Research Progress of Nickel-Based Metal-Organic Frameworks and Their Derivatives for Oxygen Evolution Catalysis
- Corresponding author: Huang Xiaoqing, hxq006@xmu.edu.cn
Citation: Xu Bingyan, Zhang Ying, Pi Yecan, Shao Qi, Huang Xiaoqing. Research Progress of Nickel-Based Metal-Organic Frameworks and Their Derivatives for Oxygen Evolution Catalysis[J]. Acta Physico-Chimica Sinica, ;2021, 37(7): 200907. doi: 10.3866/PKU.WHXB202009074
Li, X.; Yu, J.; Jaroniec, M. Chem. Soc. Rev. 2016, 45(9), 2603.doi:10.1039/C5CS00838G
doi: 10.1039/C5CS00838G
Dresselhaus, M. S.; Thomas, I. L. Nature 2001, 414(6861), 332.doi:10.1038/35104599
doi: 10.1038/35104599
Chu, S.; Majumdar, A. Nature 2012, 488(7411), 294.doi:10.1038/nature11475
doi: 10.1038/nature11475
Kibsgaard, J.; Chorkendorff, I. Nat. Energy 2019, 4(6), 430.doi:10.1038/s41560-019-0407-1
doi: 10.1038/s41560-019-0407-1
McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. J. Am. Chem. Soc. 2013, 135(45), 16977.doi:10.1021/ja407115p
doi: 10.1021/ja407115p
Dang, S.; Zhu, Q. -L.; Xu, Q. Nat. Rev. Mater. 2018, 3(1), 17075.doi:10.1038/natrevmats.2017.75
doi: 10.1038/natrevmats.2017.75
Chang, J.; Xiao, Y.; Luo, Z.; Ge, J.; Liu, C.; Xing, W. Acta Phys. -Chim. Sin. 2016, 32(7), 1556.
doi: 10.3866/PKU.WHXB201604291
Wang, H. F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. Chem. Soc. Rev. 2020, 49(5), 1414.doi:10.1039/c9cs00906j
doi: 10.1039/c9cs00906j
Zhu, B.; Liang, Z.; Xia, D.; Zou, R. Energy Storage Mater. 2019, 23, 757.doi:10.1016/j.ensm.2019.05.022
doi: 10.1016/j.ensm.2019.05.022
Wang, X.; Li, B.; Wu, Y. P.; Tsamis, A.; Yu, H. G.; Liu, S.; Zhao, J.; Li, Y. S.; Li, D. S. Inorg. Chem. 2020, 59(7), 4764.doi:10.1021/acs.inorgchem.0c00024
doi: 10.1021/acs.inorgchem.0c00024
Dong, Y.; Oloman, C. W.; Gyenge, E. L.; Su, J.; Chen, L. Nanoscale 2020, 12(18), 9924.doi:10.1039/d0nr02187c
doi: 10.1039/d0nr02187c
Han, L.; Dong, S.; Wang, E. Adv. Mater. 2016, 28(42), 9266. doi:10.1002/adma.201602270
doi: 10.1002/adma.201602270
Gao, R.; Yan, D. Adv. Energy Mater. 2020, 10(11), 1. doi:10.1002/aenm.201900954
doi: 10.1002/aenm.201900954
Wang, L.; Sun, W.; Liu, C. Acta Phys. -Chim. Sin. 2019, 35(7), 697.
doi: 10.3866/PKU.WHXB201807071
Tang, H.; Zheng, M.; Hu, Q.; Chi, Y.; Xu, B.; Zhang, S.; Xue, H.; Pang, H. J. Mater. Chem. A 2018, 6(29), 13999.doi:10.1039/c8ta03644f
doi: 10.1039/c8ta03644f
Xuan, C.; Zhang, J.; Wang, J.; Wang, D. Chem. Asian J. 2020, 15(7), 958.doi:10.1002/asia.20190172
doi: 10.1002/asia.20190172
Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. J. Catal. 2015, 328, 36.doi:10.1016/j.jcat.2014.12.033
doi: 10.1016/j.jcat.2014.12.033
Man, I. C.; Su, H.; Calle-vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. ChemCatChem 2011, 3(7), 1159.doi:10.1002/cctc.201000397
doi: 10.1002/cctc.201000397
Bode, H.; Dehmelt, K.; Witte, J. Electrochim. Acta 1966, 11(8), 1079.doi:10.1016/0013-4686(66)80045-2
doi: 10.1016/0013-4686(66)80045-2
Huang, J.; Li, Y.; Zhang, Y.; Rao, G.; Wu, C.; Hu, Y.; Wang, X.; Lu, R.; Li, Y.; Xiong, J. Angew. Chem. Int. Ed. 2019, 58(48), 17458.doi:10.1002/anie.201910716
doi: 10.1002/anie.201910716
Wan, Z.; Yang, D.; Chen, J.; Tian, J.; Isimjan, T. T.; Yang, X. ACS Appl. Nano Mater. 2019, 2(10), 6334.doi:10.1021/acsanm.9b01330
doi: 10.1021/acsanm.9b01330
Duan, J.; Chen, S.; Zhao, C. Nat. Commun. 2017, 8, 1.doi:10.1038/ncomms15341
doi: 10.1038/ncomms15341
Li, Y. -F.; Selloni, A. ACS Catal. 2014, 4(4), 1148.doi:10.1021/cs401245q
doi: 10.1021/cs401245q
Diaz-Morales, O.; Ledezma-Yanez, I.; Koper, M. T. M.; Calle-Vallejo, F. ACS Catal. 2015, 5(9), 5380.doi:10.1021/acscatal.5b01638
doi: 10.1021/acscatal.5b01638
Li, W. H.; Lv, J.; Li, Q.; Xie, J.; Ogiwara, N.; Huang, Y.; Jiang, H.; Kitagawa, H.; Xu, G.; Wang, Y. J. Mater. Chem. A 2019, 7(17), 10431.doi:10.1039/c9ta02169h
doi: 10.1039/c9ta02169h
Yeo, B. S.; Bell, A. T. J. Phys. Chem. C 2012, 116(15), 8394.doi:10.1021/jp3007415
doi: 10.1021/jp3007415
Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Chem. Soc. Rev. 2015, 44(8), 2060.doi:10.1039/C4CS00470A
doi: 10.1039/C4CS00470A
Suen, N.; Hung, S.; Quan, Q.; Zhang, N.; Xu, Y.; Chen, H. Chem. Soc. Rev. 2017, 46(2), 337.doi:10.1039/C6CS00328A
doi: 10.1039/C6CS00328A
Dietzel, P. D. C.; Panella, B.; Hirscher, M.; Blom, R.; Fjellvåg, H. Chem. Commun. 2006, 1(9), 959.doi:10.1039/b515434k
doi: 10.1039/b515434k
Palomino Cabello, C.; Gómez-Pozuelo, G.; Opanasenko, M.; Nachtigall, P.; Čejka, J. ChemPlusChem 2016, 81(8), 828.doi:10.1002/cplu.201600168
doi: 10.1002/cplu.201600168
Gao, Z.; Yu, Z. W.; Liu, F. Q.; Yu, Y.; Su, X. M.; Wang, L.; Xu, Z. Z.; Yang, Y. L.; Wu, G. R.; Feng, X. F.; et al. Inorg. Chem. 2019, 58(17), 11500.doi:10.1021/acs.inorgchem.9b01301
doi: 10.1021/acs.inorgchem.9b01301
Janiak, C.; Vieth, J. K. New J. Chem. 2010, 34(11), 2366. doi:10.1039/c0nj00275e
doi: 10.1039/c0nj00275e
Tao, Z.; Wang, T.; Wang, X.; Zheng, J.; Li, X. ACS Appl. Mater. Interfaces 2016, 8(51), 35390.doi:10.1021/acsami.6b13411
doi: 10.1021/acsami.6b13411
Lin, Y.; Chen, G.; Wan, H.; Chen, F.; Liu, X.; Ma, R. Small 2019, 15(18), 1.doi:10.1002/smll.201900348
doi: 10.1002/smll.201900348
Yaghi, O. M.; Li, H. J. Am. Chem. Soc. 1995, 117(41), 10401.doi:10.1021/ja00146a033
doi: 10.1021/ja00146a033
Ping, D.; Feng, X.; Zhang, J.; Geng, J.; Dong, X. ChemElectroChem 2017, 4(12), 3037.doi:10.1002/celc.201700901
doi: 10.1002/celc.201700901
Zhao, S.; Wang, Y.; Dong, J.; He, C. -T.; Yin, H.; An, P.; Zhao, K.; Zhang, X.; Gao, C.; Zhang, L.; et al. Nat. Energy 2016, 1(12), 16184.doi:10.1038/nenergy.2016.184
doi: 10.1038/nenergy.2016.184
Shuai, C.; Mo, Z.; Niu, X.; Zhao, P.; Dong, Q.; Chen, Y.; Liu, N.; Guo, R. J. Electrochem. Soc. 2020, 167(2), 026512.doi:10.1149/1945-7111/ab6b10
doi: 10.1149/1945-7111/ab6b10
Stock, N.; Biswas, S. Chem. Rev. 2012, 112(2), 933.doi:10.1021/cr200304e
doi: 10.1021/cr200304e
Braga, D.; Giaffreda, S. L.; Grepioni, F.; Pettersen, A.; Maini, L.; Curzi, M.; Polito, M. Dalt. Trans. 2006, 10, 1249.doi:10.1039/b516165g
doi: 10.1039/b516165g
Zhu, D.; Liu, J.; Wang, L.; Du, Y.; Zheng, Y.; Davey, K.; Qiao, S. Z. Nanoscale 2019, 11(8), 3599.doi:10.1039/c8nr09680e
doi: 10.1039/c8nr09680e
Xu, Y.; Tu, W.; Zhang, B.; Yin, S.; Huang, Y.; Kraft, M.; Xu, R. Adv. Mater. 2017, 29(11), 1.doi:10.1002/adma.201605957
doi: 10.1002/adma.201605957
He, P.; Xie, Y.; Dou, Y.; Zhou, J.; Zhou, A.; Wei, X.; Li, J. R. ACS Appl. Mater. Interfaces 2019, 11(44), 41595.doi:10.1021/acsami.9b16224
doi: 10.1021/acsami.9b16224
Yan, L.; Jiang, H.; Xing, Y.; Wang, Y.; Liu, D.; Gu, X.; Dai, P.; Li, L.; Zhao, X. J. Mater. Chem. A 2018, 6(4), 1682.doi:10.1039/c7ta10218f
doi: 10.1039/c7ta10218f
Zhang, H.; Su, J.; Zhao, K.; Chen, L. ChemElectroChem 2020, 7(8), 1805.doi:10.1002/celc.202000136
doi: 10.1002/celc.202000136
Maruthapandian, V.; Kumaraguru, S.; Mohan, S.; Saraswathy, V.; Muralidharan, S. ChemElectroChem 2018, 5(19), 2795.doi:10.1002/celc.201800802
doi: 10.1002/celc.201800802
Liu, Q.; Xie, L.; Shi, X.; Du, G.; Asiri, A. M.; Luo, Y.; Sun, X. Inorg. Chem. Front. 2018, 5(7), 1570.doi:10.1039/C7QI00808B
doi: 10.1039/C7QI00808B
Guo, C.; Jiao, Y.; Zheng, Y.; Luo, J.; Davey, K.; Qiao, S. Z. Chem 2019, 5(9), 2429.doi:10.1016/j.chempr.2019.06.016
doi: 10.1016/j.chempr.2019.06.016
Hu, Q.; Huang, X.; Wang, Z.; Li, G.; Han, Z.; Yang, H.; Ren, X.; Zhang, Q.; Liu, J.; He, C. J. Mater. Chem. A 2020, 8(4), 2140.doi:10.1039/c9ta12713e
doi: 10.1039/c9ta12713e
Li, X.; Fan, M.; Wei, D.; Wang, X.; Wang, Y. J. Electrochem. Soc. 2020, 167(2), 024501.doi:10.1149/1945-7111/ab61eb
doi: 10.1149/1945-7111/ab61eb
Sun, H.; Lian, Y.; Yang, C.; Xiong, L.; Qi, P.; Mu, Q.; Zhao, X.; Guo, J.; Deng, Z.; Peng, Y. Energy Environ. Sci. 2018, 11(9), 2363.doi:10.1039/c8ee00934a
doi: 10.1039/c8ee00934a
Guo, Y.; Zhou, Y.; Nan, Y.; Li, B.; Song, X. ACS Appl. Mater. Interfaces 2020, 12(11), 12743. doi:10.1021/acsami.9b20532
doi: 10.1021/acsami.9b20532
Yu, X. Y.; Feng, Y.; Guan, B.; Lou, X. W. D.; Paik, U. Energy Environ. Sci. 2016, 9(4), 1246.doi:10.1039/c6ee00100a
doi: 10.1039/c6ee00100a
Jayaramulu, K.; Masa, J.; Tomanec, O.; Peeters, D.; Ranc, V.; Schneemann, A.; Zboril, R.; Schuhmann, W.; Fischer, R. A. Adv. Funct. Mater. 2017, 27(33), 1.doi:10.1002/adfm.201700451
doi: 10.1002/adfm.201700451
Yang, L.; Gao, M.; Dai, B.; Guo, X.; Liu, Z.; Peng, B. Electrochim. Acta 2016, 191, 813.doi:10.1016/j.electacta.2016.01.160
doi: 10.1016/j.electacta.2016.01.160
Xing, J.; Guo, K.; Zou, Z.; Cai, M.; Du, J.; Xu, C. Chem. Commun. 2018, 54(51), 7046.doi:10.1039/c8cc03112f
doi: 10.1039/c8cc03112f
Zheng, F.; Xiang, D.; Li, P.; Zhang, Z.; Du, C.; Zhuang, Z.; Li, X.; Chen, W. ACS Sustain. Chem. Eng. 2019, 7(11), 9743.doi:10.1021/acssuschemeng.9b01131
doi: 10.1021/acssuschemeng.9b01131
Abednatanzi, S.; Gohari Derakhshandeh, P.; Depauw, H.; Coudert, F. -X.; Vrielinck, H.; Van Der Voort, P.; Leus, K. Chem. Soc. Rev. 2019, 48(9), 2535.doi:10.1039/C8CS00337H
doi: 10.1039/C8CS00337H
Zheng, F.; Zhang, Z.; Xiang, D.; Li, P.; Du, C.; Zhuang, Z.; Li, X.; Chen, W. J. Colloid Interface Sci. 2019, 555, 541.doi:10.1016/j.jcis.2019.08.005
doi: 10.1016/j.jcis.2019.08.005
Wang, L. J.; Deng, H.; Furukawa, H.; Gándara, F.; Cordova, K. E.; Peri, D.; Yaghi, O. M. Inorg. Chem. 2014, 53(12), 5881.doi:10.1021/ic500434a
doi: 10.1021/ic500434a
Ma, J.; Lu, B.; Wang, S.; He, W.; Bai, X.; Wang, T.; Zhang, X.; Li, Y.; Zhang, L.; Chen, J.; et al. New J. Chem. 2020, 44(6), 2459.doi:10.1039/c9nj05562b
doi: 10.1039/c9nj05562b
Mohammed-Ibrahim, J. J. Power Sources 2020, 448, 227375.doi:10.1016/j.jpowsour.2019.227375
doi: 10.1016/j.jpowsour.2019.227375
Zhang, W.; Li, D.; Zhang, L.; She, X.; Yang, D. J. Energy Chem. 2019, 39, 39.doi:10.1016/j.jechem.2019.01.017
doi: 10.1016/j.jechem.2019.01.017
Li, C.; Liu, Y.; Wang, G.; Guan, L.; Lin, Y. ACS Sustain. Chem. Eng. 2019, 7(8), 7496.doi:10.1021/acssuschemeng.9b00264
doi: 10.1021/acssuschemeng.9b00264
Ling, X.; Du, F.; Zhang, Y.; Shen, Y.; Li, T.; Alsaedi, A.; Hayat, T.; Zhou, Y.; Zou, Z. RSC Adv. 2019, 9(57), 33558.doi:10.1039/c9ra07499f
doi: 10.1039/c9ra07499f
Cao, C.; Ma, D. D.; Xu, Q.; Wu, X. T.; Zhu, Q. L. Adv. Funct. Mater. 2019, 29(6), 1.doi:10.1002/adfm.201807418
doi: 10.1002/adfm.201807418
Yang, L.; Zhu, G.; Wen, H.; Guan, X.; Sun, X.; Feng, H.; Tian, W.; Zheng, D.; Cheng, X.; Yao, Y. J. Mater. Chem. A 2019, 7(15), 8771.doi:10.1039/c9ta00819e
doi: 10.1039/c9ta00819e
Du, J.; Xu, S.; Sun, L.; Li, F. Chem. Commun. 2019, 55(98), 14773.doi:10.1039/c9cc07433c
doi: 10.1039/c9cc07433c
Huang, J.; Li, Y.; Huang, R. -K.; He, C. -T.; Gong, L.; Hu, Q.; Wang, L.; Xu, Y. -T.; Tian, X. -Y.; Liu, S. -Y.; et al. Angew. Chem. 2018, 130(17), 4722.doi:10.1002/ange.201801029
doi: 10.1002/ange.201801029
Li, F. L.; Wang, P.; Huang, X.; Young, D. J.; Wang, H. F.; Braunstein, P.; Lang, J. P. Angew. Chem. Int. Ed. 2019, 58(21), 7051.doi:10.1002/anie.201902588
doi: 10.1002/anie.201902588
Jiang, J.; Zhang, C.; Ai, L. Electrochim. Acta 2016, 208, 17.doi:10.1016/j.electacta.2016.05.008
doi: 10.1016/j.electacta.2016.05.008
Fang, Z.; Hao, Z.; Dong, Q.; Cui, Y. J. Nanopart. Res. 2018, 20(4), 106.doi:10.1007/s11051-018-4209-3
doi: 10.1007/s11051-018-4209-3
Srinivas, K.; Lu, Y.; Chen, Y.; Zhang, W.; Yang, D. ACS Sustain. Chem. Eng. 2020, 8(9), 3820.doi:10.1021/acssuschemeng.9b07182
doi: 10.1021/acssuschemeng.9b07182
Flahaut, E.; Govindaraj, A.; Peigney, A.; Laurent, C.; Rousset, A.; Rao, C. N. R. Chem. Phys. Lett. 1999, 300(1), 236.doi:10.1016/S0009-2614(98)01304-9
doi: 10.1016/S0009-2614(98)01304-9
Zhao, X.; Pachfule, P.; Li, S.; Simke, J. R. J.; Schmidt, J.; Thomas, A. Angew. Chem. Int. Ed. 2018, 57(29), 8921.doi:10.1002/anie.201803136
doi: 10.1002/anie.201803136
Zou, H. H.; Yuan, C. Z.; Zou, H. Y.; Cheang, T. Y.; Zhao, S. J.; Qazi, U. Y.; Zhong, S. L.; Wang, L.; Xu, A. W. Catal. Sci. Technol. 2017, 7(7), 1549.doi:10.1039/c7cy00035a
doi: 10.1039/c7cy00035a
Fang, X.; Jiao, L.; Zhang, R.; Jiang, H. L. ACS Appl. Mater. Interfaces 2017, 9(28), 23852.doi:10.1021/acsami.7b07142
doi: 10.1021/acsami.7b07142
Xuan, C.; Wang, J.; Xia, W.; Zhu, J.; Peng, Z.; Xia, K.; Xiao, W.; Xin, H. L.; Wang, D. J. Mater. Chem. A 2018, 6(16), 7062.doi:10.1039/c8ta00410b
doi: 10.1039/c8ta00410b
Zhou, W.; Huang, D. D.; Wu, Y. P.; Zhao, J.; Wu, T.; Zhang, J.; Li, D. S.; Sun, C.; Feng, P.; Bu, X. Angew. Chem. Int. Ed. 2019, 58(13), 4227.doi:10.1002/anie.201813634
doi: 10.1002/anie.201813634
Hu, W. C.; Shi, Y.; Zhou, Y.; Weng, C.; Younis, M. R.; Pang, J.; Wang, C.; Xia, X. H. J. Mater. Chem. A 2019, 7(17), 10601.doi:10.1039/c9ta00847k
doi: 10.1039/c9ta00847k
Li, D. J.; Li, Q. H.; Gu, Z. G.; Zhang, J. J. Mater. Chem. A 2019, 7(31), 18519.doi:10.1039/c9ta04554f
doi: 10.1039/c9ta04554f
Shen, Y.; Guo, S. G.; Du, F.; Yuan, X. B.; Zhang, Y.; Hu, J.; Shen, Q.; Luo, W.; Alsaedi, A.; Hayat, T.; et al. Nanoscale 2019, 11(24), 11765.doi:10.1039/c9nr01804b
doi: 10.1039/c9nr01804b
Wei, X.; Zhang, Y.; He, H.; Gao, D.; Hu, J.; Peng, H.; Peng, L.; Xiao, S.; Xiao, P. Chem. Commun. 2019, 55(46), 6515.doi:10.1039/c9cc02037c
doi: 10.1039/c9cc02037c
Sun, D.; Ye, L.; Sun, F.; García, H.; Li, Z. Inorg. Chem. 2017, 56(9), 5203.doi:10.1021/acs.inorgchem.7b00333
doi: 10.1021/acs.inorgchem.7b00333
Jia, X.; Wang, M.; Liu, G.; Wang, Y.; Yang, J.; Li, J. Int. J. Hydrog. Energy 2019, 44(45), 24572.doi:10.1016/j.ijhydene.2019.07.144
doi: 10.1016/j.ijhydene.2019.07.144
Feng, C.; Guo, Y.; Xie, Y.; Cao, X.; Li, S.; Zhang, L.; Wang, W.; Wang, J. Nanoscale 2020, 12(10), 5942.doi:10.1039/c9nr10943a
doi: 10.1039/c9nr10943a
Yan, L.; Cao, L.; Dai, P.; Gu, X.; Liu, D.; Li, L.; Wang, Y.; Zhao, X. Adv. Funct. Mater. 2017, 27(40), 1.doi:10.1002/adfm.201703455
doi: 10.1002/adfm.201703455
Fan, S.; Zhang, J.; Wu, Q.; Huang, S.; Zheng, J.; Kong, D.; Chen, S.; Wang, Y.; Ang, L. K.; Shi, Y.; et al. J. Phys. Chem. Lett. 2020, 11(10), 3911.doi:10.1021/acs.jpclett.0c00851
doi: 10.1021/acs.jpclett.0c00851
Chen, B.; Ma, G.; Zhu, Y.; Wang, J.; Xiong, W.; Xia, Y. J. Power Sources 2016, 334, 112.doi:10.1016/j.jpowsour.2016.10.022
doi: 10.1016/j.jpowsour.2016.10.022
Chen, W.; Zhang, Y.; Chen, G.; Huang, R.; Wu, Y.; Zhou, Y.; Hu, Y.; Ostrikov K. J. Colloid Interface Sci. 2020, 560, 426.doi:10.1016/j.jcis.2019.10.099
doi: 10.1016/j.jcis.2019.10.099
Ma, X.; Qi, K.; Wei, S.; Zhang, L.; Cui, X. J. Alloys Compd. 2019, 770, 236.doi:10.1016/j.jallcom.2018.08.096
doi: 10.1016/j.jallcom.2018.08.096
Zheng, X.; Song, X.; Wang, X.; Zhang, Z.; Sun, Z.; Guo, Y. New J. Chem. 2018, 42(11), 8346.doi:10.1039/c8nj01035h
doi: 10.1039/c8nj01035h
Li, X.; Wang, X.; Zhou, J.; Han, L.; Sun, C.; Wang, Q.; Su, Z. J. Mater. Chem. A 2018, 6(14), 5789.doi:10.1039/c7ta10558d
doi: 10.1039/c7ta10558d
Li, F. L.; Shao, Q.; Huang, X.; Lang, J. P. Angew. Chem. Int. Ed. 2018, 57(7), 1888.doi:10.1002/anie.201711376
doi: 10.1002/anie.201711376
Yuan, J. T.; Hou, J. J.; Liu, X. L.; Feng, Y. R.; Zhang, X. M. Dalt. Trans. 2020, 49(3), 750.doi:10.1039/c9dt04295d
doi: 10.1039/c9dt04295d
Wang, X.; Xiao, H.; Li, A.; Li, Z.; Liu, S.; Zhang, Q.; Gong, Y.; Zheng, L.; Zhu, Y.; Chen, C.; et al. J. Am. Chem. Soc. 2018, 140(45), 15336.doi:10.1021/jacs.8b08744
doi: 10.1021/jacs.8b08744
Zhang, W. Da; Yu, H.; Li, T.; Hu, Q. T.; Gong, Y.; Zhang, D. Y.; Liu, Y.; Fu, Q. T.; Zhu, H. Y.; et al. Appl. Catal. B Environ. 2020, 264, 118532.doi:10.1016/j.apcatb.2019.118532
doi: 10.1016/j.apcatb.2019.118532
Ahn, W.; Park, M. G.; Lee, D. U.; Seo, M. H.; Jiang, G.; Cano, Z. P.; Hassan, F. M.; Chen, Z. Adv. Funct. Mater. 2018, 28(28), 1.doi:10.1002/adfm.201802129
doi: 10.1002/adfm.201802129
Yuan, B.; Li, C.; Guan, L.; Li, K.; Lin, Y. J. Power Sources 2020, 451, 227295.doi:10.1016/j.jpowsour.2019.227295
doi: 10.1016/j.jpowsour.2019.227295
Xie, A.; Du, J.; Tao, F.; Tao, Y.; Xiong, Z.; Luo, S.; Li, X.; Yao, C. Electrochim. Acta 2019, 305, 338.doi:10.1016/j.electacta.2019.03.073
doi: 10.1016/j.electacta.2019.03.073
Xie, A.; Zhang, J.; Tao, X.; Zhang, J.; Wei, B.; Peng, W.; Tao, Y.; Luo, S. Electrochim. Acta 2019, 324, 134814.doi:10.1016/j.electacta.2019.134814
doi: 10.1016/j.electacta.2019.134814
Senthil Raja, D.; Lin, H. W.; Lu, S. Y. Nano Energy 2019, 57, 1.doi:10.1016/j.nanoen.2018.12.018
doi: 10.1016/j.nanoen.2018.12.018
Wang, Q.; Wei, C.; Li, D.; Guo, W.; Zhong, D.; Zhao, Q. Microporous Mesoporous Mater. 2019, 286, 92.doi:10.1016/j.micromeso.2019.05.040
doi: 10.1016/j.micromeso.2019.05.040
Li, Y.; Lu, M.; He, P.; Wu, Y.; Wang, J.; Chen, D.; Xu, H.; Gao, J.; Yao, J. Chem. Asian J. 2019, 14(9), 1590.doi:10.1002/asia.201900328
doi: 10.1002/asia.201900328
Kumar, A.; Bhattacharyya, S. ACS Appl. Mater. Interfaces 2017, 9(48), 41906.doi:10.1021/acsami.7b14096
doi: 10.1021/acsami.7b14096
Qiao, H.; Yang, Y.; Dai, X.; Zhao, H.; Yong, J.; Yu, L.; Luan, X.; Cui, M.; Zhang, X.; Huang, X. Electrochim. Acta 2019, 318, 430.doi:10.1016/j.electacta.2019.06.084
doi: 10.1016/j.electacta.2019.06.084
Ma, Y.; Dai, X.; Liu, M.; Yong, J.; Qiao, H.; Jin, A.; Li, Z.; Huang, X.; Wang, H.; Zhang, X. ACS Appl. Mater. Interfaces 2016, 8(50), 34396.doi:10.1021/acsami.6b11821
doi: 10.1021/acsami.6b11821
Du, L.; Luo, L.; Feng, Z.; Engelhard, M.; Xie, X.; Han, B.; Sun, J.; Zhang, J.; Yin, G.; Wang, C.; et al. Nano Energy 2017, 39, 245.doi:10.1016/j.nanoen.2017.07.006
doi: 10.1016/j.nanoen.2017.07.006
Abdelkader-Fernández, V. K.; Fernandes, D. M.; Balula, S. S.; Cunha-Silva, L.; Pérez-Mendoza, M. J.; López-Garzón, F. J.; Pereira, M. F.; Freire, C. ACS Appl. Energy Mater. 2019, 2(3), 1854.doi:10.1021/acsaem.8b02010
doi: 10.1021/acsaem.8b02010
Xie, Z.; Tang, H.; Wang, Y. ChemElectroChem 2019, 6(4), 1206.doi:10.1002/celc.201801106
doi: 10.1002/celc.201801106
Nadeem, M.; Yasin, G.; Bhatti, M. H.; Mehmood, M.; Arif, M.; Dai, L. J. Power Sources 2018, 402, 34.doi:10.1016/j.jpowsour.2018.09.006
doi: 10.1016/j.jpowsour.2018.09.006
Hassan, M. H.; Soliman, A. B.; Elmehelmey, W. A.; Abugable, A. A.; Karakalos, S. G.; Elbahri, M.; Hassanien, A.; Alkordi, M. H. Chem. Commun. 2019, 55(1), 31.doi:10.1039/c8cc07120a
doi: 10.1039/c8cc07120a
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
Guo-Hong Gao , Run-Ze Zhao , Ya-Jun Wang , Xiao Ma , Yan Li , Jian Zhang , Ji-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Shengkai Li , Yuqin Zou , Chen Chen , Shuangyin Wang , Zhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168