Citation: Xu Bingyan, Zhang Ying, Pi Yecan, Shao Qi, Huang Xiaoqing. Research Progress of Nickel-Based Metal-Organic Frameworks and Their Derivatives for Oxygen Evolution Catalysis[J]. Acta Physico-Chimica Sinica, ;2021, 37(7): 200907. doi: 10.3866/PKU.WHXB202009074 shu

Research Progress of Nickel-Based Metal-Organic Frameworks and Their Derivatives for Oxygen Evolution Catalysis


  • Author Bio:



    Dr. Xiaoqing Huang is currently a professor at College of Chemistry and Chemical Engineering, Xiamen University. He obtained his B.Sc. in chemistry education from Southwest Normal University (2005) and Ph.D. in organic chemistry from Xiamen University (2011). His current research interests are in the design of nanoscale materials for heterogenous catalysis, electrocatalysis, energy conversion and beyond
  • Corresponding author: Huang Xiaoqing, hxq006@xmu.edu.cn
  • Received Date: 23 September 2020
    Revised Date: 23 October 2020
    Accepted Date: 26 October 2020
    Available Online: 30 October 2020

    Fund Project: the Start-Up Support from Xiamen University, China 0040/X2303321The project was supported by the Start-Up Support from Xiamen University, China (0040/X2303321)

  • As one of the most promising hydrogen production technologies, electrochemical water splitting is an effective measure for solving environmental pollution and energy crises. However, the slow kinetics and high overpotential of the oxygen evolution reaction (OER) are the primary deterrents for improving the efficiency of water splitting devices. Iridium- and ruthenium-based noble metal catalysts are extremely expensive, which limits the industrial-scale development of this technology. Therefore, the development of oxygen evolution catalysts with high activity, excellent stability, and low costs is significantly important for water splitting technologies. Nickel-based materials meet the requirements of high abundance, cost-effectiveness, and high activity. In recent years, nickel-based metal organic frameworks (Ni-based MOFs) have attracted increasing research attention owing to their diverse and tunable topological structures and large specific surface areas. Furthermore, the mesoporous three-dimensional structure of MOFs can promote the diffusion of reactants, rendering them excellent candidates for catalytic applications. In order to utilize the advantages of Ni-MOFs more efficiently, the following methods are usually used to improve their catalytic performance. Owing to their unique properties, metal nodes can be replaced without affecting the MOF skeleton. As iron series metals, Co and Fe doping show unique catalytic activity and structural stability due to the synergistic effect between metal centers. Further, Ni-MOFs can simultaneously be used as precursors for oxidation, phosphating, or vulcanization to obtain Ni-MOF derivatives with different components. Among them, high-temperature carbonization treatment can make use of abundant organic ligands of Ni-MOFs to form a partially graphitized carbon-based framework, thereby augmenting conductivity, preventing the aggregation and corrosion of transition metals, and improving the overall support strength. The catalytic performance of oxygen production can be further improved by directly growing the Ni-MOFs on the substrate and introducing other active substances or conductive materials. Herein, the latest developments of Ni-based MOFs and their derivatives have been reviewed with regard to their utilization in OER catalysis, including nickel oxides, nickel hydroxides, nickel phosphides, nickel sulfides, and carbon composite materials. First, the mechanism and measurement criteria of the OER are briefly introduced. Second, the structures of several typical Ni-based MOFs (MOF-74, MILs, PBAs, and ZIFs) and their preparation methods are described. Subsequently, recent advances in the application of Ni-based MOFs and their derivatives in the OER are discussed, with an emphasis on materials design strategies and catalytic mechanisms. Finally, the main challenges and opportunities in this field are proposed.
  • 加载中
    1. [1]

      Li, X.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2016, 45(9), 2603.doi:10.1039/C5CS00838G  doi: 10.1039/C5CS00838G

    2. [2]

      Dresselhaus, M. S.; Thomas, I. L. Nature 2001, 414(6861), 332.doi:10.1038/35104599  doi: 10.1038/35104599

    3. [3]

      Chu, S.; Majumdar, A. Nature 2012, 488(7411), 294.doi:10.1038/nature11475  doi: 10.1038/nature11475

    4. [4]

      Kibsgaard, J.; Chorkendorff, I. Nat. Energy 2019, 4(6), 430.doi:10.1038/s41560-019-0407-1  doi: 10.1038/s41560-019-0407-1

    5. [5]

      McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2013, 135(45), 16977.doi:10.1021/ja407115p  doi: 10.1021/ja407115p

    6. [6]

      Dang, S.; Zhu, Q. -L.; Xu, Q. Nat. Rev. Mater. 2018, 3(1), 17075.doi:10.1038/natrevmats.2017.75  doi: 10.1038/natrevmats.2017.75

    7. [7]

      Chang, J.; Xiao, Y.; Luo, Z.; Ge, J.; Liu, C.; Xing, W. Acta Phys. -Chim. Sin. 2016, 32(7), 1556.  doi: 10.3866/PKU.WHXB201604291

    8. [8]

      Wang, H. F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. Chem. Soc. Rev. 2020, 49(5), 1414.doi:10.1039/c9cs00906j  doi: 10.1039/c9cs00906j

    9. [9]

      Zhu, B.; Liang, Z.; Xia, D.; Zou, R. Energy Storage Mater. 2019, 23, 757.doi:10.1016/j.ensm.2019.05.022  doi: 10.1016/j.ensm.2019.05.022

    10. [10]

      Wang, X.; Li, B.; Wu, Y. P.; Tsamis, A.; Yu, H. G.; Liu, S.; Zhao, J.; Li, Y. S.; Li, D. S. Inorg. Chem. 2020, 59(7), 4764.doi:10.1021/acs.inorgchem.0c00024  doi: 10.1021/acs.inorgchem.0c00024

    11. [11]

      Dong, Y.; Oloman, C. W.; Gyenge, E. L.; Su, J.; Chen, L. Nanoscale 2020, 12(18), 9924.doi:10.1039/d0nr02187c  doi: 10.1039/d0nr02187c

    12. [12]

      Han, L.; Dong, S.; Wang, E. Adv. Mater. 2016, 28(42), 9266. doi:10.1002/adma.201602270  doi: 10.1002/adma.201602270

    13. [13]

      Gao, R.; Yan, D. Adv. Energy Mater. 2020, 10(11), 1. doi:10.1002/aenm.201900954  doi: 10.1002/aenm.201900954

    14. [14]

      Wang, L.; Sun, W.; Liu, C. Acta Phys. -Chim. Sin. 2019, 35(7), 697.  doi: 10.3866/PKU.WHXB201807071

    15. [15]

      Tang, H.; Zheng, M.; Hu, Q.; Chi, Y.; Xu, B.; Zhang, S.; Xue, H.; Pang, H. J. Mater. Chem. A 2018, 6(29), 13999.doi:10.1039/c8ta03644f  doi: 10.1039/c8ta03644f

    16. [16]

      Xuan, C.; Zhang, J.; Wang, J.; Wang, D. Chem. Asian J. 2020, 15(7), 958.doi:10.1002/asia.20190172  doi: 10.1002/asia.20190172

    17. [17]

      Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. J. Catal. 2015, 328, 36.doi:10.1016/j.jcat.2014.12.033  doi: 10.1016/j.jcat.2014.12.033

    18. [18]

      Man, I. C.; Su, H.; Calle-vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. ChemCatChem 2011, 3(7), 1159.doi:10.1002/cctc.201000397  doi: 10.1002/cctc.201000397

    19. [19]

      Bode, H.; Dehmelt, K.; Witte, J. Electrochim. Acta 1966, 11(8), 1079.doi:10.1016/0013-4686(66)80045-2  doi: 10.1016/0013-4686(66)80045-2

    20. [20]

      Huang, J.; Li, Y.; Zhang, Y.; Rao, G.; Wu, C.; Hu, Y.; Wang, X.; Lu, R.; Li, Y.; Xiong, J. Angew. Chem. Int. Ed. 2019, 58(48), 17458.doi:10.1002/anie.201910716  doi: 10.1002/anie.201910716

    21. [21]

      Wan, Z.; Yang, D.; Chen, J.; Tian, J.; Isimjan, T. T.; Yang, X. ACS Appl. Nano Mater. 2019, 2(10), 6334.doi:10.1021/acsanm.9b01330  doi: 10.1021/acsanm.9b01330

    22. [22]

      Duan, J.; Chen, S.; Zhao, C. Nat. Commun. 2017, 8, 1.doi:10.1038/ncomms15341  doi: 10.1038/ncomms15341

    23. [23]

      Li, Y. -F.; Selloni, A. ACS Catal. 2014, 4(4), 1148.doi:10.1021/cs401245q  doi: 10.1021/cs401245q

    24. [24]

      Diaz-Morales, O.; Ledezma-Yanez, I.; Koper, M. T. M.; Calle-Vallejo, F. ACS Catal. 2015, 5(9), 5380.doi:10.1021/acscatal.5b01638  doi: 10.1021/acscatal.5b01638

    25. [25]

      Li, W. H.; Lv, J.; Li, Q.; Xie, J.; Ogiwara, N.; Huang, Y.; Jiang, H.; Kitagawa, H.; Xu, G.; Wang, Y. J. Mater. Chem. A 2019, 7(17), 10431.doi:10.1039/c9ta02169h  doi: 10.1039/c9ta02169h

    26. [26]

      Yeo, B. S.; Bell, A. T. J. Phys. Chem. C 2012, 116(15), 8394.doi:10.1021/jp3007415  doi: 10.1021/jp3007415

    27. [27]

      Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Chem. Soc. Rev. 2015, 44(8), 2060.doi:10.1039/C4CS00470A  doi: 10.1039/C4CS00470A

    28. [28]

      Suen, N.; Hung, S.; Quan, Q.; Zhang, N.; Xu, Y.; Chen, H. Chem. Soc. Rev. 2017, 46(2), 337.doi:10.1039/C6CS00328A  doi: 10.1039/C6CS00328A

    29. [29]

      Dietzel, P. D. C.; Panella, B.; Hirscher, M.; Blom, R.; Fjellvåg, H. Chem. Commun. 2006, 1(9), 959.doi:10.1039/b515434k  doi: 10.1039/b515434k

    30. [30]

      Palomino Cabello, C.; Gómez-Pozuelo, G.; Opanasenko, M.; Nachtigall, P.; Čejka, J. ChemPlusChem 2016, 81(8), 828.doi:10.1002/cplu.201600168  doi: 10.1002/cplu.201600168

    31. [31]

      Gao, Z.; Yu, Z. W.; Liu, F. Q.; Yu, Y.; Su, X. M.; Wang, L.; Xu, Z. Z.; Yang, Y. L.; Wu, G. R.; Feng, X. F.; et al. Inorg. Chem. 2019, 58(17), 11500.doi:10.1021/acs.inorgchem.9b01301  doi: 10.1021/acs.inorgchem.9b01301

    32. [32]

      Janiak, C.; Vieth, J. K. New J. Chem. 2010, 34(11), 2366. doi:10.1039/c0nj00275e  doi: 10.1039/c0nj00275e

    33. [33]

      Tao, Z.; Wang, T.; Wang, X.; Zheng, J.; Li, X. ACS Appl. Mater. Interfaces 2016, 8(51), 35390.doi:10.1021/acsami.6b13411  doi: 10.1021/acsami.6b13411

    34. [34]

      Lin, Y.; Chen, G.; Wan, H.; Chen, F.; Liu, X.; Ma, R. Small 2019, 15(18), 1.doi:10.1002/smll.201900348  doi: 10.1002/smll.201900348

    35. [35]

      Yaghi, O. M.; Li, H. J. Am. Chem. Soc. 1995, 117(41), 10401.doi:10.1021/ja00146a033  doi: 10.1021/ja00146a033

    36. [36]

      Ping, D.; Feng, X.; Zhang, J.; Geng, J.; Dong, X. ChemElectroChem 2017, 4(12), 3037.doi:10.1002/celc.201700901  doi: 10.1002/celc.201700901

    37. [37]

      Zhao, S.; Wang, Y.; Dong, J.; He, C. -T.; Yin, H.; An, P.; Zhao, K.; Zhang, X.; Gao, C.; Zhang, L.; et al. Nat. Energy 2016, 1(12), 16184.doi:10.1038/nenergy.2016.184  doi: 10.1038/nenergy.2016.184

    38. [38]

      Shuai, C.; Mo, Z.; Niu, X.; Zhao, P.; Dong, Q.; Chen, Y.; Liu, N.; Guo, R. J. Electrochem. Soc. 2020, 167(2), 026512.doi:10.1149/1945-7111/ab6b10  doi: 10.1149/1945-7111/ab6b10

    39. [39]

      Stock, N.; Biswas, S. Chem. Rev. 2012, 112(2), 933.doi:10.1021/cr200304e  doi: 10.1021/cr200304e

    40. [40]

      Braga, D.; Giaffreda, S. L.; Grepioni, F.; Pettersen, A.; Maini, L.; Curzi, M.; Polito, M. Dalt. Trans. 2006, 10, 1249.doi:10.1039/b516165g  doi: 10.1039/b516165g

    41. [41]

      Zhu, D.; Liu, J.; Wang, L.; Du, Y.; Zheng, Y.; Davey, K.; Qiao, S. Z. Nanoscale 2019, 11(8), 3599.doi:10.1039/c8nr09680e  doi: 10.1039/c8nr09680e

    42. [42]

      Xu, Y.; Tu, W.; Zhang, B.; Yin, S.; Huang, Y.; Kraft, M.; Xu, R. Adv. Mater. 2017, 29(11), 1.doi:10.1002/adma.201605957  doi: 10.1002/adma.201605957

    43. [43]

      He, P.; Xie, Y.; Dou, Y.; Zhou, J.; Zhou, A.; Wei, X.; Li, J. R. ACS Appl. Mater. Interfaces 2019, 11(44), 41595.doi:10.1021/acsami.9b16224  doi: 10.1021/acsami.9b16224

    44. [44]

      Yan, L.; Jiang, H.; Xing, Y.; Wang, Y.; Liu, D.; Gu, X.; Dai, P.; Li, L.; Zhao, X. J. Mater. Chem. A 2018, 6(4), 1682.doi:10.1039/c7ta10218f  doi: 10.1039/c7ta10218f

    45. [45]

      Zhang, H.; Su, J.; Zhao, K.; Chen, L. ChemElectroChem 2020, 7(8), 1805.doi:10.1002/celc.202000136  doi: 10.1002/celc.202000136

    46. [46]

      Maruthapandian, V.; Kumaraguru, S.; Mohan, S.; Saraswathy, V.; Muralidharan, S. ChemElectroChem 2018, 5(19), 2795.doi:10.1002/celc.201800802  doi: 10.1002/celc.201800802

    47. [47]

      Liu, Q.; Xie, L.; Shi, X.; Du, G.; Asiri, A. M.; Luo, Y.; Sun, X. Inorg. Chem. Front. 2018, 5(7), 1570.doi:10.1039/C7QI00808B  doi: 10.1039/C7QI00808B

    48. [48]

      Guo, C.; Jiao, Y.; Zheng, Y.; Luo, J.; Davey, K.; Qiao, S. Z. Chem 2019, 5(9), 2429.doi:10.1016/j.chempr.2019.06.016  doi: 10.1016/j.chempr.2019.06.016

    49. [49]

      Hu, Q.; Huang, X.; Wang, Z.; Li, G.; Han, Z.; Yang, H.; Ren, X.; Zhang, Q.; Liu, J.; He, C. J. Mater. Chem. A 2020, 8(4), 2140.doi:10.1039/c9ta12713e  doi: 10.1039/c9ta12713e

    50. [50]

      Li, X.; Fan, M.; Wei, D.; Wang, X.; Wang, Y. J. Electrochem. Soc. 2020, 167(2), 024501.doi:10.1149/1945-7111/ab61eb  doi: 10.1149/1945-7111/ab61eb

    51. [51]

      Sun, H.; Lian, Y.; Yang, C.; Xiong, L.; Qi, P.; Mu, Q.; Zhao, X.; Guo, J.; Deng, Z.; Peng, Y. Energy Environ. Sci. 2018, 11(9), 2363.doi:10.1039/c8ee00934a  doi: 10.1039/c8ee00934a

    52. [52]

      Guo, Y.; Zhou, Y.; Nan, Y.; Li, B.; Song, X. ACS Appl. Mater. Interfaces 2020, 12(11), 12743. doi:10.1021/acsami.9b20532  doi: 10.1021/acsami.9b20532

    53. [53]

      Yu, X. Y.; Feng, Y.; Guan, B.; Lou, X. W. D.; Paik, U. Energy Environ. Sci. 2016, 9(4), 1246.doi:10.1039/c6ee00100a  doi: 10.1039/c6ee00100a

    54. [54]

      Jayaramulu, K.; Masa, J.; Tomanec, O.; Peeters, D.; Ranc, V.; Schneemann, A.; Zboril, R.; Schuhmann, W.; Fischer, R. A. Adv. Funct. Mater. 2017, 27(33), 1.doi:10.1002/adfm.201700451  doi: 10.1002/adfm.201700451

    55. [55]

      Yang, L.; Gao, M.; Dai, B.; Guo, X.; Liu, Z.; Peng, B. Electrochim. Acta 2016, 191, 813.doi:10.1016/j.electacta.2016.01.160  doi: 10.1016/j.electacta.2016.01.160

    56. [56]

      Xing, J.; Guo, K.; Zou, Z.; Cai, M.; Du, J.; Xu, C. Chem. Commun. 2018, 54(51), 7046.doi:10.1039/c8cc03112f  doi: 10.1039/c8cc03112f

    57. [57]

      Zheng, F.; Xiang, D.; Li, P.; Zhang, Z.; Du, C.; Zhuang, Z.; Li, X.; Chen, W. ACS Sustain. Chem. Eng. 2019, 7(11), 9743.doi:10.1021/acssuschemeng.9b01131  doi: 10.1021/acssuschemeng.9b01131

    58. [58]

      Abednatanzi, S.; Gohari Derakhshandeh, P.; Depauw, H.; Coudert, F. -X.; Vrielinck, H.; Van Der Voort, P.; Leus, K. Chem. Soc. Rev. 2019, 48(9), 2535.doi:10.1039/C8CS00337H  doi: 10.1039/C8CS00337H

    59. [59]

      Zheng, F.; Zhang, Z.; Xiang, D.; Li, P.; Du, C.; Zhuang, Z.; Li, X.; Chen, W. J. Colloid Interface Sci. 2019, 555, 541.doi:10.1016/j.jcis.2019.08.005  doi: 10.1016/j.jcis.2019.08.005

    60. [60]

      Wang, L. J.; Deng, H.; Furukawa, H.; Gándara, F.; Cordova, K. E.; Peri, D.; Yaghi, O. M. Inorg. Chem. 2014, 53(12), 5881.doi:10.1021/ic500434a  doi: 10.1021/ic500434a

    61. [61]

      Ma, J.; Lu, B.; Wang, S.; He, W.; Bai, X.; Wang, T.; Zhang, X.; Li, Y.; Zhang, L.; Chen, J.; et al. New J. Chem. 2020, 44(6), 2459.doi:10.1039/c9nj05562b  doi: 10.1039/c9nj05562b

    62. [62]

      Mohammed-Ibrahim, J. J. Power Sources 2020, 448, 227375.doi:10.1016/j.jpowsour.2019.227375  doi: 10.1016/j.jpowsour.2019.227375

    63. [63]

      Zhang, W.; Li, D.; Zhang, L.; She, X.; Yang, D. J. Energy Chem. 2019, 39, 39.doi:10.1016/j.jechem.2019.01.017  doi: 10.1016/j.jechem.2019.01.017

    64. [64]

      Li, C.; Liu, Y.; Wang, G.; Guan, L.; Lin, Y. ACS Sustain. Chem. Eng. 2019, 7(8), 7496.doi:10.1021/acssuschemeng.9b00264  doi: 10.1021/acssuschemeng.9b00264

    65. [65]

      Ling, X.; Du, F.; Zhang, Y.; Shen, Y.; Li, T.; Alsaedi, A.; Hayat, T.; Zhou, Y.; Zou, Z. RSC Adv. 2019, 9(57), 33558.doi:10.1039/c9ra07499f  doi: 10.1039/c9ra07499f

    66. [66]

      Cao, C.; Ma, D. D.; Xu, Q.; Wu, X. T.; Zhu, Q. L. Adv. Funct. Mater. 2019, 29(6), 1.doi:10.1002/adfm.201807418  doi: 10.1002/adfm.201807418

    67. [67]

      Yang, L.; Zhu, G.; Wen, H.; Guan, X.; Sun, X.; Feng, H.; Tian, W.; Zheng, D.; Cheng, X.; Yao, Y. J. Mater. Chem. A 2019, 7(15), 8771.doi:10.1039/c9ta00819e  doi: 10.1039/c9ta00819e

    68. [68]

      Du, J.; Xu, S.; Sun, L.; Li, F. Chem. Commun. 2019, 55(98), 14773.doi:10.1039/c9cc07433c  doi: 10.1039/c9cc07433c

    69. [69]

      Huang, J.; Li, Y.; Huang, R. -K.; He, C. -T.; Gong, L.; Hu, Q.; Wang, L.; Xu, Y. -T.; Tian, X. -Y.; Liu, S. -Y.; et al. Angew. Chem. 2018, 130(17), 4722.doi:10.1002/ange.201801029  doi: 10.1002/ange.201801029

    70. [70]

      Li, F. L.; Wang, P.; Huang, X.; Young, D. J.; Wang, H. F.; Braunstein, P.; Lang, J. P. Angew. Chem. Int. Ed. 2019, 58(21), 7051.doi:10.1002/anie.201902588  doi: 10.1002/anie.201902588

    71. [71]

      Jiang, J.; Zhang, C.; Ai, L. Electrochim. Acta 2016, 208, 17.doi:10.1016/j.electacta.2016.05.008  doi: 10.1016/j.electacta.2016.05.008

    72. [72]

      Fang, Z.; Hao, Z.; Dong, Q.; Cui, Y. J. Nanopart. Res. 2018, 20(4), 106.doi:10.1007/s11051-018-4209-3  doi: 10.1007/s11051-018-4209-3

    73. [73]

      Srinivas, K.; Lu, Y.; Chen, Y.; Zhang, W.; Yang, D. ACS Sustain. Chem. Eng. 2020, 8(9), 3820.doi:10.1021/acssuschemeng.9b07182  doi: 10.1021/acssuschemeng.9b07182

    74. [74]

      Flahaut, E.; Govindaraj, A.; Peigney, A.; Laurent, C.; Rousset, A.; Rao, C. N. R. Chem. Phys. Lett. 1999, 300(1), 236.doi:10.1016/S0009-2614(98)01304-9  doi: 10.1016/S0009-2614(98)01304-9

    75. [75]

      Zhao, X.; Pachfule, P.; Li, S.; Simke, J. R. J.; Schmidt, J.; Thomas, A. Angew. Chem. Int. Ed. 2018, 57(29), 8921.doi:10.1002/anie.201803136  doi: 10.1002/anie.201803136

    76. [76]

      Zou, H. H.; Yuan, C. Z.; Zou, H. Y.; Cheang, T. Y.; Zhao, S. J.; Qazi, U. Y.; Zhong, S. L.; Wang, L.; Xu, A. W. Catal. Sci. Technol. 2017, 7(7), 1549.doi:10.1039/c7cy00035a  doi: 10.1039/c7cy00035a

    77. [77]

      Fang, X.; Jiao, L.; Zhang, R.; Jiang, H. L. ACS Appl. Mater. Interfaces 2017, 9(28), 23852.doi:10.1021/acsami.7b07142  doi: 10.1021/acsami.7b07142

    78. [78]

      Xuan, C.; Wang, J.; Xia, W.; Zhu, J.; Peng, Z.; Xia, K.; Xiao, W.; Xin, H. L.; Wang, D. J. Mater. Chem. A 2018, 6(16), 7062.doi:10.1039/c8ta00410b  doi: 10.1039/c8ta00410b

    79. [79]

      Zhou, W.; Huang, D. D.; Wu, Y. P.; Zhao, J.; Wu, T.; Zhang, J.; Li, D. S.; Sun, C.; Feng, P.; Bu, X. Angew. Chem. Int. Ed. 2019, 58(13), 4227.doi:10.1002/anie.201813634  doi: 10.1002/anie.201813634

    80. [80]

      Hu, W. C.; Shi, Y.; Zhou, Y.; Weng, C.; Younis, M. R.; Pang, J.; Wang, C.; Xia, X. H. J. Mater. Chem. A 2019, 7(17), 10601.doi:10.1039/c9ta00847k  doi: 10.1039/c9ta00847k

    81. [81]

      Li, D. J.; Li, Q. H.; Gu, Z. G.; Zhang, J. J. Mater. Chem. A 2019, 7(31), 18519.doi:10.1039/c9ta04554f  doi: 10.1039/c9ta04554f

    82. [82]

      Shen, Y.; Guo, S. G.; Du, F.; Yuan, X. B.; Zhang, Y.; Hu, J.; Shen, Q.; Luo, W.; Alsaedi, A.; Hayat, T.; et al. Nanoscale 2019, 11(24), 11765.doi:10.1039/c9nr01804b  doi: 10.1039/c9nr01804b

    83. [83]

      Wei, X.; Zhang, Y.; He, H.; Gao, D.; Hu, J.; Peng, H.; Peng, L.; Xiao, S.; Xiao, P. Chem. Commun. 2019, 55(46), 6515.doi:10.1039/c9cc02037c  doi: 10.1039/c9cc02037c

    84. [84]

      Sun, D.; Ye, L.; Sun, F.; García, H.; Li, Z. Inorg. Chem. 2017, 56(9), 5203.doi:10.1021/acs.inorgchem.7b00333  doi: 10.1021/acs.inorgchem.7b00333

    85. [85]

      Jia, X.; Wang, M.; Liu, G.; Wang, Y.; Yang, J.; Li, J. Int. J. Hydrog. Energy 2019, 44(45), 24572.doi:10.1016/j.ijhydene.2019.07.144  doi: 10.1016/j.ijhydene.2019.07.144

    86. [86]

      Feng, C.; Guo, Y.; Xie, Y.; Cao, X.; Li, S.; Zhang, L.; Wang, W.; Wang, J. Nanoscale 2020, 12(10), 5942.doi:10.1039/c9nr10943a  doi: 10.1039/c9nr10943a

    87. [87]

      Yan, L.; Cao, L.; Dai, P.; Gu, X.; Liu, D.; Li, L.; Wang, Y.; Zhao, X. Adv. Funct. Mater. 2017, 27(40), 1.doi:10.1002/adfm.201703455  doi: 10.1002/adfm.201703455

    88. [88]

      Fan, S.; Zhang, J.; Wu, Q.; Huang, S.; Zheng, J.; Kong, D.; Chen, S.; Wang, Y.; Ang, L. K.; Shi, Y.; et al. J. Phys. Chem. Lett. 2020, 11(10), 3911.doi:10.1021/acs.jpclett.0c00851  doi: 10.1021/acs.jpclett.0c00851

    89. [89]

      Chen, B.; Ma, G.; Zhu, Y.; Wang, J.; Xiong, W.; Xia, Y. J. Power Sources 2016, 334, 112.doi:10.1016/j.jpowsour.2016.10.022  doi: 10.1016/j.jpowsour.2016.10.022

    90. [90]

      Chen, W.; Zhang, Y.; Chen, G.; Huang, R.; Wu, Y.; Zhou, Y.; Hu, Y.; Ostrikov K. J. Colloid Interface Sci. 2020, 560, 426.doi:10.1016/j.jcis.2019.10.099  doi: 10.1016/j.jcis.2019.10.099

    91. [91]

      Ma, X.; Qi, K.; Wei, S.; Zhang, L.; Cui, X. J. Alloys Compd. 2019, 770, 236.doi:10.1016/j.jallcom.2018.08.096  doi: 10.1016/j.jallcom.2018.08.096

    92. [92]

      Zheng, X.; Song, X.; Wang, X.; Zhang, Z.; Sun, Z.; Guo, Y. New J. Chem. 2018, 42(11), 8346.doi:10.1039/c8nj01035h  doi: 10.1039/c8nj01035h

    93. [93]

      Li, X.; Wang, X.; Zhou, J.; Han, L.; Sun, C.; Wang, Q.; Su, Z. J. Mater. Chem. A 2018, 6(14), 5789.doi:10.1039/c7ta10558d  doi: 10.1039/c7ta10558d

    94. [94]

      Li, F. L.; Shao, Q.; Huang, X.; Lang, J. P. Angew. Chem. Int. Ed. 2018, 57(7), 1888.doi:10.1002/anie.201711376  doi: 10.1002/anie.201711376

    95. [95]

      Yuan, J. T.; Hou, J. J.; Liu, X. L.; Feng, Y. R.; Zhang, X. M. Dalt. Trans. 2020, 49(3), 750.doi:10.1039/c9dt04295d  doi: 10.1039/c9dt04295d

    96. [96]

      Wang, X.; Xiao, H.; Li, A.; Li, Z.; Liu, S.; Zhang, Q.; Gong, Y.; Zheng, L.; Zhu, Y.; Chen, C.; et al. J. Am. Chem. Soc. 2018, 140(45), 15336.doi:10.1021/jacs.8b08744  doi: 10.1021/jacs.8b08744

    97. [97]

      Zhang, W. Da; Yu, H.; Li, T.; Hu, Q. T.; Gong, Y.; Zhang, D. Y.; Liu, Y.; Fu, Q. T.; Zhu, H. Y.; et al. Appl. Catal. B Environ. 2020, 264, 118532.doi:10.1016/j.apcatb.2019.118532  doi: 10.1016/j.apcatb.2019.118532

    98. [98]

      Ahn, W.; Park, M. G.; Lee, D. U.; Seo, M. H.; Jiang, G.; Cano, Z. P.; Hassan, F. M.; Chen, Z. Adv. Funct. Mater. 2018, 28(28), 1.doi:10.1002/adfm.201802129  doi: 10.1002/adfm.201802129

    99. [99]

      Yuan, B.; Li, C.; Guan, L.; Li, K.; Lin, Y. J. Power Sources 2020, 451, 227295.doi:10.1016/j.jpowsour.2019.227295  doi: 10.1016/j.jpowsour.2019.227295

    100. [100]

      Xie, A.; Du, J.; Tao, F.; Tao, Y.; Xiong, Z.; Luo, S.; Li, X.; Yao, C. Electrochim. Acta 2019, 305, 338.doi:10.1016/j.electacta.2019.03.073  doi: 10.1016/j.electacta.2019.03.073

    101. [101]

      Xie, A.; Zhang, J.; Tao, X.; Zhang, J.; Wei, B.; Peng, W.; Tao, Y.; Luo, S. Electrochim. Acta 2019, 324, 134814.doi:10.1016/j.electacta.2019.134814  doi: 10.1016/j.electacta.2019.134814

    102. [102]

      Senthil Raja, D.; Lin, H. W.; Lu, S. Y. Nano Energy 2019, 57, 1.doi:10.1016/j.nanoen.2018.12.018  doi: 10.1016/j.nanoen.2018.12.018

    103. [103]

      Wang, Q.; Wei, C.; Li, D.; Guo, W.; Zhong, D.; Zhao, Q. Microporous Mesoporous Mater. 2019, 286, 92.doi:10.1016/j.micromeso.2019.05.040  doi: 10.1016/j.micromeso.2019.05.040

    104. [104]

      Li, Y.; Lu, M.; He, P.; Wu, Y.; Wang, J.; Chen, D.; Xu, H.; Gao, J.; Yao, J. Chem. Asian J. 2019, 14(9), 1590.doi:10.1002/asia.201900328  doi: 10.1002/asia.201900328

    105. [105]

      Kumar, A.; Bhattacharyya, S. ACS Appl. Mater. Interfaces 2017, 9(48), 41906.doi:10.1021/acsami.7b14096  doi: 10.1021/acsami.7b14096

    106. [106]

      Qiao, H.; Yang, Y.; Dai, X.; Zhao, H.; Yong, J.; Yu, L.; Luan, X.; Cui, M.; Zhang, X.; Huang, X. Electrochim. Acta 2019, 318, 430.doi:10.1016/j.electacta.2019.06.084  doi: 10.1016/j.electacta.2019.06.084

    107. [107]

      Ma, Y.; Dai, X.; Liu, M.; Yong, J.; Qiao, H.; Jin, A.; Li, Z.; Huang, X.; Wang, H.; Zhang, X. ACS Appl. Mater. Interfaces 2016, 8(50), 34396.doi:10.1021/acsami.6b11821  doi: 10.1021/acsami.6b11821

    108. [108]

      Du, L.; Luo, L.; Feng, Z.; Engelhard, M.; Xie, X.; Han, B.; Sun, J.; Zhang, J.; Yin, G.; Wang, C.; et al. Nano Energy 2017, 39, 245.doi:10.1016/j.nanoen.2017.07.006  doi: 10.1016/j.nanoen.2017.07.006

    109. [109]

      Abdelkader-Fernández, V. K.; Fernandes, D. M.; Balula, S. S.; Cunha-Silva, L.; Pérez-Mendoza, M. J.; López-Garzón, F. J.; Pereira, M. F.; Freire, C. ACS Appl. Energy Mater. 2019, 2(3), 1854.doi:10.1021/acsaem.8b02010  doi: 10.1021/acsaem.8b02010

    110. [110]

      Xie, Z.; Tang, H.; Wang, Y. ChemElectroChem 2019, 6(4), 1206.doi:10.1002/celc.201801106  doi: 10.1002/celc.201801106

    111. [111]

      Nadeem, M.; Yasin, G.; Bhatti, M. H.; Mehmood, M.; Arif, M.; Dai, L. J. Power Sources 2018, 402, 34.doi:10.1016/j.jpowsour.2018.09.006  doi: 10.1016/j.jpowsour.2018.09.006

    112. [112]

      Hassan, M. H.; Soliman, A. B.; Elmehelmey, W. A.; Abugable, A. A.; Karakalos, S. G.; Elbahri, M.; Hassanien, A.; Alkordi, M. H. Chem. Commun. 2019, 55(1), 31.doi:10.1039/c8cc07120a  doi: 10.1039/c8cc07120a

  • 加载中
    1. [1]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    2. [2]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    3. [3]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    4. [4]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    5. [5]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    6. [6]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    7. [7]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    8. [8]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    9. [9]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    10. [10]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    11. [11]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    12. [12]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    13. [13]

      Hailang DengAbebe Reda WolduAbdul QayumZanling HuangWeiwei ZhuXiang PengPaul K. ChuLiangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892

    14. [14]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    15. [15]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    16. [16]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    17. [17]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    18. [18]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    19. [19]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

    20. [20]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

Metrics
  • PDF Downloads(37)
  • Abstract views(1085)
  • HTML views(261)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return