Citation: Tianjie Wang, Yaowei Wang, Yuhui Chen, Jianpeng Liu, Huibing Shi, Limin Guo, Zhiwei Zhao, Chuntai Liu, Zhangquan Peng. Toward Practical Lithium-Air Batteries by Avoiding Negative Effects of CO2[J]. Acta Physico-Chimica Sinica, ;2022, 38(8): 200907. doi: 10.3866/PKU.WHXB202009071 shu

Toward Practical Lithium-Air Batteries by Avoiding Negative Effects of CO2




  • Author Bio:

    Yuhui Chen obtained his Bachelor degree in Fudan University in 2009, and received his Ph.D. degree from University of St Andrews (United Kingdom) in 2014. Later, he worked with Prof. Peter Bruce at the University of Oxford (United Kingdom) on the topic of metal-air batteries. Since 2017, he is the professor at Nanjing Tech University. His research interests include CO2 electrochemical catalysis and novel batteries such as metal-air batteries


    Limin Guo obtained her MSc and Ph.D. degrees from Changchun Institute of Applied Chemistry (CIAC) in 2004 and 2016, respectively. In 2018 she worked as an assistant professor in Jilin Engineering Normal University and promoted to full professor in 2020. Currently she is a professor in the College of Environment & Chemical Engineering of Dalian Jiaotong University. Her research interests include non-aqueous lithium-ion and lithium-air batteries investigated by the in situ electrochemistry techniques


    Zhangquan Peng obtained his Bachelor degree in Wuhan University in 1997, and received his MSc and Ph.D. degrees from Changchun Institute of Applied Chemistry (CIAC) in 2000 and 2003, respectively. He continued by working as a postdoctoral researcher at University of Dusseldorf (Germany), University of Aarhus (Denmark) and University of St Andrews (United Kingdom) from 2004 to 2012. From 2012 to 2020, he worked as a principle investigator on the topic of interfacial electrochemistry of various energy storage devices in CIAC. Currently, he is the supervisor of the Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics (DICP). His research interests include in situ electrochemistry coupled with theoretical calculation focusing on Li-ion and Li-O2 batteries
  • Corresponding author: Yuhui Chen, cheny@njtech.edu.cn Limin Guo, lmguo@ciac.ac.cn Zhangquan Peng, zqpeng@dicp.ac.cn
  • These authors contributed equally to this work.
  • Received Date: 21 September 2020
    Revised Date: 15 October 2020
    Accepted Date: 16 October 2020
    Available Online: 22 October 2020

    Fund Project: the National Key R&D Program of China 2016YFB0100100the National Key R&D Program of China 2018YFB0104400the National Natural Science Foundation of China 21972055the National Natural Science Foundation of China 21825202the National Natural Science Foundation of China 21575135the National Natural Science Foundation of China 21733012the National Natural Science Foundation of China 51773092the National Natural Science Foundation of China 21975124the National Natural Science Foundation of China 21972133the Newton Advanced Fellowships of Royal Society of England NAF/R2/180603

  • The gradual popularization of new energy technologies has led to rapid development in the field of electric transportation. At present, the demand for high-power density batteries is increasing and next-generation higher-energy battery chemistries aimed at replacing current lithium-ion batteries are emerging. The lithium-air batteries (LABs) are thought to be the ultimate energy conversion and storage system, because of their highest theoretical specific energy compared with other known battery systems. Current LABs are operated with pure O2 provided by weighty O2 cylinders instead of the breathing air, and this configuration would greatly undermine LAB's energy density and practicality. However, when the breathing air is used as O2 feed for LABs, CO2, as an inevitable impurity therein, usually leads to severe parasitic reactions and can easily deteriorate the performance of LABs. Specifically, Li2O2 will react with CO2 to form Li2CO3 on the cathode surface. Compared with the desired discharge product Li2O2, the Li2CO3 is an insulating solid, which will accumulate and finally passivate the electrode surface leading to the "sudden death" phenomenon of LABs. Moreover, Li2CO3 is hard to decompose and a high overpotential is required to charge LABs containing Li2CO3 compounds, which not only degrades energy efficiency but also decomposes other battery components (e.g., cathode materials and electrolytes). In recent years, researchers have proposed many strategies to alleviate the negative effects brought about by Li2CO3, such as catalyst engineering, electrolyte design, and so on, in which O2 selective permeable membranes are worth noting. This review summarizes the recent progresses on the understanding of the CO2-related chemistry and electrochemistry in LABs and describes the various strategies to mitigate and even avoid the negative effects of CO2. The perspective of CO2 separation technology using selective permeable membranes/filters in the context of LABs is also discussed.
  • 加载中
    1. [1]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    2. [2]

      Yang, S.; He, P.; Zhou, H. Energy Storage Mater. 2018, 13, 29. doi: 10.1016/j.ensm.2017.12.020  doi: 10.1016/j.ensm.2017.12.020

    3. [3]

      Imanishi, N.; Yamamoto, O. Mater. Today 2014, 17, 24. doi: 10.1016/j.mattod.2013.12.004  doi: 10.1016/j.mattod.2013.12.004

    4. [4]

      Lu, J.; Amine, K. Energies 2013, 6, 6016. doi: 10.3390/en6116016  doi: 10.3390/en6116016

    5. [5]

      Yang, Z.; Zhang, W.; Shen, Y.; Yuan, L. X.; Huang, Y. H. Acta Phys. -Chim. Sin. 2016, 32, 1062.  doi: 10.3866/PKU.WHXB201603231

    6. [6]

      Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Energy Environ. Sci. 2011, 4, 3243. doi: 10.1039/c1ee01598b  doi: 10.1039/c1ee01598b

    7. [7]

      Li, H.; Wang, Z.; Chen, L.; Huang, X. Adv. Mater. 2009, 21, 4593. doi: 10.1002/adma.200901710  doi: 10.1002/adma.200901710

    8. [8]

      Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19. doi: 10.1038/nmat3191  doi: 10.1038/nmat3191

    9. [9]

      Xu, J.; Liu, Q.; Yu, Y.; Wang, J.; Yan, J.; Zhang, X. Adv. Mater. 2017, 29, 1606552. doi: 10.1002/adma.201606552  doi: 10.1002/adma.201606552

    10. [10]

      Jian, Z.; Liu, P.; Li, F.; He, P.; Guo, X.; Chen, M.; Zhou, H. Angew. Chem. Int. Ed. 2014, 53, 442. doi: 10.1002/anie.201307976  doi: 10.1002/anie.201307976

    11. [11]

      Li, C.; Guo, Z.; Yang, B.; Liu, Y.; Wang, Y.; Xia, Y. Angew. Chem. Int. Ed. 2017, 56, 9126. doi: 10.1002/anie.201705017  doi: 10.1002/anie.201705017

    12. [12]

      Freunberger, S. A.; Chen, Y.; Peng, Z.; Griffin, J. M.; Hardwick, L. J.; Bardé, F.; Novák, P.; Bruce, P. G. J. Am. Chem. Soc. 2011, 133, 8040. doi: 10.1021/ja2021747  doi: 10.1021/ja2021747

    13. [13]

      McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.; Girishkumar, G.; Luntz, A. C. J. Phys. Chem. Lett. 2011, 2, 1161. doi: 10.1021/jz200352v  doi: 10.1021/jz200352v

    14. [14]

      Peng, Z.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y.; Giordani, V.; Bardé, F.; Novák, P.; Graham, D.; Tarascon, J. M.; Bruce, P. G. Angew. Chem. Int. Ed. 2011, 50, 6351. doi: 10.1002/anie.201100879  doi: 10.1002/anie.201100879

    15. [15]

      Débart, A.; Bao, J.; Armstrong, G.; Bruce, P. G. J. Power Sources 2007, 174, 1177. doi: 10.1016/j.jpowsour.2007.06.180  doi: 10.1016/j.jpowsour.2007.06.180

    16. [16]

      Giordani, V.; Freunberger, S. A.; Bruce, P. G.; Tarascon, J. M.; Larcher, D. Electrochem. Solid State Lett. 2010, 13, A180. doi: 10.1149/1.3494045  doi: 10.1149/1.3494045

    17. [17]

      Lu, Y.; Gasteiger, H. A.; Parent, M. C.; Chiloyan, V.; Shao-Horn, Y. Electrochem. Solid State Lett. 2010, 13, A69. doi: 10.1149/1.3363047  doi: 10.1149/1.3363047

    18. [18]

      Aurbach, D. J. Power Sources 2000, 89, 206. doi: 10.1016/S0378-7753(00)00431-6  doi: 10.1016/S0378-7753(00)00431-6

    19. [19]

      Cohen, Y. S.; Cohen, Y.; Aurbach, D. J. Phys. Chem. B 2000, 104, 12282. doi: 10.1021/jp002526b  doi: 10.1021/jp002526b

    20. [20]

      Choi, N. S.; Lee, Y. M.; Cho, K. Y.; Ko, D. H.; Park, J. K. Electrochem. Commun. 2004, 6, 1238. doi: 10.1016/j.elecom.2004.09.023  doi: 10.1016/j.elecom.2004.09.023

    21. [21]

      Read, J. J. Electrochem. Soc. 2006, 153, A96. doi: 10.1149/1.2131827  doi: 10.1149/1.2131827

    22. [22]

      Qiao, Y.; Deng, H.; He, P.; Zhou, H. Joule 2020, 4, 1445. doi: 10.1016/j.joule.2020.05.012  doi: 10.1016/j.joule.2020.05.012

    23. [23]

      Guo, Z.; Dong, X.; Yuan, S.; Wang, Y.; Xia, Y. J. Power Sources 2014, 264, 1. doi: 10.1016/j.jpowsour.2014.04.079  doi: 10.1016/j.jpowsour.2014.04.079

    24. [24]

      Meini, S.; Piana, M.; Tsiouvaras, N.; Garsuch, A.; Gasteiger, H. A. Electrochem. Solid State Lett. 2012, 15, A45. doi: 10.1149/2.005204esl  doi: 10.1149/2.005204esl

    25. [25]

      Li, F.; Wu, S.; Li, D.; Zhang, T.; He, P.; Yamada, A.; Zhou, H. Nat. Commun. 2015, 6, 7. doi: 10.1038/ncomms8843  doi: 10.1038/ncomms8843

    26. [26]

      Shui, J.; Okasinski, J. S.; Kenesei, P.; Dobbs, H. A.; Zhao, D.; Almer, J. D.; Liu, D. Nat. Commun. 2013, 4, 2255. doi: 10.1038/ncomms3255  doi: 10.1038/ncomms3255

    27. [27]

      Shen, X.; Liu, H.; Cheng, X.; Yan, C.; Huang, J. Energy Storage Mater. 2018, 12, 161. doi: 10.1016/j.ensm.2017.12.002  doi: 10.1016/j.ensm.2017.12.002

    28. [28]

      Amici, J.; Francia, C.; Zeng, J.; Bodoardo, S.; Penazzi, N. J. Appl. Electrochem. 2016, 46, 617. doi: 10.1007/s10800-016-0951-3  doi: 10.1007/s10800-016-0951-3

    29. [29]

      Xie, M.; Huang, Z.; Lin, X.; Li, Y.; Huang, Z.; Yuan, L.; Shen, Y.; Huang, Y. Energy Storage Mater. 2019, 20, 307. doi: 10.1016/j.ensm.2018.11.023  doi: 10.1016/j.ensm.2018.11.023

    30. [30]

      Xu, S.; Lau, S.; Archer, L. A. Inorg. Chem. Front. 2015, 2, 1070. doi: 10.1039/c5qi00169b  doi: 10.1039/c5qi00169b

    31. [31]

      Wadhawan, J. D.; Welford, P. J.; Maisonhaute, E.; Climent, V.; Lawrence, N. S.; Compton, R. G.; McPeak, H. B.; Hahn, C. E. W. J. Phys. Chem. B 2001, 105, 10659. doi: 10.1021/jp012160i  doi: 10.1021/jp012160i

    32. [32]

      Albertus, P.; Girishkumar, G.; McCloskey, B.; Sánchez-Carrera, R. S.; Kozinsky, B.; Christensen, J.; Luntz, A. C. J. Electrochem. Soc. 2011, 158, A343. doi: 10.1149/1.3527055  doi: 10.1149/1.3527055

    33. [33]

      Yang, S.; He, P.; Zhou, H. Energy Environ. Sci. 2016, 9, 1650. doi: 10.1039/c6ee00004e  doi: 10.1039/c6ee00004e

    34. [34]

      Farooqui, U. R.; Ahmad, A. L.; Hamid, N. A. Renew. Sust. Energ. Rev. 2017, 77, 1114. doi: 10.1016/j.rser.2016.11.220  doi: 10.1016/j.rser.2016.11.220

    35. [35]

      Dias, A. M. A.; Freire, M.; Coutinho, J. A. P.; Marrucho, I. M. Fluid Phase Equilibr. 2004, 222, 325. doi: 10.1016/j.fluid.2004.06.037  doi: 10.1016/j.fluid.2004.06.037

    36. [36]

      Liu, L.; Guo, H.; Fu, L.; Chou, S.; Thiele, S.; Wu, Y.; Wang, J. Small 2019, 15, 1903854. doi: 10.1002/smll.201903854  doi: 10.1002/smll.201903854

    37. [37]

      Jiang, X.; Li, S. W.; He, S. S.; Bai, Y. P.; Shao, L. J. Mater. Chem. A. 2018, 6, 15064. doi: 10.1039/c8ta03872d  doi: 10.1039/c8ta03872d

    38. [38]

      Guo, X. Y.; Qiao, Z. H.; Liu, D. H.; Zhong, C. L. J. Mater. Chem. A. 2019, 7, 24738. doi: 10.1039/c9ta09012f  doi: 10.1039/c9ta09012f

    39. [39]

      Gong, J. H.; Wang, C. H.; Bian, Z. J.; Yang, L.; Hu, J.; Liu, H. L. Acta Phys. -Chim. Sin. 2015, 31, 1963.  doi: 10.3866/PKU.WHXB201508282

    40. [40]

      Ottakam Thotiyl, M. M.; Freunberger, S. A.; Peng, Z.; Bruce, P. G. J. Am. Chem. Soc. 2013, 135, 494. doi: 10.1021/ja310258x  doi: 10.1021/ja310258x

    41. [41]

      Zhang, T.; Zhou, H. Nat. Commun. 2013, 4, 1817. doi: 10.1038/ncomms2855  doi: 10.1038/ncomms2855

    42. [42]

      Dean, J. A. Mater. Manuf. Process. 1990, 5, 687. doi: 10.1080/10426919008953291  doi: 10.1080/10426919008953291

    43. [43]

      Takechi, K.; Shiga, T.; Asaoka, T. Chem. Comm. 2011, 47, 3463. doi: 10.1039/c0cc05176d  doi: 10.1039/c0cc05176d

    44. [44]

      Gowda, S. R.; Brunet, A.; Wallraff, G. M.; McCloskey, B. D. J. Phys. Chem. Lett. 2013, 4, 276. doi: 10.1021/jz301902h  doi: 10.1021/jz301902h

    45. [45]

      Mekonnen, Y. S.; Knudsen, K. B.; Mýrdal, J. S. G.; Younesi, R.; Højberg, J.; Hjelm, J.; Norby, P.; Vegge, T. J. Chem. Phys. 2014, 140, 121101. doi: 10.1063/1.4869212  doi: 10.1063/1.4869212

    46. [46]

      Lim, H. K.; Lim, H. D.; Park, K. Y.; Seo, D. H.; Gwon, H.; Hong, J.; Goddard Ⅲ, W. A.; Kim, H.; Kang, K. J. Am. Chem. Soc. 2013, 135, 9733. doi: 10.1021/ja4016765  doi: 10.1021/ja4016765

    47. [47]

      Yin, W.; Grimaud, A.; Lepoivre, F.; Yang, C.; Tarascon, J. M. J. Phys. Chem. Lett. 2017, 8, 214. doi: 10.1021/acs.jpclett.6b02610  doi: 10.1021/acs.jpclett.6b02610

    48. [48]

      Zhao, Z.; Su, Y.; Peng, Z. J. Phys. Chem. Lett. 2019, 10, 322. doi: 10.1021/acs.jpclett.8b03272  doi: 10.1021/acs.jpclett.8b03272

    49. [49]

      Albertus, P.; Viswanathan, V.; Christensen, J. F.; Kozinsky, B.; Sanchez-carrera, R.; Iohmann, T. High Specific-Energy Li/O2-CO2 Battery. US Patent, US12/907205, 2012.

    50. [50]

      Yang, S.; Qiao, Y.; He, P.; Liu, Y.; Cheng, Z.; Zhu, J.; Zhou, H. Energy Environ. Sci. 2017, 10, 972. doi: 10.1039/c6ee03770d  doi: 10.1039/c6ee03770d

    51. [51]

      Qiao, Y.; Yi, J.; Wu, S.; Liu, Y.; Yang, S.; He, P.; Zhou, H. Joule 2017, 1, 359. doi: 10.1016/j.joule.2017.07.001  doi: 10.1016/j.joule.2017.07.001

    52. [52]

      Mahne, N.; Renfrew, S. E.; McCloskey, B. D.; Freunberger, S. A. Angew. Chem. Int. Ed. 2018, 57, 5529. doi: 10.1002/anie.201802277  doi: 10.1002/anie.201802277

    53. [53]

      Baek, K.; Jeon, W. C.; Woo, S.; Kim, J. C.; Lee, J. G.; An, K.; Kwak, S. K.; Kang, S. J. Nat. Commun. 2020, 11, 456. doi: 10.1038/s41467-019-14121-1  doi: 10.1038/s41467-019-14121-1

    54. [54]

      Li, C.; Guo, Z.; Yang, B.; Liu, Y.; Wang, Y.; Xia, Y. Angew. Chem. Int. Ed. 2017, 56, 9126. doi: 10.1002/anie.201705017  doi: 10.1002/anie.201705017

    55. [55]

      Qiao, Y.; Yi, J.; Guo, S.; Sun, Y.; Wu, S.; Liu, X.; Yang, S.; He, P.; Zhou, H. Energy Environ. Sci. 2018, 11, 1211. doi: 10.1039/c7ee03341a  doi: 10.1039/c7ee03341a

    56. [56]

      Wang, X.; Wang, C.; Xie, Z.; Zhang, X.; Chen, Y.; Wu, D.; Zhou, Z. Chem. Electro. Chem. 2017, 4, 2145. doi: 10.1002/celc.201700539  doi: 10.1002/celc.201700539

    57. [57]

      Liu, Z.; Zhang, Y.; Jia, C.; Wan, H.; Peng, Z.; Bi, Y.; Liu, Y.; Peng, Z.; Wang, Q.; Li, H.; Wang, D.; Zhang, J. Nano Energy 2017, 36, 390. doi: 10.1016/j.nanoen.2017.04.049  doi: 10.1016/j.nanoen.2017.04.049

    58. [58]

      Hong, M.; Choi, H. C.; Byon, H. R. Chem. Mater. 2015, 27, 2234. doi: 10.1021/acs.chemmater.5b00488  doi: 10.1021/acs.chemmater.5b00488

    59. [59]

      Fan, L.; Tang, D.; Wang, D.; Wang, Z.; Chen, L. Nano Res. 2016, 9, 3903. doi: 10.1007/s12274-016-1259-7  doi: 10.1007/s12274-016-1259-7

    60. [60]

      Song, S.; Xu, W.; Zheng, J.; Luo, L.; Engelhard, M. H.; Bowden, M. E.; Liu, B.; Wang, C. M.; Zhang, J. G. Nano Lett. 2017, 17, 1417. doi: 10.1021/acs.nanolett.6b04371  doi: 10.1021/acs.nanolett.6b04371

    61. [61]

      Bie, S.; Du, M.; He, W.; Zhang, H.; Yu, Z.; Liu, J.; Liu, M.; Yan, W.; Zhou, L.; Zou, Z. ACS Appl. Mater. Interfaces 2019, 11, 5146. doi: 10.1021/acsami.8b20573  doi: 10.1021/acsami.8b20573

    62. [62]

      Zhang, P.; Zhang, J.; Sheng, T.; Lu, Y.; Yin, Z.; Li, Y.; Peng, X.; Zhou, Y.; Li, J.; Wu, Y.; et al. ACS Catal. 2019, 10, 1640. doi: 10.1021/acscatal.9b04138  doi: 10.1021/acscatal.9b04138

    63. [63]

      Zhang, J.; Xu, W.; Li, X.; Liu, W. J. Electrochem. Soc. 2010, 157, A940. doi: 10.1149/1.3430093  doi: 10.1149/1.3430093

    64. [64]

      Zhao, D.; Timmons, D. J.; Yuan, D.; Zhou, H. Acc. Chem. Res. 2011, 44, 123. doi: 10.1021/ar100112y  doi: 10.1021/ar100112y

    65. [65]

      Liu, J.; Thallapally, P. K.; McGrail, B. P.; Brown, D. R.; Liu, J. Chem. Soc. Rev. 2012, 41, 2308. doi: 10.1039/c1cs15221a  doi: 10.1039/c1cs15221a

    66. [66]

      Ma, X. J.; Chai, Y. T.; Li, P.; Wang, B. Acc. Chem. Res. 2019, 52, 1461. doi: 10.1021/acs.accounts.9b00113  doi: 10.1021/acs.accounts.9b00113

    67. [67]

      Cheng, L.; Liu, G. P.; Jin, W. Q. Acta Phys. -Chim. Sin. 2019, 35, 1090.  doi: 10.3866/PKU.WHXB201810059

    68. [68]

      Cao, L.; Lv, F.; Liu, Y.; Wang, W.; Huo, Y.; Fu, X.; Sun, R.; Lu, Z. Chem. Commun. 2015, 51, 4364. doi: 10.1039/c4cc09281c  doi: 10.1039/c4cc09281c

    69. [69]

      Heydari-Gorji, A.; Belmabkhout, Y.; Sayari, A. Langmuir 2011, 27, 12411. doi: 10.1021/la202972t  doi: 10.1021/la202972t

    70. [70]

      Wang, X.; Chen, L.; Guo, Q. Chem. Eng. J. 2015, 260, 573. doi: 10.1016/j.cej.2014.08.107  doi: 10.1016/j.cej.2014.08.107

    71. [71]

      Khatri, R. A.; Chuang, S. S. C.; Soong, Y.; Gray, M. Energy Fuels 2006, 20, 1514. doi: 10.1021/ef050402y  doi: 10.1021/ef050402y

    72. [72]

      Wurzbacher, J. A.; Gebald, C.; Piatkowski, N.; Steinfeld, A. Environ. Sci Technol. 2012, 46, 9191. doi: 10.1021/es301953k  doi: 10.1021/es301953k

    73. [73]

      Chen, Z.; Deng, S.; Wei, H.; Wang, B.; Huang, J.; Yu, G. ACS Appl. Mater. Interfaces 2013, 5, 6937. doi: 10.1021/am400661b  doi: 10.1021/am400661b

    74. [74]

      Sujan, A. R.; Pang, S. H.; Zhu, G.; Jones, C. W.; Lively, R. P. ACS Sustain. Chem. Eng. 2019, 7, 5264. doi: 10.1021/acssuschemeng.8b06203  doi: 10.1021/acssuschemeng.8b06203

    75. [75]

      Bacsik, Z.; Ahlsten, N.; Ziadi, A.; Zhao, G.; Garcia-Bennett, A. E.; Martín-Matute, B.; Hedin, N. Langmuir 2011, 27, 11118. doi: 10.1021/la202033p  doi: 10.1021/la202033p

    76. [76]

      Babel, S.; Kurniawan, T. A. J. Hazard. Mater. 2003, 97, 219. doi: 10.1016/S0304-3894(02)00263-7  doi: 10.1016/S0304-3894(02)00263-7

    77. [77]

      Chue, K. T.; Kim, J. N.; Yoo, Y. J.; Cho, S. H.; Yang, R. T. Ind. Eng. Chem. Res. 1995, 34, 591. doi: 10.1021/ie00041a020  doi: 10.1021/ie00041a020

    78. [78]

      Merel, J.; Clausse, M.; Meunier, F. Ind. Eng. Chem. Res. 2008, 47, 209. doi: 10.1021/ie071012x  doi: 10.1021/ie071012x

    79. [79]

      Chou, C.; Chen, C. Sep. Purif. Technol. 2004, 39, 51. doi: 10.1016/j.seppur.2003.12.009  doi: 10.1016/j.seppur.2003.12.009

    80. [80]

      Mérel, J.; Clausse, M.; Meunier, F. Environ. Prog. 2006, 25, 327. doi: 10.1002/ep.10166  doi: 10.1002/ep.10166

    81. [81]

      Song, Z.; Dong, Q.; Xu, W. L.; Zhou, F.; Liang, X.; Yu, M. ACS Appl. Mater. Interfaces 2018, 10, 769. doi: 10.1021/acsami.7b16574  doi: 10.1021/acsami.7b16574

  • 加载中
    1. [1]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    2. [2]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    3. [3]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    4. [4]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    5. [5]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    6. [6]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    7. [7]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    8. [8]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    9. [9]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    10. [10]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    11. [11]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    12. [12]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    13. [13]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    14. [14]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    15. [15]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    16. [16]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    17. [17]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    20. [20]

      Haixia WuKailu Guo . Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery. Chinese Chemical Letters, 2024, 35(10): 109550-. doi: 10.1016/j.cclet.2024.109550

Metrics
  • PDF Downloads(16)
  • Abstract views(1048)
  • HTML views(169)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return