Citation: Yiwen Chen, Lingling Li, Quanlong Xu, Düren Tina, Jiajie Fan, Dekun Ma. Controllable Synthesis of g-C3N4 Inverse Opal Photocatalysts for Superior Hydrogen Evolution[J]. Acta Physico-Chimica Sinica, ;2021, 37(6): 200908. doi: 10.3866/PKU.WHXB202009080 shu

Controllable Synthesis of g-C3N4 Inverse Opal Photocatalysts for Superior Hydrogen Evolution

  • Corresponding author: Quanlong Xu, xuql@wzu.edu.cn Jiajie Fan, fanjiajie@zzu.edu.cn Dekun Ma, dkma@wzu.edu.cn
  • These authors contribute equally.
  • Received Date: 25 September 2020
    Revised Date: 16 October 2020
    Accepted Date: 16 October 2020
    Available Online: 22 October 2020

    Fund Project: the Foundation of National Nature Science Foundation of China 21905209the Foundation of National Nature Science Foundation of China 21673160the Foundation of National Nature Science Foundation of China 52073263Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars LR16B010002China Scholarship Council 201907045030

  • The growing frustration from facing energy shortages and unbalanced environmental issues has obstructed the long-term development of human society. Semiconductor-based photocatalysis, such as water splitting, transfers solar energy to storable chemical energy and is widely considered an economic and clean solution. Although regarded as a promising photocatalyst, the low specific surface area of g-C3N4 crucially restrains its photocatalytic performance. The macro-mesoporous architecture provides effective channels for mass transfer and full-light utilization and improved the efficiency of the photocatalytic reaction. Herein, g-C3N4 with an inverse opal (IO) structure was rationally fabricated using a well-packed SiO2 template, which displayed an ultrahigh surface area (450.2 m2·g-1) and exhibited a higher photocatalytic H2 evolution rate (21.22 μmol·h-1), almost six times higher than that of bulk g-C3N4 (3.65 μmol·h-1). The IO g-C3N4 demonstrates better light absorption capacity than bulk g-C3N4, primarily in the visible spectra range, owing to the multiple light scattering effect of the three-dimensional (3D) porous structure. Meanwhile, a lower PL intensity, longer emission lifetime, smaller Nyquist semicircle, and stronger photocurrent response (which synergistically give rise to the suppressed recombination of charge carriers) decrease the interfacial charge transfer resistance and boost the formation of photogenerated electron-hole pairs. Moreover, the existing N vacancies intensify the local electron density, helping increase the number of photoexcitons. The N2 adsorption-desorption test revealed the existence of ample mesopores and macropores and high specific surface area in IO g-C3N4, which exposes more active edges and catalytic sites. Optical behavior, electron paramagnetic resonance, and electrochemical characterization results revealed positive factors, including enhanced light utilization, improved photogenerated charge separation, prolonged lifetime, and fortified IO g-C3N4 with excellent photocatalytic performance. This work provides an important contribution to the structural design and property modulation of photocatalysts.
  • 加载中
    1. [1]

      Meng, A.; Zhang, L.; Cheng, B.; Yu, J. Adv. Mater. 2019, 31, 1807660. doi: 10.1002/adma.201807660  doi: 10.1002/adma.201807660

    2. [2]

      Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Jaroniec, M. Mater. Today 2018, 21, 1042. doi: 10.1016/j.mattod.2018.04.008  doi: 10.1016/j.mattod.2018.04.008

    3. [3]

      Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi: 10.1016/j.chempr.2020.06.010  doi: 10.1016/j.chempr.2020.06.010

    4. [4]

      Cui, L.; Song, J.; McGuire, A.F.; Kang, S.; Fang, X.; Wang, J.; Yin, C.; Li, X.; Wang, Y.; Cui, B. ACS Nano 2018, 12, 5551. doi: 10.1021/acsnano.8b01271  doi: 10.1021/acsnano.8b01271

    5. [5]

      Li, J.; Wu, D.; Iocozzia, J.; Du, H.; Liu, X.; Yuan, Y.; Zhou, W.; Li, Z.; Xue, Z.; Lin, Z. Angew. Chem. Int. Ed. 2019, 58, 1985. doi: 10.1002/anie.201813117  doi: 10.1002/anie.201813117

    6. [6]

      Zhu, B.; Zhang, L.; Cheng, B.; Yu, Y.; Yu, J. Chin. J. Catal. 2021, 42, 115. doi: 10.1016/S1872-2067(20)63598-7  doi: 10.1016/S1872-2067(20)63598-7

    7. [7]

      Zhu, B.; Cheng, B.; Zhang, L.; Yu, J. Carbon Energy 2019, 1, 32. doi: 10.1002/cey2.1  doi: 10.1002/cey2.1

    8. [8]

      Xia, P.; Liu, M.; Cheng, B.; Yu, J.; Zhang, L. ACS Sustain. Chem. Eng. 2018, 6, 8945. doi: 10.1021/acssuschemeng.8b01300  doi: 10.1021/acssuschemeng.8b01300

    9. [9]

      Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Chem. Rev. 2016, 116, 7159. doi: 10.1021/acs.chemrev.6b00075  doi: 10.1021/acs.chemrev.6b00075

    10. [10]

      Xiang, Q.; Li, F.; Zhang, D.; Liao, Y.; Zhou, H. Appl. Surf. Sci. 2019, 495, 143520. doi: 10.1016/j.apsusc.2019.07.262  doi: 10.1016/j.apsusc.2019.07.262

    11. [11]

      Li, Y.; Zhou, M.; Cheng, B.; Shao, Y. J. Mater. Sci. Technol. 2020, 56, 1, doi: 10.1016/j.jmst.2020.04.028  doi: 10.1016/j.jmst.2020.04.028

    12. [12]

      Wen, J.; Xie, J.; Chen, X.; Li, X. Appl. Surf. Sci. 2017, 391, 72. doi: 10.1016/j.apsusc.2016.07.030  doi: 10.1016/j.apsusc.2016.07.030

    13. [13]

      Li, Y.; Jin, Z.; Zhang, L. Chin. J. Catal. 2019, 40, 90. doi: 10.1016/S1872-2067(18)63173-0  doi: 10.1016/S1872-2067(18)63173-0

    14. [14]

      Tian, B.; Wu, Y.; Lu, G. Appl. Catal. B. 2021, 280, 119410. doi: 10.1016/j.apcatb.2020.119410  doi: 10.1016/j.apcatb.2020.119410

    15. [15]

      Gao, Y.; Chen, F.; Chen, Z. J. Mater. Sci. Technol. 2020, 56, 227. doi: 10.1016/j.jmst.2020.02.050  doi: 10.1016/j.jmst.2020.02.050

    16. [16]

      Li, Y.; Li, X.; Zhang, H. J. Mater. Sci. Technol. 2020, 56, 69. doi: 10.1016/j.jmst.2020.03.033  doi: 10.1016/j.jmst.2020.03.033

    17. [17]

      Wang, Y.; Shen, S. Acta Phys. -Chim. Sin. 2020, 36, 1905080.  doi: 10.3866/PKU.WHXB201905080

    18. [18]

      Huang, J.; Du, J.; Du, H.; Xu, G.; Yuan, Y. Acta Phys. -Chim. Sin. 2020, 36, 1905056.  doi: 10.3866/PKU.WHXB201905056

    19. [19]

      Man, L.; Xu, Q.; Li, W.; Chen, W.; Zheng, W.; Ma, D. Appl. Surf. Sci. 2020, 512, 145647. doi: 10.1016/j.apsusc.2020.145647  doi: 10.1016/j.apsusc.2020.145647

    20. [20]

      Sun, K.; Shen, J.; Liu, Q. Chin. J. Catal. 2020, 41, 72. doi: 10.1016/S1872-2067(19)63430-3  doi: 10.1016/S1872-2067(19)63430-3

    21. [21]

      Xiao, N.; Li, S.; Liu, S. Chin. J. Catal. 2019, 40, 352. doi: 10.1016/S1872-2067(18)63180-8  doi: 10.1016/S1872-2067(18)63180-8

    22. [22]

      Liu, M.; Xia, P.; Zhang, L.; Cheng, B.; Yu, J. ACS Sustain. Chem. Eng. 2018, 6, 10472. doi: 10.1021/acssuschemeng.8b01835  doi: 10.1021/acssuschemeng.8b01835

    23. [23]

      Luo, J.; Lin, Z.; Zhao, Y. Chin. J. Catal. 2020, 41, 122. doi: 10.1016/S1872-2067(19)63490-X  doi: 10.1016/S1872-2067(19)63490-X

    24. [24]

      Li, Y.; Zhou, M.; Cheng, B. J. Mater. Sci. Technol. 2020, 56, 1. doi: 10.1016/j.jmst.2020.04.028  doi: 10.1016/j.jmst.2020.04.028

    25. [25]

      Wang, L.; Zhu, C.; Yin, L.; Huang, W. Acta Phys. -Chim. Sin. 2020, 36, 1907001.  doi: 10.3866/PKU.WHXB201907001

    26. [26]

      Chang, W.; Xue, W.; Liu, E.; Fan, J.; Zhao, B. Chem. Eng. J. 2019, 362, 392. doi: 10.1016/j.cej.2019.01.021  doi: 10.1016/j.cej.2019.01.021

    27. [27]

      Li, Y.; Zhang, D.; Feng, X. Chin. J. Catal. 2020, 41, 21. doi: 10.1016/S1872-2067(19)63427-3  doi: 10.1016/S1872-2067(19)63427-3

    28. [28]

      Liu, M.; Wageh, S.; Al-Ghamdi, A.; Xia, P.; Cheng, B.; Zhang, L.; Yu, J. Chem. Commun.2019, 55, 14023. doi: 10.1039/c9cc07647f  doi: 10.1039/c9cc07647f

    29. [29]

      Yang, Y.; Wang, S.; Li, Y.; Wang, J.; Wang, L. Chem. Asian J. 2017, 12, 1421. doi: 10.1002/asia.201700540  doi: 10.1002/asia.201700540

    30. [30]

      Li, Y.; Li, X.; Zhang, H.; Fan, J.; Xiang, Q. J. Mater. Sci. Technol. 2020, 56, 69. doi: 10.1016/j.jmst.2020.03.033  doi: 10.1016/j.jmst.2020.03.033

    31. [31]

      Curti, M.; Schneider, J.; Bahnemann, D. W.; Mendive, C. B. J. Phys. Chem. Lett. 2015, 6, 3903. doi: 10.1021/acs.jpclett.5b01353  doi: 10.1021/acs.jpclett.5b01353

    32. [32]

      Chen, B.; Zhou, L.; Tian, Y.; Yu, J.; Lei, J.; Wang, L.; Liu, Y.; Zhang, J. Phys. Chem. Chem. Phys. 2019, 21, 12818. doi: 10.1039/c9cp01495k  doi: 10.1039/c9cp01495k

    33. [33]

      Armstrong, E.; O'Dwyer, C. J. Mater. Chem. C 2015, 3, 6109. doi: 10.1039/c5tc01083g  doi: 10.1039/c5tc01083g

    34. [34]

      Low, J.; Zhang, L.; Zhu, B.; Liu, Z.; Yu, J. ACS Sustain. Chem. Eng. 2018, 6, 15653. doi: 10.1021/acssuschemeng.8b04150  doi: 10.1021/acssuschemeng.8b04150

    35. [35]

      Jiao, J.; Wei, Y.; Zhao, Z.; Liu, J.; Li, J.; Duan, A.; Jiang, G. Ind. Eng. Chem. Res. 2014, 53, 17345. doi: 10.1021/ie503333b  doi: 10.1021/ie503333b

    36. [36]

      Xiao, M.; Wang, Z.; Lyu, M.; Luo, B.; Wang, S.; Liu, G.; Cheng, H.; Wang, L. Adv. Mater. 2019, 31, 1801369. doi: 10.1002/adma.201801369  doi: 10.1002/adma.201801369

    37. [37]

      Hwang, S.; Lee, S.; Yu, J. Appl. Surf. Sci. 2007, 253, 5656. doi: 10.1016/j.apsusc.2006.12.032  doi: 10.1016/j.apsusc.2006.12.032

    38. [38]

      Lin, B.; Li, J.; Xu, B.; Yan, X.; Yang, B.; Wei, J.; Yang, G. Appl. Catal. B 2019, 243, 94. doi: 10.1016/j.apcatb.2018.10.029  doi: 10.1016/j.apcatb.2018.10.029

    39. [39]

      Lin, B.; Yang, G.; Wang, L. Angew. Chem. Int. Ed. 2019, 58, 4587. doi: 10.1002/anie.201814360  doi: 10.1002/anie.201814360

    40. [40]

      Sun, L.; Yang, M.; Huang, J.; Yu, D.; Hong, W.; Chen, X. Adv. Funct. Mater. 2016, 26, 4943. doi: 10.1002/adfm.201600894  doi: 10.1002/adfm.201600894

    41. [41]

      Lei, J.; Chen, B.; Lv, W.; Zhou, L.; Wang, L.; Liu, Y.; Zhang, J. ACS Sustain. Chem. Eng. 2019, 7, 16467. doi: 10.1021/acssuschemeng.9b03678  doi: 10.1021/acssuschemeng.9b03678

    42. [42]

      Xu, Q.; Zhu, B.; Cheng, B.; Yu, J.; Zhou, M.; Ho, W. Appl. Catal. B 2019, 255, 117770. doi: 10.1016/j.apcatb.2019.117770  doi: 10.1016/j.apcatb.2019.117770

    43. [43]

      Xu, Q.; Ma, D.; Yang, S.; Tian, Z.; Cheng, B.; Fan, J. Appl. Surf. Sci. 2019, 495, 143555. doi: 10.1016/j.apsusc.2019.143555  doi: 10.1016/j.apsusc.2019.143555

    44. [44]

      Tian, N.; Huang, H.; Liu, C.; Dong, F.; Zhang, T.; Du, X.; Yu, S.; Zhang, Y. J. Mater. Chem. A 2015, 3, 17120. doi: 10.1039/c5ta03669k  doi: 10.1039/c5ta03669k

    45. [45]

      Zhao, H.; Hu, Z.; Liu, J.; Li, Y.; Wu, M.; Van Tendeloo, G.; Su, B. Nano Energy 2018, 47, 266. doi: 10.1016/j.nanoen.2018.02.052  doi: 10.1016/j.nanoen.2018.02.052

    46. [46]

      Wang, H.; Sun, X.; Li, D.; Zhang, X.; Chen, S.; Shao, W.; Tian, Y.; Xie, Y. J. Am. Chem. Soc. 2017, 139, 2468. doi: 10.1021/jacs.6b12878  doi: 10.1021/jacs.6b12878

    47. [47]

      Li, X.; Wang, B.; Yin, W.; Di, J.; Xia, J.; Zhu, W.; Li, H. Acta Phys. -Chim. Sin. 2020, 36, 1902001.  doi: 10.3866/PKU.WHXB201902001

    48. [48]

      Niu, P.; Liu, G.; Cheng, H. J. Phys. Chem. C 2012, 116, 11013. doi: 10.1021/jp301026y  doi: 10.1021/jp301026y

    49. [49]

      Xiong, T.; Cen, W.; Zhang, Y.; Dong, F. ACS Catal. 2016, 6, 2462. doi: 10.1021/acscatal.5b02922  doi: 10.1021/acscatal.5b02922

    50. [50]

      Cho, Y.; Kim, S.; Park, B.; Lee, C. L.; Kim, J. K.; Lee, K. S.; Choi, I. Y.; Kim, J. K.; Zhang, K.; Oh, S. H.; et al. Nano Lett. 2018, 18, 4257. doi: 10.1021/acs.nanolett.8b01245  doi: 10.1021/acs.nanolett.8b01245

    51. [51]

      Zhong, Y.; Djurisic, A. B.; Hsu, Y.; Wong, K.; Brauer, G.; Ling, C.; Chan, W. J. Phys. Chem. C 2008, 112, 16286. doi: 10.1021/jp804132u  doi: 10.1021/jp804132u

    52. [52]

      Yu, Y.; Tang, Y.; Yuan, J.; Wu, Q.; Zheng, W.; Cao, Y. J. Phys. Chem. C 2014, 118, 13545. doi: 10.1021/jp412375z  doi: 10.1021/jp412375z

    53. [53]

      Zheng, Y.; Lin, L.; Ye, X.; Guo, F.; Wang, X. Angew. Chem. Int. Ed. 2014, 53, 11926. doi: 10.1002/anie.201407319  doi: 10.1002/anie.201407319

    54. [54]

      Xia, P.; Cheng, B.; Jiang, J.; Tang, H. Appl. Surf. Sci. 2019, 487, 335. doi: 10.1016/j.apsusc.2019.05.064  doi: 10.1016/j.apsusc.2019.05.064

    55. [55]

      Li, Y.; Jin, R.; Xing, Y.; Li, J.; Song, S.; Liu, X.; Li, M.; Jin, R. Adv. Energy Mater. 2016, 6, 1601273. doi: 10.1002/aenm.201601273  doi: 10.1002/aenm.201601273

    56. [56]

      Tu, W.; Xu, Y.; Wang, J.; Zhang, B.; Zhou, T.; Yin, S.; Wu, S.; Li, C.; Huang, Y.; Zhou, Y.; et al. ACS Sustain. Chem. Eng. 2017, 5, 7260. doi: 10.1021/acssuschemeng.7b01477  doi: 10.1021/acssuschemeng.7b01477

    57. [57]

      Yu, L.; Li, G.; Zhang, X.; Ba, X.; Shi, G.; Li, Y.; Wong, P.; Yu, J.; Yu, Y. ACS Catal. 2016, 6, 6444. doi: 10.1021/acscatal.6b01455  doi: 10.1021/acscatal.6b01455

  • 加载中
    1. [1]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    3. [3]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    4. [4]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    7. [7]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    8. [8]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    9. [9]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    10. [10]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    11. [11]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    12. [12]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    13. [13]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    14. [14]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    16. [16]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    17. [17]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    18. [18]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    19. [19]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    20. [20]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

Metrics
  • PDF Downloads(6)
  • Abstract views(628)
  • HTML views(146)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return