liu, Y.; Niu, J.; Ma, J.; Zhang, X.; Tian, M.; Jin, J.; et al. J. Mater. Chem. A 2015, 3, 11261. doi: 10.1039/C5TA01805F  doi: 10.1039/C5TA01805F

    18. [18]

      Chen, J.; Wang, J.; Chen, J.; Wang, L. J. Mater. Sci. 2017, 52, 13064. doi: 10.1007/s10853-017-1410-1  doi: 10.1007/s10853-017-1410-1

    19. [19]

      Luo, F.; Zhang, Q.; Yu, X.; Xiao, S.; Ling, Y.; Hu, H.; Guo, L.; Yang, Z.; Huang, L.; Cai, W.; et al. Angew. Chem. Int. Ed. 2018, 57, 14862. doi: 10.1002/anie.201810102  doi: 10.1002/anie.201810102

    20. [20]

      Jing, S.; Zhang, L.; Luo, L.; Lu, J.; Yin, S.; Shen, P. K.; Tsiakaras, P. Appl. Catal. B: Environ. 2018, 224, 533. doi: 10.1016/j.apcatb.2017.10.025  doi: 10.1016/j.apcatb.2017.10.025

    21. [21]

      Bai, S.; Wang, C.; Deng, M.; Gong, M.; Bai, Y.; Jiang, J.; Xiong, Y. Angew. Chem. Int. Ed. 2014, 53, 12120. doi: 10.1002/anie.201406468  doi: 10.1002/anie.201406468

    22. [22]

      Tavakkoli, M.; Holmberg, N.; Kronberg, R.; Jiang, H.; Sainio, J.; Kauppinen, E. I.; Kallio, T.; Laasonen, K. ACS Catal. 2017, 7, 3121. doi: 10.1021/acscatal.7b00199  doi: 10.1021/acscatal.7b00199

    23. [23]

      Lu, S.; Sui, L.; Liu, J.; Zhu, S.; Chen, A.; Jin, M.; Yang, B. Adv. Mater. 2017, 29, 1603443. doi: 10.1002/adma.201603443  doi: 10.1002/adma.201603443

    24. [24]

      Lu, S.; Xiao, G.; Sui, L.; Feng, T.; Yong, X.; Zhu, S.; Li, B.; Liu, Z.; Zou, B.; Jin, M. Angew. Chem. Int. Ed. 2017, 56, 6187. doi: 10.1002/anie.201700757  doi: 10.1002/anie.201700757

    25. [25]

      Kong, B.; Tang, J.; Zhang, Y.; Jiang, T.; Gong, X.; Peng, C.; Wei, J.; Yang, J.; Wang, Y.; Wang, X.; et al. Nat. Chem. 2016, 8, 171. doi: 10.1038/nchem.2405  doi: 10.1038/nchem.2405

    26. [26]

      Tang, J.; Kong, B.; Wu, H.; Xu, M.; Wang, Y.; Wang, Y.; Zhao, D.; Zheng, G. Adv. Mater. 2013, 25, 6569. doi: 10.1002/adma.201303124  doi: 10.1002/adma.201303124

    27. [27]

      Lu, S.; Cong, R.; Zhu, S.; Zhao, X.; Liu, J.; Tse, J. S.; Meng, S.; Yang, B. ACS Appl. Mater. Interfaces 2016, 8, 4062. doi: 10.1021/acsami.5b11579  doi: 10.1021/acsami.5b11579

    28. [28]

      Li, W.; Liu, Y.; Wu, M.; Feng, X.; Redfern, S. A. T.; Shang, Y.; Yong, X.; Feng, T.; Wu, K.; Liu, Z.; et al. Adv. Mater. 2018, 30, 1800676. doi: 10.1002/adma.201800676  doi: 10.1002/adma.201800676

    29. [29]

      Liu, Y.; Li, X.; Zhang, Q.; Li, W.; Xie, Y.; Liu, H.; Shang, L.; Liu, Z.; Chen, Z.; Gu, L.; et al. Angew. Chem. Int. Ed. 2020, 59, 1718. doi: 10.1002/anie.201913910  doi: 10.1002/anie.201913910

    30. [30]

      Song, H.; Li, Y.; Shang, L.; Tang, Z.; Zhang, T.; Lu, S. Nano Energy 2020, 72, 104730. doi: 10.1016/j.nanoen.2020.104730  doi: 10.1016/j.nanoen.2020.104730

    31. [31]

      Liu, Y.; Yang, Y.; Peng, Z.; Liu, Z.; Chen, Z.; Shang, L.; Lu, S.; Zhang, T. Nano Energy 2019, 65, 104023. doi: 10.1016/j.nanoen.2019.104023  doi: 10.1016/j.nanoen.2019.104023

    32. [32]

      Wang, B.; Li, J.; Tang, Z.; Yang, B.; Lu, S. Sci. Bull. 2019, 64, 1285. doi: 10.1016/j.scib.2019.07.021  doi: 10.1016/j.scib.2019.07.021

    33. [33]

      Lu, S.; Zhao, X.; Zhu, S.; Song, Y.; Yang, B. Nanoscale 2014, 6, 13939. doi: 10.1039/C4NR03965C  doi: 10.1039/C4NR03965C

    34. [34]

      Li, W.; Wei, Z.; Wang, B.; Liu, Y.; Song, H.; Tang, Z.; Yang, B.; Lu, S. Mater. Chem. Front. 2020, 4, 277. doi: 10.1039/C9QM00618D  doi: 10.1039/C9QM00618D

    35. [35]

      Wang, P.; Zhang, X.; Zhang, J.; Wan, S.; Guo, S.; Lu, G.; Yao, J.; Huang, X. Nat. Commun. 2017, 8, 14580. doi: 10.1038/ncomms14580  doi: 10.1038/ncomms14580

    36. [36]

      Wang, J.; Xu, F.; Jin, H.; Chen, Y.; Wang, Y. Adv. Mater. 2017, 29, 1605838. doi: 10.1002/adma.201605838  doi: 10.1002/adma.201605838

    37. [37]

      Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. -Z. Angew. Chem. Int. Ed. 2018, 57, 7568. doi: 10.1002/anie.201710556  doi: 10.1002/anie.201710556

    38. [38]

      Morales-Guio, C. G.; Stern, L. -A.; Hu, X. Chem. Soc. Rev. 2014, 43, 6555. doi: 10.1039/C3CS60468C  doi: 10.1039/C3CS60468C

    39. [39]

      Zhang, C.; Liu, Y.; Chang, Y.; Lu, Y.; Zhao, S.; Xu, D.; Dai, Z.; Han, M.; Bao, J. ACS Appl. Mater. Interfaces 2017, 9, 17326. doi: 10.1021/acsami.7b01114  doi: 10.1021/acsami.7b01114

    40. [40]

      Döner, A.; Tezcan, F.; Kardaş, G. Int. J. Hydrog. Energy 2013, 38, 3881. doi: 10.1016/j.ijhydene.2013.01.141  doi: 10.1016/j.ijhydene.2013.01.141

  • 加载中
    1. [1]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    2. [2]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    3. [3]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    4. [4]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    5. [5]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    6. [6]

      Rui ChengTingting ZhangXin HuangJian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763

    7. [7]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    8. [8]

      Qiang LiJiangbo FanHongkai MuLin ChenYongzhen YangShiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947

    9. [9]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    10. [10]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    11. [11]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    12. [12]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    13. [13]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    14. [14]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    15. [15]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    16. [16]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    17. [17]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    18. [18]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    19. [19]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    20. [20]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

Metrics
  • PDF Downloads(31)
  • Abstract views(742)
  • HTML views(276)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return