Citation: Zhao Kangning, Li Xiao, Su Dong. High-Entropy Alloy Nanocatalysts for Electrocatalysis[J]. Acta Physico-Chimica Sinica, ;2021, 37(7): 200907. doi: 10.3866/PKU.WHXB202009077 shu

High-Entropy Alloy Nanocatalysts for Electrocatalysis

  • Corresponding author: Su Dong, dongsu@iphy.ac.cn
  • Contribute equally to this work.
  • Received Date: 25 September 2020
    Revised Date: 21 October 2020
    Accepted Date: 31 October 2020
    Available Online: 10 November 2020

    Fund Project: The project was supported by the Strategic Priority Research Program (B) (XDB07030200) of Chinese Academy of Sciencesthe Strategic Priority Research Program (B) XDB07030200

  • The implementation of clean energy techniques, including clean hydrogen generation, use of solar-driven photovoltaic hybrid systems, photochemical heat generation as well as thermoelectric conversion, is crucial for the sustainable development of our society. Among these promising techniques, electrocatalysis has received significant attention for its ability to facilitate clean energy conversion because it promotes a higher rate of reaction and efficiency for the associated chemical transformations. Noble-metal-based electrocatalysts typically show high activity for electrochemical conversion processes. However, their scarcity and high cost limit their applications in electrocatalytic devices. To overcome this limitation, binary catalysts prepared by alloying with transition metals can be used. However, optimization of the activity of the binary catalysts is considerably limited because of the presence of the miscibility gap in the phase diagram of binary alloys. The activity of binary electrocatalysts can be attributed to the adsorption energy of molecules and intermediates on the surface. High-entropy alloys (HEAs), which consist of diverse elements in a single NP, typically exhibit better physical and/or chemical properties than their single-element counterparts, because of their tunable composition and inherent surface complexity. Further, HEAs can improve the performance of binary electrocatalysts because they exhibit a near-continuous distribution of adsorption energy. Recently, HEAs have gained considerable attention for their application in electrocatalytic reactions. This review summarizes recent research advances in HEA nanostructures and their application in the field of electrocatalysis. First, we introduce the concept, structure, and four core effects of HEAs. We believe that this part will provide the basic information about HEAs. Next, we discuss the reported top-down and bottom-up synthesis strategies, emphasizing on the carbothermal shock method, nanodroplet-mediated electrodeposition, fast moving bed pyrolysis, polyol process, and dealloying. Other methods such as combinatorial co-sputtering, ultrashort-pulsed laser ablation, ultrasonication-assisted wet chemistry, and scanning-probe block copolymer lithography are also highlighted. Among these methods, wet chemistry has been reported to be effective for the formation of nano-scale HEAs because it facilitates the concurrent reduction of all metal precursors to form solid-solution alloys. Next, we present the theoretical investigation of HEA nanocatalysts, including their thermodynamics, kinetic stability, and adsorption energy tuning for optimizing their catalytic activity and selectivity. To elucidate the structure–property relationship in HEAs, we summarize the research progress related to electrocatalytic reactions promoted by HEA nanocatalysts, including the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, methanol oxidation reaction, and CO2 reduction reaction. Finally, we discuss the challenges and various strategies toward the development of HEAs.
  • 加载中
    1. [1]

      Turner, J. A. Science 2004, 305, 972. doi: 10.1126/science.1103197  doi: 10.1126/science.1103197

    2. [2]

      Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. 2006, 103, 15729. doi: 10.1073/pnas.0603395103  doi: 10.1073/pnas.0603395103

    3. [3]

      Chu, S.; Majumdar, A. Nature 2012, 488, 294. doi: 10.1038/nature11475  doi: 10.1038/nature11475

    4. [4]

      Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Science 2017, 355, eaad4998. doi: 10.1126/science.aad4998  doi: 10.1126/science.aad4998

    5. [5]

      Nguyen, D. L. T.; Kim, Y.; Hwang, Y. J.; Won, D. H. Carbon Energy 2020, 2, 72. doi: 10.1002/cey2.27  doi: 10.1002/cey2.27

    6. [6]

      Ali, A.; Shen, P. K. Carbon Energy 2020, 2, 99. doi: 10.1002/cey2.26  doi: 10.1002/cey2.26

    7. [7]

      He, Y.; Liu, J. -C.; Luo, L.; Wang, Y. -G.; Zhu, J.; Du, Y.; Li, J.; Mao, S. X.; Wang, C. Proc. Natl. Acad. Sci. 2018, 115, 7700. doi: 10.1073/pnas.1800262115  doi: 10.1073/pnas.1800262115

    8. [8]

      Li, C.; Tan, H.; Lin, J.; Luo, X.; Wang, S.; You, J.; Kang, Y. -M.; Bando, Y.; Yamauchi, Y.; Kim, J. Nano Today 2018, 21, 91. doi: 10.1016/j.nantod.2018.06.005  doi: 10.1016/j.nantod.2018.06.005

    9. [9]

      Yu, J.; He, Q.; Yang, G.; Zhou, W.; Shao, Z.; Ni, M. ACS Catal. 2019, 9, 9973. doi: 10.1021/acscatal.9b02457  doi: 10.1021/acscatal.9b02457

    10. [10]

      Singh, K.; Tetteh, E. B.; Lee, H. -Y.; Kang, T. -H.; Yu, J. -S. ACS Catal. 2019, 9, 8622. doi: 10.1021/acscatal.9b01420  doi: 10.1021/acscatal.9b01420

    11. [11]

      Zhang, C.; Chen, Z.; Lian, Y.; Chen, Y.; Li, Q.; Gu, Y.; Lu, Y.; Deng, Z.; Peng, Y. Acta Phys. -Chim. Sin. 2019, 35, 1404.  doi: 10.3866/PKU.WHXB201905030

    12. [12]

      Luo, M.; Sun, Y.; Qin, Y.; Li, Y.; Li, C.; Yang, Y.; Xu, N.; Wang, L.; Guo, S. Mater. Today Nano 2018, 1, 29. doi: 10.1016/j.mtnano.2018.04.008  doi: 10.1016/j.mtnano.2018.04.008

    13. [13]

      Halawa, M. I.; Lai, J.; Xu, G. Mater. Today Nano 2018, 3, 9. doi: 10.1016/j.mtnano.2018.11.001  doi: 10.1016/j.mtnano.2018.11.001

    14. [14]

      Batchelor, T. A. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.; Rossmeisl, J. Joule 2019, 3, 834. doi: 10.1016/. joule.2018.12.015  doi: 10.1016/.joule.2018.12.015

    15. [15]

      Wang, S.; Xin, H. Chem 2019, 5, 502. doi: 10.1016/j.chempr.2019.02.015  doi: 10.1016/j.chempr.2019.02.015

    16. [16]

      Nellaiappan, S.; Katiyar, N. K.; Kumar, R.; Parui, A.; Malviya, K. D.; Pradeep, K. G.; Singh, A. K.; Sharma, S.; Tiwary, C. S.; Biswas, K. ACS Catal. 2020, 10, 3658. doi: 10.1021/acscatal.9b04302  doi: 10.1021/acscatal.9b04302

    17. [17]

      Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Nat. Chem. 2009, 1, 37. doi: 10.1038/nchem.121  doi: 10.1038/nchem.121

    18. [18]

      Mao, Y.; Chen, J.; Wang, H.; Hu, P. Chin. J. Catal. 2015, 36, 1596. doi: 10.1016/S1872-2067(15)60875-0  doi: 10.1016/S1872-2067(15)60875-0

    19. [19]

      Sankar, M.; Dimitratos, N.; Miedziak, P. J.; Wells, P. P.; Kiely, C. J.; Hutchings, G. J. Chem. Soc. Rev. 2012, 41, 8099. doi: 10.1039/C2CS35296F  doi: 10.1039/C2CS35296F

    20. [20]

      Pickering, H. W.; Wagner, C. J. Electrochem. Soc. 1967, 114, 698. doi: 10.1149/1.2426709/meta  doi: 10.1149/1.2426709/meta

    21. [21]

      Toshima, N.; Yonezawa, T. New J. Chem. 1998, 22, 1179. doi: 10.1039/A805753B  doi: 10.1039/A805753B

    22. [22]

      Tao, F.; Grass, M. E.; Zhang, Y.; Butcher, D. R.; Renzas, J. R.; Liu, Z.; Chung, J. Y.; Mun, B. S.; Salmeron, M.; Somorjai, G. A. Science 2008, 322, 932. doi: 10.1126/science.1164170  doi: 10.1126/science.1164170

    23. [23]

      Pendergast, A. D.; Glasscott, M. W.; Renault, C.; Dick, J. E. Electrochem. Commun. 2019, 98, 1. doi: 10.1016/j.elecom.2018.11.005  doi: 10.1016/j.elecom.2018.11.005

    24. [24]

      Bu, L.; Zhang, N.; Guo, S.; Zhang, X.; Li, J.; Yao, J.; Wu, T.; Lu, G.; Ma, J. -Y.; Su, D.; et al. Science 2016, 354, 1410. doi: 10.1126/science.aah6133  doi: 10.1126/science.aah6133

    25. [25]

      Li, Q.; Wu, L.; Wu, G.; Su, D.; Lv, H.; Zhang, S.; Zhu, W.; Casimir, A.; Zhu, H.; Mendoza-Garcia, A.; Sun, S. Nano Lett. 2015, 15, 2468. doi: 10.1021/acs.nanolett.5b00320  doi: 10.1021/acs.nanolett.5b00320

    26. [26]

      Zhang, S.; Metin, Ö.; Su, D.; Sun, S. Angew. Chem. Int. Ed. 2013, 52, 3681. doi: 10.1002/anie.201300276  doi: 10.1002/anie.201300276

    27. [27]

      Luo, M.; Zhao, Z.; Zhang, Y.; Sun, Y.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y.; et al. Nature 2019, 574, 81. doi: 10.1038/s41586-019-1603-7  doi: 10.1038/s41586-019-1603-7

    28. [28]

      Hansgen, D. A.; Vlachos, D. G.; Chen, J. G. Nat. Chem. 2010, 2, 484. doi: 10.1038/nchem.626  doi: 10.1038/nchem.626

    29. [29]

      Boisen, A.; Dahl, S.; Jacobsen, C. J. H. J. Catal. 2002, 208, 180. doi: 10.1006/jcat.2002.3571  doi: 10.1006/jcat.2002.3571

    30. [30]

      Tomboc, G. M.; Kwon, T.; Joo, J.; Lee, K. J. Mater. Chem. A 2020, 8, 14844. doi: 10.1039/D0TA05176D  doi: 10.1039/D0TA05176D

    31. [31]

      Koo, W. -T.; Millstone, J. E.; Weiss, P. S.; Kim, I. -D. ACS Nano 2020, 14, 6407. doi: 10.1021/acsnano.0c03993  doi: 10.1021/acsnano.0c03993

    32. [32]

      Xin, Y.; Li, S.; Qian, Y.; Zhu, W.; Yuan, H.; Jiang, P.; Guo, R.; Wang, L. ACS Catal. 2020, 11280. doi: 10.1021/acscatal.0c03617

    33. [33]

      Li, H.; Zhu, H.; Zhang, S.; Zhang, N.; Du, M.; Chai, Y. Small Struct. 2020, doi: 10.1002/sstr.202000033

    34. [34]

      Dai, S. ChemSusChem 2020, 13, 1915. doi: 10.1002/cssc.202000448  doi: 10.1002/cssc.202000448

    35. [35]

      Xie, P.; Yao, Y.; Huang, Z.; Liu, Z.; Zhang, J.; Li, T.; Wang, G.; Shahbazian-Yassar, R.; Hu, L.; Wang, C. Nat. Commun. 2019, 10, 4011. doi: 10.1073/pnas.1903721117  doi: 10.1073/pnas.1903721117

    36. [36]

      Yao, Y.; Liu, Z.; Xie, P.; Huang, Z.; Li, T.; Morris, D.; Finfrock, Z.; Zhou, J.; Jiao, M.; Gao, J.; et al. Sci. Adv. 2020, 6, eaaz0510. doi: 10.1126/sciadv.aaz0510  doi: 10.1126/sciadv.aaz0510

    37. [37]

      Yao, Y.; Huang, Z.; Xie, P.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F.; Nie, A.; Pu, T.; Rehwoldt, M.; et al. Science 2018, 359, 1489. doi: 10.1126/science.aan5412  doi: 10.1126/science.aan5412

    38. [38]

      Chen, X.; Si, C.; Gao, Y.; Frenzel, J.; Sun, J.; Eggeler, G.; Zhang, Z. J. Power Sources 2015, 273, 324. doi: 10.1016/j.jpowsour.2014.09.076  doi: 10.1016/j.jpowsour.2014.09.076

    39. [39]

      Li, J.; Stein, H. S.; Sliozberg, K.; Liu, J.; Liu, Y.; Sertic, G.; Scanley, E.; Ludwig, A.; Schroers, J.; Schuhmann, W.; et al. J. Mater. Chem. A 2016, 5, 67. doi: 10.1016/S1872-2067(15)60875-0  doi: 10.1016/S1872-2067(15)60875-0

    40. [40]

      Li, S.; Tang, X.; Jia, H.; Li, H.; Xie, G.; Liu, X.; Lin, X.; Qiu, H. J. Catal. 2020, 383, 164. doi: 10.1016/j.jcat.2020.01.024  doi: 10.1016/j.jcat.2020.01.024

    41. [41]

      Löffler, T.; Meyer, H.; Savan, A.; Wilde, P.; Garzón Manjón, A.; Chen, Y. -T.; Ventosa, E.; Scheu, C.; Ludwig, A.; Schuhmann, W. Adv. Energy Mater. 2018, 8, 1802269. doi: 10.1002/aenm.201802269  doi: 10.1002/aenm.201802269

    42. [42]

      Löffler, T.; Savan, A.; Meyer, H.; Meischein, M.; Strotkötter, V.; Ludwig, A.; Schuhmann, W. Angew. Chem. Int. Ed. 2020, 59, 5844. doi: 10.1002/anie.201914666  doi: 10.1002/anie.201914666

    43. [43]

      Qiu, H.; Fang, G.; Wen, Y.; Liu, P.; Xie, G.; Liu, X.; Sun, S. J. Mater. Chem. A 2019, 7, 6499. doi: 10.1039/C9TA00505F  doi: 10.1039/C9TA00505F

    44. [44]

      Jin, Z.; Lv, J.; Jia, H.; Liu, W.; Li, H.; Chen, Z.; Lin, X.; Xie, G.; Liu, X.; Sun, S.; Qiu, H. J. Small 2019, 15, 1904180. doi: 10.1002/smll.201904180  doi: 10.1002/smll.201904180

    45. [45]

      Yao, Y.; Huang, Z.; Li, T.; Wang, H.; Liu, Y.; Stein, H. S.; Mao, Y.; Gao, J.; Jiao, M.; Dong, Q.; et al. Proc. Natl. Acad. Sci. 2020, 117, 6316. doi: 10.1073/pnas.1903721117  doi: 10.1073/pnas.1903721117

    46. [46]

      Pedersen, J. K.; Batchelor, T. A. A.; Bagger, A.; Rossmeisl, J. ACS Catal. 2020, 10, 2169. doi: 10.1021/acscatal.9b04343  doi: 10.1021/acscatal.9b04343

    47. [47]

      Glasscott, M. W.; Pendergast, A. D.; Goines, S.; Bishop, A. R.; Hoang, A. T.; Renault, C.; Dick, J. E. Nat. Commun. 2019, 10, 2650. doi: 10.1038/s41467-019-10303-z  doi: 10.1038/s41467-019-10303-z

    48. [48]

      Liu, M.; Zhang, Z.; Okejiri, F.; Yang, S.; Zhou, S.; Dai, S. Adv. Mater. Interfaces 2019, 6, 1900015. doi: 10.1002/admi.201900015  doi: 10.1002/admi.201900015

    49. [49]

      Waag, F.; Li, Y.; Ziefuß, A. R.; Bertin, E.; Kamp, M.; Duppel, V.; Marzun, G.; Kienle, L.; Barcikowski, S.; Gökce, B. RSC Adv. 2019, 9, 18547. doi: 10.1039/C9RA03254A  doi: 10.1039/C9RA03254A

    50. [50]

      Cui, X.; Zhang, B.; Zeng, C.; Guo, S. MRS Commun. 2018, 8, 1230. doi: 10.1557/mrc.2018.111  doi: 10.1557/mrc.2018.111

    51. [51]

      Dai, W.; Lu, T.; Pan, Y. J. Power Sources 2019, 430, 104. doi: 10.1016/j.jpowsour.2019.05.030  doi: 10.1016/j.jpowsour.2019.05.030

    52. [52]

      Huang, K.; Zhang, B.; Wu, J.; Zhang, T.; Peng, D.; Cao, X.; Zhang, Z.; Li, Z.; Huang, Y. J. Mater. Chem. A 2020, 8, 11938. doi: 10.1039/D0TA02125C  doi: 10.1039/D0TA02125C

    53. [53]

      Qiu, H.; Fang, G.; Gao, J.; Wen, Y.; Lv, J.; Li, H.; Xie, G.; Liu, X.; Sun, S. ACS Mater. Lett. 2019, 1, 526. doi: 10.1021/acsmaterialslett.9b00414  doi: 10.1021/acsmaterialslett.9b00414

    54. [54]

      Feng, J.; Chen, D.; Pikhitsa, P. V.; Jung, Y. -H.; Yang, J.; Choi, M. Matter 2020, 3, 1646. doi: 10.1016/j.matt.2020.07.027  doi: 10.1016/j.matt.2020.07.027

    55. [55]

      Tsai, C. -F.; Yeh, K. -Y.; Wu, P. -W.; Hsieh, Y. -F.; Lin, P. J. Alloys Compd. 2009, 478, 868. doi: 10.1016/j.jallcom.2008.12.055  doi: 10.1016/j.jallcom.2008.12.055

    56. [56]

      Yusenko, K. V.; Riva, S.; Carvalho, P. A.; Yusenko, M. V.; Arnaboldi, S.; Sukhikh, A. S.; Hanfland, M.; Gromilov, S. A. Scr. Mater. 2017, 138, 22. doi: 10.1016/j.scriptamat.2017.05.022  doi: 10.1016/j.scriptamat.2017.05.022

    57. [57]

      Katiyar, N. K.; Nellaiappan, S.; Kumar, R.; Malviya, K. D.; Pradeep, K. G.; Singh, A. K.; Sharma, S.; Tiwary, C. S.; Biswas, K. Mater. Today Energy 2020, 16, 100393. doi: 10.1016/j.mtener.2020.100393  doi: 10.1016/j.mtener.2020.100393

    58. [58]

      Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Adv. Eng. Mater. 2004, 6, 299. doi: 10.1002/adem.200300567  doi: 10.1002/adem.200300567

    59. [59]

      Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B. Mater. Sci. Eng. A 2004, 375–377, 213. doi: 10.1016/j.msea.2003.10.257

    60. [60]

      Yeh, J. -W. JOM 2013, 65, 1759. doi: 10.1007/s11837-013-0761-6  doi: 10.1007/s11837-013-0761-6

    61. [61]

      Ruffa, A. R. Phys. Rev. B 1982, 25, 5895. doi: 10.1103/PhysRevB.25.5895  doi: 10.1103/PhysRevB.25.5895

    62. [62]

      Zhang, W.; Liaw, P. K.; Zhang, Y. Sci. China Mater. 2018, 61, 2. doi: 10.1007/s40843-017-9195-8  doi: 10.1007/s40843-017-9195-8

    63. [63]

      Gludovatz, B.; Hohenwarter, A.; Thurston, K. V. S.; Bei, H.; Wu, Z.; George, E. P.; Ritchie, R. O. Nat. Commun. 2016, 7, 10602. doi: 10.1038/ncomms10602  doi: 10.1038/ncomms10602

    64. [64]

      Zhang, Z.; Sheng, H.; Wang, Z.; Gludovatz, B.; Zhang, Z.; George, E. P.; Yu, Q.; Mao, S. X.; Ritchie, R. O. Nat. Commun. 2017, 8, 14390. doi: 10.1038/ncomms14390  doi: 10.1038/ncomms14390

    65. [65]

      Ding, J.; Yu, Q.; Asta, M.; Ritchie, R. O. Proc. Natl. Acad. Sci. 2018, 115, 8919. doi: 10.1073/pnas.1808660115  doi: 10.1073/pnas.1808660115

    66. [66]

      Zhang, R.; Zhao, S.; Ding, J.; Chong, Y.; Jia, T.; Ophus, C.; Asta, M.; Ritchie, R. O.; Minor, A. M. Nature 2020, 581, 283. doi: 10.1038/s41586-020-2275-z  doi: 10.1038/s41586-020-2275-z

    67. [67]

      George, E. P.; Raabe, D.; Ritchie, R. O. Nat. Rev. Mater. 2019, 4, 515. doi: 10.1038/s41578-019-0121-4  doi: 10.1038/s41578-019-0121-4

    68. [68]

      Ma, D.; Grabowski, B.; Körmann, F.; Neugebauer, J.; Raabe, D. Acta Mater. 2015, 100, 90. doi: 10.1016/j.actamat.2015.08.050  doi: 10.1016/j.actamat.2015.08.050

    69. [69]

      Miracle, D. B.; Senkov, O. N. Acta Mater. 2017, 122, 448. doi: 10.1016/j.actamat.2016.08.081  doi: 10.1016/j.actamat.2016.08.081

    70. [70]

      Zhang, Y.; Zuo, T. T.; Tang, Z.; Gao, M. C.; Dahmen, K. A.; Liaw, P. K.; Lu, Z. P. Proc. Natl. Acad. Sci. 2014, 61, 1. doi: 10.1016/j.pmatsci.2013.10.001  doi: 10.1016/j.pmatsci.2013.10.001

    71. [71]

      Gibbs, J. W. Am. J. Sci. 1878, 16, 441. doi: 10.2475/ajs.s3-16.96.441  doi: 10.2475/ajs.s3-16.96.441

    72. [72]

      Yeh, J. -W.; Chang, S. -Y.; Hong, Y. -D.; Chen, S. -K.; Lin, S. -J. Mater. Chem. Phys. 2007, 103, 41. doi: 10.1016/j.matchemphys.2007.01.003  doi: 10.1016/j.matchemphys.2007.01.003

    73. [73]

      Guo, W.; Dmowski, W.; Noh, J.; Rack, P. D.; Liaw, P. K.; Egami, T. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2013, 44, 1994. doi: 10.1007/s11661-012-1474-0  doi: 10.1007/s11661-012-1474-0

    74. [74]

      Tsai, K. Y.; Tsai, M. H.; Yeh, J. W. Acta Mater. 2013, 61, 4887. doi: 10.1016/j.actamat.2013.04.058  doi: 10.1016/j.actamat.2013.04.058

    75. [75]

      Ranganathan, S. Curr. Sci. 2003, 85, 1404.

    76. [76]

      Pickering, E. J.; Jones, N. G. Int. Mater. Rev. 2016, 61, 183. doi: 10.1080/09506608.2016.1180020  doi: 10.1080/09506608.2016.1180020

    77. [77]

      Pickering, E. J.; Muñoz-Moreno, R.; Stone, H. J.; Jones, N. G. Scr. Mater. 2016, 113, 106. doi: 10.1016/j.scriptamat.2015.10.025  doi: 10.1016/j.scriptamat.2015.10.025

    78. [78]

      Laplanche, G.; Berglund, S.; Reinhart, C.; Kostka, A.; Fox, F.; George, E. P. Acta Mater. 2018, 161, 338. doi: 10.1016/j.actamat.2018.09.040  doi: 10.1016/j.actamat.2018.09.040

    79. [79]

      Schuh, B.; Mendez-Martin, F.; Völker, B.; George, E. P.; Clemens, H.; Pippan, R.; Hohenwarter, A. Acta Mater. 2015, 96, 258. doi: 10.1016/j.actamat.2015.06.025  doi: 10.1016/j.actamat.2015.06.025

    80. [80]

      Otto, F.; Dlouhý, A.; Pradeep, K. G.; Kuběnová, M.; Raabe, D.; Eggeler, G.; George, E. P. Acta Mater. 2016, 112, 40. doi: 10.1016/j.actamat.2016.04.005  doi: 10.1016/j.actamat.2016.04.005

    81. [81]

      Sharma, G.; Kumar, D.; Kumar, A.; Al-Muhtaseb, A. a. H.; Pathania, D.; Naushad, M.; Mola, G. T. Mater. Sci. Eng. C 2017, 71, 1216. doi: 10.1016/j.msec.2016.11.002  doi: 10.1016/j.msec.2016.11.002

    82. [82]

      Yang, Y.; Lin, Z.; Gao, S.; Su, J.; Lun, Z.; Xia, G.; Chen, J.; Zhang, R.; Chen, Q. ACS Catal. 2017, 7, 469. doi: 10.1021/acscatal.6b02573  doi: 10.1021/acscatal.6b02573

    83. [83]

      Gao, S.; Hao, S.; Huang, Z.; Yuan, Y.; Han, S.; Lei, L.; Zhang, X.; Shahbazian-Yassar, R.; Lu, J. Nat. Commun. 2020, 11, 2016. doi: 10.1038/s41467-020-15934-1  doi: 10.1038/s41467-020-15934-1

    84. [84]

      Wu, D.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. J. Am. Chem. Soc. 2020, 142, 13833. doi: 10.1021/jacs.0c04807  doi: 10.1021/jacs.0c04807

    85. [85]

      Glasscott, M. W.; Pendergast, A. D.; Dick, J. E. ACS Appl. Nano Mater. 2018, 1, 5702. doi: 10.1021/acsanm.8b01308  doi: 10.1021/acsanm.8b01308

    86. [86]

      Glasscott, M. W.; Dick, J. E. ACS Nano 2019, 13, 4572. doi: 10.1021/acsnano.9b00546  doi: 10.1021/acsnano.9b00546

    87. [87]

      Glasscott, M. W.; Dick, J. E. Anal. Chem. 2018, 90, 7804. doi: 10.1021/acs.analchem.8b02219  doi: 10.1021/acs.analchem.8b02219

    88. [88]

      LaMer, V. K.; Dinegar, R. H. J. Am. Chem. Soc. 1950, 72, 4847. doi: 10.1021/ja01167a001  doi: 10.1021/ja01167a001

    89. [89]

      Pound, G. M.; Mer, V. K. L. J. Am. Chem. Soc. 1952, 74, 2323. doi: 10.1021/ja01129a044  doi: 10.1021/ja01129a044

    90. [90]

      Jia, Z.; Yang, T.; Sun, L.; Zhao, Y.; Li, W.; Luan, J.; Lyu, F.; Zhang, L. C.; Kruzic, J. J.; Kai, J. J.; et al. Adv. Mater. 2020, 32, 2000385. doi: 10.1002/adma.202000385  doi: 10.1002/adma.202000385

    91. [91]

      Chen, P.; Liu, X.; Hedrick, J. L.; Xie, Z.; Wang, S.; Lin, Q. -Y.; Hersam, M. C.; Dravid, V. P.; Mirkin, C. A. Science 2016, 352, 1565. doi: 10.1126/science.aaf8402  doi: 10.1126/science.aaf8402

    92. [92]

      Chen, P.; Liu, M.; Du, J. S.; Meckes, B.; Wang, S.; Lin, H.; Dravid, V. P.; Wolverton, C.; Mirkin, C. A. Science 2019, 363, 959. doi: 10.1126/science.aav4302  doi: 10.1126/science.aav4302

    93. [93]

      Chen, P.; Du, J. S.; Meckes, B.; Huang, L.; Xie, Z.; Hedrick, J. L.; Dravid, V. P.; Mirkin, C. A. J. Am. Chem. Soc. 2017, 139, 9876. doi: 10.1021/jacs.7b03163  doi: 10.1021/jacs.7b03163

    94. [94]

      Xu, X.; Du, Y.; Wang, C.; Guo, Y.; Zou, J.; Zhou, K.; Zeng, Z.; Liu, Y.; Li, L. J. Alloys Compd. 2020, 822, 153642. doi: 10.1016/j.jallcom.2020.153642  doi: 10.1016/j.jallcom.2020.153642

    95. [95]

      Calvo-Dahlborg, M.; Brown, S. G. R. J. Alloys Compd. 2017, 724, 353. doi: 10.1016/j.jallcom.2017.07.074  doi: 10.1016/j.jallcom.2017.07.074

    96. [96]

      Otto, F.; Yang, Y.; Bei, H.; George, E. P. Acta Mater. 2013, 61, 2628. doi: 10.1016/j.actamat.2013.01.042  doi: 10.1016/j.actamat.2013.01.042

    97. [97]

      Masa, J.; Schuhmann, W. J. Solid State Electrochem. 2020, 24, 2181. doi: 10.1007/s10008-020-04757-1  doi: 10.1007/s10008-020-04757-1

    98. [98]

      Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. J. Catal. 2015, 328, 36. doi: 10.1016/j.jcat.2014.12.033  doi: 10.1016/j.jcat.2014.12.033

    99. [99]

      Torelli, D. A.; Francis, S. A.; Crompton, J. C.; Javier, A.; Thompson, J. R.; Brunschwig, B. S.; Soriaga, M. P.; Lewis, N. S. ACS Catal. 2016, 6, 2100. doi: 10.1021/acscatal.5b02888  doi: 10.1021/acscatal.5b02888

    100. [100]

      Wang, S.; Jiang, S. P. Natl. Sci. Rev. 2017, 4, 163. doi: 10.1093/nsr/nww099  doi: 10.1093/nsr/nww099

    101. [101]

      Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Science 2009, 323, 760. doi: 10.1126/science.1168049  doi: 10.1126/science.1168049

    102. [102]

      Wang, T.; Xie, H.; Chen, M.; D'Aloia, A.; Cho, J.; Wu, G.; Li, Q. Nano Energy 2017, 42, 69. doi: 10.1016/j.nanoen.2017.10.045  doi: 10.1016/j.nanoen.2017.10.045

    103. [103]

      Zhao, T.; Hu, Y.; Gong, M.; Lin, R.; Deng, S.; Lu, Y.; Liu, X.; Chen, Y.; Shen, T.; Hu, Y.; et al. Nano Energy 2020, 74, 104877. doi: 10.1016/j.nanoen.2020.104877  doi: 10.1016/j.nanoen.2020.104877

    104. [104]

      Qiu, H. J.; Shen, X.; Wang, J. Q.; Hirata, A.; Fujita, T.; Wang, Y.; Chen, M. W. ACS Catal. 2015, 5, 3779. doi: 10.1021/acscatal.5b00073  doi: 10.1021/acscatal.5b00073

    105. [105]

      Jia, Q.; Zhao, Z.; Cao, L.; Li, J.; Ghoshal, S.; Davies, V.; Stavitski, E.; Attenkofer, K.; Liu, Z.; Li, M.; et al. Nano Lett. 2018, 18, 798. doi: 10.1021/acs.nanolett.7b04007  doi: 10.1021/acs.nanolett.7b04007

    106. [106]

      Shi, Y.; Yang, B.; Liaw, P. Metals 2017, 2, 107. doi: 10.3390/met7020043  doi: 10.3390/met7020043

    107. [107]

      Alaneme, K. K.; Bodunrin, M. O.; Oke, S. R. J. Mater. Res. Technol. 2016, 5, 384. doi: 10.1016/j.jmrt.2016.03.004  doi: 10.1016/j.jmrt.2016.03.004

    108. [108]

      Chou, Y. L.; Yeh, J. W.; Shih, H. C. Corros. Sci. 2010, 52, 2571. doi: 10.1016/j.corsci.2010.04.004  doi: 10.1016/j.corsci.2010.04.004

    109. [109]

      Shi, Y.; Yang, B.; Xie, X.; Brechtl, J.; Dahmen, K. A.; Liaw, P. K. Corros. Sci. 2017, 119, 33. doi: 10.1016/j.corsci.2017.02.019  doi: 10.1016/j.corsci.2017.02.019

    110. [110]

      McNicol, B. D.; Rand, D. A. J.; Williams, K. R. J. Power Sources 1999, 83, 15. doi: 10.1016/S0378-7753(99)00244-X  doi: 10.1016/S0378-7753(99)00244-X

    111. [111]

      Kamarudin, S. K.; Achmad, F.; Daud, W. R. W. Int. J. Hydrog. Energy 2009, 34, 6902. doi: 10.1016/j.ijhydene.2009.06.013  doi: 10.1016/j.ijhydene.2009.06.013

    112. [112]

      Tiwari, J. N.; Tiwari, R. N.; Singh, G.; Kim, K. S. Nano Energy 2013, 2, 553. doi: 10.1016/j.nanoen.2013.06.009  doi: 10.1016/j.nanoen.2013.06.009

    113. [113]

      Zhuang, L. Carbon Energy 2018, 34, 115. doi: 10.3866/pku.Whxb201707102  doi: 10.3866/pku.Whxb201707102

    114. [114]

      Zhou, Y.; Han, N.; Li, Y. Acta Phys. -Chim. Sin. 2020, 36, 2001041.  doi: 10.3866/PKU.WHXB202001041

    115. [115]

      Wang, S.; Kou, T.; Baker, S. E.; Duoss, E. B.; Li, Y. Mater. Today Nano 2020, 12, 100096. doi: 10.1016/j.mtnano.2020.100096  doi: 10.1016/j.mtnano.2020.100096

    116. [116]

      Kang, Y.; Yang, P.; Markovic, N. M.; Stamenkovic, V. R. Nano Today 2016, 11, 587. doi: 10.1016/j.nantod.2016.08.008  doi: 10.1016/j.nantod.2016.08.008

    117. [117]

      Chen, Y.; Lai, Z.; Zhang, X.; Fan, Z.; He, Q.; Tan, C.; Zhang, H. Nat. Rev. Chem. 2020, 4, 243. doi: 10.1038/s41570-020-0173-4  doi: 10.1038/s41570-020-0173-4

    118. [118]

      Fan, Z.; Zhang, H. Chem. Soc. Rev. 2016, 45, 63. doi: 10.1039/C5CS00467E  doi: 10.1039/C5CS00467E

    119. [119]

      Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Ed. 2009, 48, 60. doi: 10.1002/anie.200802248  doi: 10.1002/anie.200802248

    120. [120]

      Tan, C.; Chen, J.; Wu, X. -J.; Zhang, H. Nat. Rev. Mater. 2018, 3, 17089. doi: 10.1038/natrevmats.2017.89  doi: 10.1038/natrevmats.2017.89

    121. [121]

      Aslam, U.; Rao, V. G.; Chavez, S.; Linic, S. Nat. Catal. 2018, 1, 656. doi: 10.1038/s41929-018-0138-x  doi: 10.1038/s41929-018-0138-x

    122. [122]

      Luo, M.; Guo, S. Nat. Rev. Mater. 2017, 2, 17059. doi: 10.1038/natrevmats.2017.59  doi: 10.1038/natrevmats.2017.59

    123. [123]

      Hwang, S.; Chen, X.; Zhou, G.; Su, D. Adv. Energy Mater. 2020, 10, 1902105. doi: 10.1002/aenm.201902105  doi: 10.1002/aenm.201902105

    124. [124]

      Su, D. Green Energy Environ. 2017, 2, 70. doi: 10.1016/j.gee.2017.02.001  doi: 10.1016/j.gee.2017.02.001

    125. [125]

      Gilroy, K. D.; Ruditskiy, A.; Peng, H. -C.; Qin, D.; Xia, Y. Chem. Rev. 2016, 116, 10414. doi: 10.1021/acs.chemrev.6b00211  doi: 10.1021/acs.chemrev.6b00211

    126. [126]

      Ge, M.; Su, F.; Zhao, Z.; Su, D. Mater. Today Nano 2020, 11, 100087. doi: 10.1016/j.mtnano.2020.100087  doi: 10.1016/j.mtnano.2020.100087

    127. [127]

      Jia, Z.; Yang, T.; Sun, L.; Zhao, Y.; Li, W.; Luan, J.; Lyu, F.; Zhang, L. -C.; Kruzic, J. J.; Kai, J. -J.; et al. Adv. Mater. 2020, 32, 2000385. doi: 10.1002/adma.202000385  doi: 10.1002/adma.202000385

    128. [128]

      Anandkumar, M.; Bhattacharya, S.; Deshpande, A. S. RSC Adv. 2019, 9, 26825. doi: 10.1039/C9RA04636D  doi: 10.1039/C9RA04636D

    129. [129]

      Chen, H.; Lin, W.; Zhang, Z.; Jie, K.; Mullins, D. R.; Sang, X.; Yang, S. -Z.; Jafta, C. J.; Bridges, C. A.; Hu, X.; et al. ACS Mater. Lett. 2019, 1, 83. doi: 10.1021/acsmaterialslett.9b00064  doi: 10.1021/acsmaterialslett.9b00064

    130. [130]

      Chen, H.; Jie, K.; Jafta, C. J.; Yang, Z.; Yao, S.; Liu, M.; Zhang, Z.; Liu, J.; Chi, M.; Fu, J.; et al. Appl. Catal. B 2020, 276, 119155. doi: 10.1016/j.apcatb.2020.119155  doi: 10.1016/j.apcatb.2020.119155

    131. [131]

      Deng, C.; Wu, P.; Zhu, L.; He, J.; Tao, D.; Lu, L.; He, M.; Hua, M.; Li, H.; Zhu, W. Appl. Mater. Today 2020, 20, 100680. doi: 10.1016/j.apmt.2020.100680  doi: 10.1016/j.apmt.2020.100680

    132. [132]

      Okejiri, F.; Zhang, Z.; Liu, J.; Liu, M.; Yang, S.; Dai, S. ChemSusChem 2020, 13, 111. doi: 10.1002/cssc.201902705  doi: 10.1002/cssc.201902705

    133. [133]

      Oses, C.; Toher, C.; Curtarolo, S. Nat. Rev. Mater. 2020, 5, 295. doi: 10.1038/s41578-019-0170-8  doi: 10.1038/s41578-019-0170-8

    134. [134]

      Wang, T.; Chen, H.; Yang, Z.; Liang, J.; Dai, S. J. Am. Chem. Soc. 2020, 142, 4550. doi: 10.1021/jacs.9b12377  doi: 10.1021/jacs.9b12377

  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    5. [5]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    8. [8]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    9. [9]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    17. [17]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Qingcui Yang Wen Liu Li Cao Chen Tang Bing Xu Jie Zhao . For Entropy Hurts: Life Thrives on Negative Entropy. University Chemistry, 2024, 39(9): 151-156. doi: 10.12461/PKU.DXHX202402029

Metrics
  • PDF Downloads(173)
  • Abstract views(2881)
  • HTML views(1543)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return