Citation: Guoguang Xu, Qi Wang, Yi Su, Meinan Liu, Qingwen Li, Yuegang Zhang. Revealing Electrochemical Sodiation Mechanism of Orthogonal-Nb2O5 Nanosheets by In Situ Transmission Electron Microscopy[J]. Acta Physico-Chimica Sinica, ;2022, 38(8): 200907. doi: 10.3866/PKU.WHXB202009073 shu

Revealing Electrochemical Sodiation Mechanism of Orthogonal-Nb2O5 Nanosheets by In Situ Transmission Electron Microscopy

  • Corresponding author: Yuegang Zhang, yuegang.zhang@tsinghua.edu.cn
  • Received Date: 22 September 2020
    Revised Date: 22 October 2020
    Accepted Date: 26 October 2020
    Available Online: 2 November 2020

    Fund Project: the National Key R & D Program of China 2016YFB0100100the National Natural Science Foundation of China U1832218the National Natural Science Foundation of China 21433013

  • With the development of clean energy sources such as solar and wind power, large-scale energy storage technologies will play a significant role in the rational utilization of clean energy. Sodium ion batteries have garnered considerable attention for large-scale energy storage owing to their low cost and the presence of abundant sodium resources. It is particularly crucial to develop electrode materials for sodium battery with good rate capability and long cycle life. Orthogonal-phase niobium oxide (T-Nb2O5) exhibits good potential to be used as anode material for sodium-ion batteries owing to its high theoretical specific capacity (200 mAh·g−1) and high ionic diffusion coefficient. Furthermore, it demonstrates a better performance than that of graphite and exhibits a higher specific capacity than that of Li4TiO4 when used in sodium-ion batteries. However, its poor electrical conductivity has hindered its practical application. Recently, effective strategies such as coating with carbon materials or metal conductive particles have been developed to overcome this issue. Although the electrochemical performance of T-Nb2O5 has been improved, the sodiation mechanism of T-Nb2O5 is still unclear. It is considered to be similar to the lithium mechanism wherein lithium ions diffuse rapidly on the (001) planes, but exhibit difficulty in diffusing across the (001) planes. In this study, the electrochemical sodiation behaviors along the (001) lattice planes and the [001] direction of the T-Nb2O5 nanosheet are studied by in situ transmission electron microscopy (TEM). The results indicate that there are a large number of dislocations and domain boundaries in nanocrystals. Furthermore, it was observed that, sodium ions can diffuse across the (001) lattice planes through these defects, and then diffuse rapidly on the (001) planes. Meanwhile, we found a modulation structure in the [001] direction of the original nanosheet, in which alternating compressive and tensile strains were observed. These strain distributions can be regulated by the insertion of sodium ions, while the modulation structure is maintained. Moreover, the in situ TEM method used in this work can be applied to various energy materials.
  • 加载中
    1. [1]

      Sivaram, V.; Dabiri, J. O.; Hart, D. M. Joule 2018, 2, 1639. doi: 10.1016/j.joule.2018.07.025  doi: 10.1016/j.joule.2018.07.025

    2. [2]

      Bullich-Massagué, E.; Cifuentes-García, F. J.; Glenny-Crende, I.; Cheah-Mañé, M.; Aragüés-Peñalba, M.; Díaz-González, F.; Gomis-Bellmunt, O. Appl. Energy 2020, 274, 115213. doi: 10.1016/j.apenergy.2020.115213  doi: 10.1016/j.apenergy.2020.115213

    3. [3]

      Li, H.; Wu, C.; Wu, F.; Bai, Y. Acta Chim. Sin. 2014, 72, 21  doi: 10.6023/a13080830

    4. [4]

      Hirsh, H. S.; Li, Y.; Tan, D. H. S.; Zhang, M.; Zhao, E.; Meng, Y. S. Adv. Energy Mater. 2020, 10, 2001274. doi: 10.1002/aenm.202001274  doi: 10.1002/aenm.202001274

    5. [5]

      Xiang, X.; Lu, Y.; Chen, J. Acta Chim. Sin. 2017, 75, 154  doi: 10.6023/a16060275

    6. [6]

      Cao, B.; Li, X. F. Acta Phys. -Chim. Sin. 2020, 36, 1905003  doi: 10.3866/PKU.WHXB201905003

    7. [7]

      Song, W. X.; Hou, H. S.; Ji, X. B. Acta Phy. -Chim. Sin. 2017, 33, 103  doi: 10.3866/pku.whxb201608303

    8. [8]

      Wang, Y.; Yu, X.; Xu, S.; Bai, J.; Xiao, R.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L.; Huang, X. Nat. Commun. 2013, 4, 2365. doi: 10.1038/ncomms3365  doi: 10.1038/ncomms3365

    9. [9]

      Ding, H.; Song, Z.; Zhang, H.; Zhang, H.; Li, X. Mater. Today Nano 2020, 11, 100082. doi: 10.1016/j.mtnano.2020.100082  doi: 10.1016/j.mtnano.2020.100082

    10. [10]

      Deng, Q.; Fu, Y.; Zhu, C.; Yu, Y. Small 2019, 15, e1804884. doi: 10.1002/smll.201804884  doi: 10.1002/smll.201804884

    11. [11]

      Yang, H.; Xu, R.; Gong, Y.; Yao, Y.; Gu, L.; Yu, Y. Nano Energy 2018, 48, 448. doi: 10.1016/j.nanoen.2018.04.006  doi: 10.1016/j.nanoen.2018.04.006

    12. [12]

      Chen, D.; Wang, J. H.; Chou, T. F.; Zhao, B.; El-Sayed, M. A.; Liu, M. J. Am. Chem. Soc. 2017, 139, 7071. doi: 10.1021/jacs.7b03141  doi: 10.1021/jacs.7b03141

    13. [13]

      Kumagai, N.; Koishikawa, Y.; Komaba, S.; Koshibab, N. J. Electrochem. Soc. 1999, 156, 3203. doi: 10.1149/1.1392455  doi: 10.1149/1.1392455

    14. [14]

      Lubimtsev, A. A.; Kent, P. R. C.; Sumpter, B. G.; Ganesh, P. J. Mater. Chem. A 2013, 1, 14951. doi: 10.1039/c3ta13316h  doi: 10.1039/c3ta13316h

    15. [15]

      Meng, J.; He, Q.; Xu, L.; Zhang, X.; Liu, F.; Wang, X.; Li, Q.; Xu, X.; Zhang, G.; Niu, C.; et al. Adv. Energy Mater. 2019, 9, 1802695. doi: 10.1002/aenm.201802695  doi: 10.1002/aenm.201802695

    16. [16]

      Come, J.; Augustyn, V.; Kim, J. W.; Rozier, P.; Taberna, P. L.; Gogotsi, P.; Long, J. W.; Dunn, B.; Simon, P. J. Electrochem. Soc. 2014, 161, A718. doi: 10.1149/2.040405jes  doi: 10.1149/2.040405jes

    17. [17]

      Kim, H.; Lim, E.; Jo, C.; Yoon, G.; Hwang, J.; Jeong, S.; Lee, J.; Kang, K. Nano Energy 2015, 16, 62. doi: 10.1016/j.nanoen.2015.05.015  doi: 10.1016/j.nanoen.2015.05.015

    18. [18]

      Li, H.; Zhu, Y.; Dong, S.; Shen, L.; Chen, Z.; Zhang, X.; Yu, G. Chem. Mater. 2016, 28, 5753. doi: 10.1021/acs.chemmater.6b01988  doi: 10.1021/acs.chemmater.6b01988

    19. [19]

      Han, X.; Russo, P. A.; Goubard-Bretesché, N.; Patanè, S.; Santangelo, S.; Zhang, R.; Pinna, N. Adv. Energy Mater. 2019, 9, 1902813. doi: 10.1002/aenm.201902813  doi: 10.1002/aenm.201902813

    20. [20]

      Han, X.; Russo, P. A.; Triolo, C.; Santangelo, S.; Goubard-Bretesché, N.; Pinna, N. ChemElectroChem 2020, 7, 1689. doi: 10.1002/celc.202000181  doi: 10.1002/celc.202000181

    21. [21]

      Yan, L.; Chen, G.; Sarker, S.; Richins, S.; Wang, H.; Xu, W.; Rui, X.; Luo, H. ACS Appl. Mater. Inter. 2016, 8, 22213. doi: 10.1021/acsami.6b06516  doi: 10.1021/acsami.6b06516

    22. [22]

      Wang, L.; Bi, X.; Yang, S. Adv. Mater. 2016, 28, 7672. doi: 10.1002/adma.201601723  doi: 10.1002/adma.201601723

    23. [23]

      Hÿtcha, M. J.; Snoeckb, E.; Kilaasc, R. Ultramicroscopy 1998, 74, 131. doi: 10.1016/S0304-3991(98)00035-7  doi: 10.1016/S0304-3991(98)00035-7

    24. [24]

      Liu, Z.; Dong, W.; Wang, J.; Dong, C.; Lin, Y.; Chen, I. W.; Huang, F. iScience 2020, 23, 100767. doi: 10.1016/j.isci.2019.100767  doi: 10.1016/j.isci.2019.100767

    25. [25]

      Daniels, P.; Tamazyan, R.; Kuntscher, C. A.; Dressel, M.; Lichtenbergc, F.; Smaalen, S. V. Acta Cryst. 2002, B58, 970. doi: 10.1107/s010876810201741x  doi: 10.1107/s010876810201741x

    26. [26]

      Kruk, I.; Zajdel, P.; van Beek, W.; Bakaimi, I.; Lappas, A.; Stock, C.; Green, M. A. J. Am. Chem. Soc. 2011, 133, 13950. doi: 10.1021/ja109707q  doi: 10.1021/ja109707q

    27. [27]

      Kodama, R.; Terada, Y.; Nakai, I.; Komaba, S.; Kumagai, N. J. Electrochem. Soc. 2006, 153, A583. doi: 10.1149/1.2163788  doi: 10.1149/1.2163788

    28. [28]

      Xu, G.; Zhang, X.; Liu, M.; Li, H.; Zhao, M.; Li, Q.; Zhang, J.; Zhang, Y. Small 2020, 16, 1906499. doi: 10.1002/smll.201906499  doi: 10.1002/smll.201906499

    29. [29]

      Benedek, P.; Forslund, O. K.; Nocerino, E.; Yazdani, N.; Matsubara, N.; Sassa, Y.; Juranyi, F.; Medarde, M.; Telling, M.; Mansson, M.; et al. ACS Appl. Mater. Inter. 2020, 12, 16243. doi: 10.1021/acsami.9b21470  doi: 10.1021/acsami.9b21470

    30. [30]

      Zhang, W.; Yu, H. C.; Wu, L.; Liu, H.; Abdellah, A.; Qiu, B.; Bai, J.; Orvananos, B.; Strobridge, F. C.; Zhou, X.; et al. Sci. Adv. 2018, 4, eaao2608. doi: 10.1126/sciadv.aao2608  doi: 10.1126/sciadv.aao2608

    31. [31]

      Zhang, N.; Zhu, Y.; Li, D.; Pan, D.; Tang, Y.; Han, M.; Ma, J.; Wu, B.; Zhang, Z.; Ma, X. ACS Appl. Mater. Inter. 2018, 10, 38230. doi: 10.1021/acsami.8b13674  doi: 10.1021/acsami.8b13674

    32. [32]

      Wang, L.; Xu, Z.; Wang, W.; Bai, X. J. Am. Chem. Soc. 2014, 136, 6693. doi: 10.1021/ja501686w  doi: 10.1021/ja501686w

    33. [33]

      Navickas, E.; Chen, Y.; Lu, Q.; Wallisch, W.; Huber, T. M.; Bernardi, J.; Stoger-Pollach, M.; Friedbacher, G.; Hutter, H.; Yildiz, B.; Fleig, J. ACS Nano 2017, 11, 11475. doi: 10.1021/acsnano.7b06228  doi: 10.1021/acsnano.7b06228

    34. [34]

      Yang, S.; Yan, B.; Lu, L.; Zeng, K. RSC Adv. 2016, 6, 94000. doi: 10.1039/c6ra17681j  doi: 10.1039/c6ra17681j

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    4. [4]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    5. [5]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    10. [10]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    11. [11]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    12. [12]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    13. [13]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    20. [20]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

Metrics
  • PDF Downloads(21)
  • Abstract views(898)
  • HTML views(215)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return