Citation: Liu Baiqiao, Xu Yunhua, Xia Dongdong, Xiao Chengyi, Yang Zhaofan, Li Weiwei. Semitransparent Organic Solar Cells based on Non-Fullerene Electron Acceptors[J]. Acta Physico-Chimica Sinica, ;2021, 37(3): 200905. doi: 10.3866/PKU.WHXB202009056 shu

Semitransparent Organic Solar Cells based on Non-Fullerene Electron Acceptors

  • Corresponding author: Xu Yunhua, yhxu@bjtu.edu.cn Xiao Chengyi, xiaocy@mail.buct.edu.cn Li Weiwei, liweiwei@iccas.ac.cn
  • Received Date: 17 September 2020
    Revised Date: 19 October 2020
    Accepted Date: 30 October 2020
    Available Online: 12 November 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (52073016, 21905018) and the Fundamental Research Funds for the Central Universities (XK1802-2)the Fundamental Research Funds for the Central Universities XK1802-2the National Natural Science Foundation of China 21905018the National Natural Science Foundation of China 52073016

  • Semitransparent organic solar cells (ST-OSCs) have attracted attention for use in building integrated photovoltaics because of their large range tunability in colors, transparency, and high efficiency. However, the development of semitransparent devices based on fullerene acceptors remained almost stagnant in the early period. This was due to the weak absorption of fullerene small molecules in the visible and near-infrared regions as well as the large non-radiative energy loss, resulting in drastic open-circuit voltage loss. In addition, the energy level and chemical structure of fullerene molecules cannot be easily regulated, and the strong aggregation characteristics of fullerenes greatly limit the development of OSCs. In contrast, the designability of the chemical structures and controllability of the energy levels of non-fullerene electron acceptors has encouraged researchers to explore high-performance organic solar cells while and simultaneously stimulating the development of ST-OSCs. In this review, the recent progress in non-fullerene small molecule acceptors for ST-OSCs is summarized. The article focuses on ST-OSCs from the aspects of device structures and active layers. In view of the semitransparent device structure, except for replacing the traditional electrodes with semitransparent electrodes, researchers have introduced suitable interface layers to regulate the absorption and reflection of sunlight. The interface layers mainly contain a reflective layer (evaporated on the top electrode to reflect near-infrared light); an anti-reflection layer (located below ITO (indium tin oxide)) to mitigate light reflection at the air-glass interface and thus enhance the absorption of sunlight); and an optical outcoupling layer (simultaneously increasing reflection and transmission). From the active layer, it is mainly divided into two categories. First, researchers have optimized the photovoltaic performance of semitransparent devices from the perspective of molecular structures, mainly by broadening the absorption window of non-fullerene small molecule acceptors, thus improving the crystallinity and charge mobility of small molecules, and regulating the stacking behavior and orientation of molecules in the films. Second, regarding the active layer processing, much effort has been undertaken to optimize the light absorption, morphology, and charge carrier transport channels of blended films.
  • 加载中
    1. [1]

      Yao, M. N.; Li, T. F.; Long, Y. B.; Shen, P.; Wang, G. X.; Li, C. L.; Liu, J. S.; Guo, W. B.; Wang, Y. F.; Shen, L.; Zhan, X. W. Sci. Bull. 2020, 65, 217. doi:10.1016/j.scib.2019.11.002  doi: 10.1016/j.scib.2019.11.002

    2. [2]

      Brus, V. V.; Lee, J.; Luginbuhl, B. R.; Ko, S. J.; Bazan, G. C.; Nguyen, T. Q. Adv. Mater. 2019, 31, 1900904. doi:10.1002/adma.201900904  doi: 10.1002/adma.201900904

    3. [3]

      Yan, N. F.; Zhao, C. W.; You, S. Y.; Zhang, Y. F.; Li, W. W. Chin. Chem. Lett. 2020, 31, 643. doi:10.1016/j.cclet.2019.08.022  doi: 10.1016/j.cclet.2019.08.022

    4. [4]

      Li, Y.; Xu, G.; Cui, C.; Li, Y. Adv. Energy Mater. 2018, 8, 1701791. doi:10.1002/aenm.201701791  doi: 10.1002/aenm.201701791

    5. [5]

      Xue, Q. F.; Xia, R. X.; Brabec, C. J.; Yip, H. L. Energy Environ. Sci. 2018, 11, 1688. doi:10.1039/c8ee00154e  doi: 10.1039/c8ee00154e

    6. [6]

      Xu, G.; Shen, L.; Cui, C.; Wen, S.; Xue, R.; Chen, W.; Chen, H.; Zhang, J.; Li, H.; Li, Y.; Li, Y. Adv. Funct. Mater. 2017, 27, 1605908. doi:10.1002/adfm.201605908  doi: 10.1002/adfm.201605908

    7. [7]

      Ameri, T.; Dennler, G.; Waldauf, C.; Azimi, H.; Seemann, A.; Forberich, K.; Hauch, J.; Scharber, M.; Hingerl, K.; Brabec, C. J. Adv. Funct. Mater. 2010, 20, 1592. doi:10.1002/adfm.201000176  doi: 10.1002/adfm.201000176

    8. [8]

      Lynn, N.; Mohanty, L.; Wittkopf, S. Build. Environ. 2012, 54, 148. doi:10.1016/j.buildenv.2012.02.010  doi: 10.1016/j.buildenv.2012.02.010

    9. [9]

      Liu, Q. S.; Jiang, Y. F.; Jin, K.; Qin, J. Q.; Xu, J. G.; Li, W. T.; Xiong, J.; Liu, J. F.; Xiao, Z.; Sun, K.; et al. Sci. Bull. 2020, 65, 272. doi:10.1016/j.scib.2020.01.001  doi: 10.1016/j.scib.2020.01.001

    10. [10]

      An, N.; Cai, Y.; Wu, H.; Tang, A.; Zhang, K.; Hao, X.; Ma, Z.; Guo, Q.; Ryu, H. S.; Woo, H. Y.; et al. Adv. Mater. 2020, 32, 2002122. doi:10.1002/adma.202002122  doi: 10.1002/adma.202002122

    11. [11]

      Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; et al. Adv. Mater. 2020, 32, 1908205. doi:10.1002/adma.201908205  doi: 10.1002/adma.201908205

    12. [12]

      Miao, J. L.; Zhang, F. J. J. Mater. Chem. C 2019, 7, 1741. doi:10.1039/c8tc06089d  doi: 10.1039/c8tc06089d

    13. [13]

      Debije, M. Nature 2015, 519, 298. doi:10.1038/519298a  doi: 10.1038/519298a

    14. [14]

      Chang, C. Y.; Zuo, L.; Yip, H. L.; Li, C. Z.; Li, Y.; Hsu, C. S.; Cheng, Y. J.; Chen, H.; Jen, A. K. Y. Adv. Energy Mater. 2014, 4, 1301645. doi:10.1002/aenm.201301645  doi: 10.1002/aenm.201301645

    15. [15]

      Chen, K. S.; Salinas, J. F.; Yip, H. L.; Huo, L. J.; Hou, J. H.; Jen, A. K. Y. Energy Environ. Sci. 2012, 5, 9551. doi:10.1039/c2ee22623e  doi: 10.1039/c2ee22623e

    16. [16]

      Colsmann, A.; Puetz, A.; Bauer, A.; Hanisch, J.; Ahlswede, E.; Lemmer, U. Adv. Energy Mater. 2011, 1, 599. doi:10.1002/aenm.201000089  doi: 10.1002/aenm.201000089

    17. [17]

      Czolk, J.; Puetz, A.; Kutsarov, D.; Reinhard, M.; Lemmer, U.; Colsmann, A. Adv. Energy Mater. 2013, 3, 386. doi:10.1002/aenm.201200532  doi: 10.1002/aenm.201200532

    18. [18]

      Guo, F.; Zhu, X. D.; Forberich, K.; Krantz, J.; Stubhan, T.; Salinas, M.; Halik, M.; Spallek, S.; Butz, B.; Spiecker, E.; et al. Adv. Energy Mater. 2013, 3, 1062. doi:10.1002/aenm.201300100  doi: 10.1002/aenm.201300100

    19. [19]

      Hanisch, J.; Ahlswede, E.; Powalla, M. Eur. Phys. J. Appl. Phys. 2007, 37, 261. doi:10.1051/epjap:2007041  doi: 10.1051/epjap:2007041

    20. [20]

      Jagadamma, L. K.; Hu, H. L.; Kim, T.; Ndjawa, G. O. N.; Mansour, A. E.; El Labban, A.; Faria, J. C. D.; Munir, R.; Anjum, D. H.; McLachlan, M. A.; Amassian, A. Nano Energy 2016, 28, 277. doi:10.1016/j.nanoen.2016.08.019  doi: 10.1016/j.nanoen.2016.08.019

    21. [21]

      Ren, X. G.; Li, X. C.; Choy, W. C. H. Nano Energy 2015, 17, 187. doi:10.1016/j.nanoen.2015.08.014  doi: 10.1016/j.nanoen.2015.08.014

    22. [22]

      Shen, P.; Wang, G.; Kang, B.; Guo, W.; Shen, L. ACS Appl. Mater. Interfaces 2018, 10, 6513. doi:10.1021/acsami.7b18765  doi: 10.1021/acsami.7b18765

    23. [23]

      Zhan, X.; Tan, Z.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.; Li, Y.; Zhu, D.; Kippelen, B.; Marder, S. R. J. Am. Chem. Soc. 2007, 129, 7246. doi:10.1021/ja071760d  doi: 10.1021/ja071760d

    24. [24]

      Cheng, P.; Li, G.; Zhan, X. W.; Yang, Y. Nat. Photonics 2018, 12, 131. doi:10.1038/s41566-018-0104-9  doi: 10.1038/s41566-018-0104-9

    25. [25]

      Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. Nat. Rev. Mater. 2018, 3, 18003. doi:10.1038/natrevmats.2018.3  doi: 10.1038/natrevmats.2018.3

    26. [26]

      Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170. doi:10.1002/adma.201404317  doi: 10.1002/adma.201404317

    27. [27]

      Wang, S.; Chen, J.; Li, L.; Zuo, L.; Qu, T. Y.; Ren, H.; Li, Y.; Jen, A. K. Y.; Tang, J. X. ACS Nano 2020, 14, 5998. doi:10.1021/acsnano.0c01517  doi: 10.1021/acsnano.0c01517

    28. [28]

      Schmidt, H.; Flügge, H.; Winkler, T.; Bülow, T.; Riedl, T.; Kowalsky, W. Appl. Phys. Lett. 2009, 94, 243302. doi:10.1063/1.3154556  doi: 10.1063/1.3154556

    29. [29]

      Huang, J.; Li, G.; Yang, Y. Adv. Mater. 2008, 20, 415. doi:10.1002/adma.200701101  doi: 10.1002/adma.200701101

    30. [30]

      Bauer, A.; Wahl, T.; Hanisch, J.; Ahlswede, E. Appl. Phys. Lett. 2012, 100, 073307. doi:10.1063/1.3685718  doi: 10.1063/1.3685718

    31. [31]

      Zhang, D.; Wang, R.; Wen, M.; Weng, D.; Cui, X.; Sun, J.; Li, H.; Lu, Y. J. Am. Chem. Soc. 2012, 134, 14283. doi:10.1021/ja3050184  doi: 10.1021/ja3050184

    32. [32]

      Tai, Q.; Yan, F. Adv. Mater. 2017, 29, 1700192. doi:10.1002/adma.201700192  doi: 10.1002/adma.201700192

    33. [33]

      Chen, C. C.; Dou, L.; Zhu, R.; Chung, C. H.; Song, T. B.; Zheng, Y. B.; Hawks, S.; Li, G.; Weiss, P. S.; Yang, Y. ACS Nano 2012, 6, 7185. doi:10.1021/nn3029327  doi: 10.1021/nn3029327

    34. [34]

      Beiley, Z. M.; Christoforo, M. G.; Gratia, P.; Bowring, A. R.; Eberspacher, P.; Margulis, G. Y.; Cabanetos, C.; Beaujuge, P. M.; Salleo, A.; McGehee, M. D. Adv. Mater. 2013, 25, 7020. doi:10.1002/adma.201301985  doi: 10.1002/adma.201301985

    35. [35]

      Min, J.; Bronnbauer, C.; Zhang, Z. G.; Cui, C.; Luponosov, Y. N.; Ata, I.; Schweizer, P.; Przybilla, T.; Guo, F.; Ameri, T.; et al. Adv. Funct. Mater. 2016, 26, 4543. doi:10.1002/adfm.201505411  doi: 10.1002/adfm.201505411

    36. [36]

      Ji, G.; Wang, Y.; Luo, Q.; Han, K.; Xie, M.; Zhang, L.; Wu, N.; Lin, J.; Xiao, S.; Li, Y. Q.; et al. ACS Appl. Mater. Interfaces 2018, 10, 943. doi:10.1021/acsami.7b13346  doi: 10.1021/acsami.7b13346

    37. [37]

      Makha, M.; Testa, P.; Anantharaman, S. B.; Heier, J.; Jenatsch, S.; Leclaire, N.; Tisserant, J. N.; Veron, A. C.; Wang, L.; Nuesch, F.; Hany, R. Sci. Technol. Adv. Mater. 2017, 18, 68. doi:10.1080/14686996.2016.1261602  doi: 10.1080/14686996.2016.1261602

    38. [38]

      Zhai, H.; Li, Y.; Chen, L.; Wang, X.; Shi, L.; Wang, R.; Sun, J. Nano Res. 2018, 11, 1956. doi:10.1007/s12274-017-1812-z  doi: 10.1007/s12274-017-1812-z

    39. [39]

      Xia, X.; Wang, S.; Jia, Y.; Bian, Z.; Wu, D.; Zhang, L.; Cao, A.; Huang, C. J. Mater. Chem. 2010, 20, 8478. doi:10.1039/C0JM02406F  doi: 10.1039/C0JM02406F

    40. [40]

      Kim, Y. H.; Müller-Meskamp, L.; Zakhidov, A. A.; Sachse, C.; Meiss, J.; Bikova, J.; Cook, A.; Zakhidov, A. A.; Leo, K. Sol. Energy Mater. Sol. Cells 2012, 96, 244. doi:10.1016/j.solmat.2011.10.001  doi: 10.1016/j.solmat.2011.10.001

    41. [41]

      Maruyama, S. ECS Meeting Abstracts 2018. doi:10.1149/ma2018-01/5/642  doi: 10.1149/ma2018-01/5/642

    42. [42]

      Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; et al. Nat. Nanotechnol. 2010, 5, 574. doi:10.1038/nnano.2010.132  doi: 10.1038/nnano.2010.132

    43. [43]

      Lee, Y. Y.; Tu, K. H.; Yu, C. C.; Li, S. S.; Hwang, J. Y.; Lin, C. C.; Chen, K. H.; Chen, L. C.; Chen, H. L.; Chen, C. W. ACS Nano 2011, 5, 6564. doi:10.1021/nn201940j  doi: 10.1021/nn201940j

    44. [44]

      Liu, Z.; Li, J.; Sun, Z. H.; Tai, G.; Lau, S. P.; Yan, F. ACS Nano 2012, 6, 810. doi:10.1021/nn204675r  doi: 10.1021/nn204675r

    45. [45]

      Li, X.; Choy, W. C. H.; Ren, X.; Xin, J.; Lin, P.; Leung, D. C. W. Appl. Phys. Lett. 2013, 102, 153304. doi:10.1063/1.4802261  doi: 10.1063/1.4802261

    46. [46]

      Liu, Z.; You, P.; Liu, S.; Yan, F. ACS Nano 2015, 9, 12026. doi:10.1021/acsnano.5b04858  doi: 10.1021/acsnano.5b04858

    47. [47]

      Song, Y.; Chang, S.; Gradecak, S.; Kong, J. Adv. Energy Mater. 2016, 6, 1600847. doi:10.1002/aenm.201600847  doi: 10.1002/aenm.201600847

    48. [48]

      Shin, D. H.; Jang, C. W.; Lee, H. S.; Seo, S. W.; Choi, S. H. ACS Appl. Mater. Interfaces 2018, 10, 3596. doi:10.1021/acsami.7b16730  doi: 10.1021/acsami.7b16730

    49. [49]

      Hu, Z.; Wang, J.; Ma, X.; Gao, J.; Xu, C.; Yang, K.; Wang, Z.; Zhang, J.; Zhang, F. Nano Energy 2020, 78, 105376. doi:10.1016/j.nanoen.2020.105376  doi: 10.1016/j.nanoen.2020.105376

    50. [50]

      Kim, N.; Kang, H.; Lee, J. H.; Kee, S.; Lee, S. H.; Lee, K. Adv. Mater. 2015, 27, 2317. doi:10.1002/adma.201500078  doi: 10.1002/adma.201500078

    51. [51]

      Fan, X.; Xu, B.; Liu, S.; Cui, C.; Wang, J.; Yan, F. ACS Appl. Mater. Interfaces 2016, 8, 14029. doi:10.1021/acsami.6b01389  doi: 10.1021/acsami.6b01389

    52. [52]

      Xia, Y.; Sun, K.; Ouyang, J. Adv. Mater. 2012, 24, 2436. doi:10.1002/adma.201104795  doi: 10.1002/adma.201104795

    53. [53]

      Kim, N.; Kee, S.; Lee, S. H.; Lee, B. H.; Kahng, Y. H.; Jo, Y. R.; Kim, B. J.; Lee, K. Adv. Mater. 2014, 26, 2268. doi:10.1002/adma.201304611  doi: 10.1002/adma.201304611

    54. [54]

      Wang, Y.; Zhu, C.; Pfattner, R.; Yan, H.; Jin, L.; Chen, S.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I.; et al. Sci. Adv. 2017, 3, 1602076. doi:10.1126/sciadv.1602076  doi: 10.1126/sciadv.1602076

    55. [55]

      Fan, X.; Nie, W.; Tsai, H.; Wang, N.; Huang, H.; Cheng, Y.; Wen, R.; Ma, L.; Yan, F.; Xia, Y. Adv. Sci. 2019, 6, 1900813. doi:10.1002/advs.201900813  doi: 10.1002/advs.201900813

    56. [56]

      Zheng, W.; Lin, Y.; Zhang, Y.; Yang, J.; Peng, Z.; Liu, A.; Zhang, F.; Hou, L. ACS Appl. Mater. Interfaces 2017, 9, 44656. doi:10.1021/acsami.7b14395  doi: 10.1021/acsami.7b14395

    57. [57]

      Shi, H.; Liu, C.; Jiang, Q.; Xu, J. Adv. Electron. Mater. 2015, 1, 1500017. doi:10.1002/aelm.201500017  doi: 10.1002/aelm.201500017

    58. [58]

      Dong, Q.; Zhou, Y.; Pei, J.; Liu, Z.; Li, Y.; Yao, S.; Zhang, J.; Tian, W. Org. Electron. 2010, 11, 1327. doi:10.1016/j.orgel.2010.04.012  doi: 10.1016/j.orgel.2010.04.012

    59. [59]

      Zhou, Y.; Cheun, H.; Choi, S.; Fuentes-Hernandez, C.; Kippelen, B. Org. Electron. 2011, 12, 827. doi:10.1016/j.orgel.2011.02.017  doi: 10.1016/j.orgel.2011.02.017

    60. [60]

      Fan, X.; Xu, B.; Wang, N.; Wang, J.; Liu, S.; Wang, H.; Yan, F. Adv. Electron. Mater. 2017, 3, 1600471. doi:10.1002/aelm.201600471  doi: 10.1002/aelm.201600471

    61. [61]

      Ma, X.; Xiao, Z.; An, Q.; Zhang, M.; Hu, Z.; Wang, J.; Ding, L.; Zhang, F. J. Mater. Chem. A 2018, 6, 21485. doi:10.1039/c8ta08891h  doi: 10.1039/c8ta08891h

    62. [62]

      Lee, J.; Cha, H.; Yao, H.; Hou, J.; Suh, Y. H.; Jeong, S.; Lee, K.; Durrant, J. R. ACS Appl. Mater. Interfaces 2020, 12, 32764. doi:10.1021/acsami.0c08037  doi: 10.1021/acsami.0c08037

    63. [63]

      Upama, M. B.; Wright, M.; Elumalai, N. K.; Mahmud, M. A.; Wang, D.; Xu, C.; Uddin, A. ACS Photonics 2017, 4, 2327. doi:10.1021/acsphotonics.7b00618  doi: 10.1021/acsphotonics.7b00618

    64. [64]

      Upama, M. B.; Wright, M.; Elumalai, N. K.; Mahmud, M. A.; Wang, D.; Chan, K. H.; Xu, C.; Hague, F.; Uddin, A. Curr. Appl. Phys. 2017, 17, 298. doi:10.1016/j.cap.2016.12.010  doi: 10.1016/j.cap.2016.12.010

    65. [65]

      Jia, B. Y.; Dai, S. X.; Ke, Z. F.; Yan, C. Q.; Ma, W.; Zhan, X. W. Chem. Mater. 2018, 30, 239. doi:10.1021/acs.chemmater.7b04251  doi: 10.1021/acs.chemmater.7b04251

    66. [66]

      Schubert, S.; Meiss, J.; Müller-Meskamp, L.; Leo, K. Adv. Energy Mater. 2013, 3, 438. doi:10.1002/aenm.201200903  doi: 10.1002/aenm.201200903

    67. [67]

      Kim, Y.; Son, J.; Shafian, S.; Kim, K.; Hyun, J. K. Adv. Opt. Mater. 2018, 6, 1800051. doi:10.1002/adom.201800051  doi: 10.1002/adom.201800051

    68. [68]

      Li, Z. Y.; Butun, S.; Aydin, K. ACS Photonics 2015, 2, 183. doi:10.1021/ph500410u  doi: 10.1021/ph500410u

    69. [69]

      Lu, J. H.; Lin, Y. H.; Jiang, B. H.; Yeh, C. H.; Kao, J. C.; Chen, C. P. Adv. Funct. Mater. 2018, 28, 1703398. doi:10.1002/adfm.201703398  doi: 10.1002/adfm.201703398

    70. [70]

      Cho, Y.; Lee, T. H.; Jeong, S.; Park, S. Y.; Lee, B.; Kim, J. Y.; Yang, C. ACS Appl. Energy Mater. 2020, 3, 7689. doi:10.1021/acsaem.0c01097  doi: 10.1021/acsaem.0c01097

    71. [71]

      Li, X.; Xia, R.; Yan, K.; Ren, J.; Yip, H. L.; Li, C. Z.; Chen, H. ACS Energy Lett. 2020, 3115. doi:10.1021/acsenergylett.0c01554  doi: 10.1021/acsenergylett.0c01554

    72. [72]

      Yan, K. R.; Liu, Z. X.; Li, X.; Chen, J. H.; Chen, H. Z.; Li, C. Z. Org. Chem. Front. 2018, 5, 2845. doi:10.1039/c8qo00788h  doi: 10.1039/c8qo00788h

    73. [73]

      Li, Y.; Ji, C.; Qu, Y.; Huang, X.; Hou, S.; Li, C. Z.; Liao, L. S.; Guo, L. J.; Forrest, S. R. Adv. Mater. 2019, 31, 1903173. doi:10.1002/adma.201903173  doi: 10.1002/adma.201903173

    74. [74]

      Zhang, J.; Xu, G.; Tao, F.; Zeng, G.; Zhang, M.; Yang, Y. M.; Li, Y.; Li, Y. Adv. Mater. 2019, 31, 1807159. doi:10.1002/adma.201807159  doi: 10.1002/adma.201807159

    75. [75]

      Sun, C.; Xia, R. X.; Shi, H.; Yao, H. F.; Liu, X.; Hou, J. H.; Huang, F.; Yip, H. L.; Cao, Y. Joule 2018, 2, 1816. doi:10.1016/j.joule.2018.06.006  doi: 10.1016/j.joule.2018.06.006

    76. [76]

      Liu, Q.; Gerling, L. G.; Bernal-Texca, F.; Toudert, J.; Li, T. F.; Zhan, X. W.; Martorell, J. Adv. Energy Mater. 2020, 10, 1904196. doi:10.1002/aenm.201904196  doi: 10.1002/aenm.201904196

    77. [77]

      Wang, Y.; Jia, B.; Qin, F.; Wu, Y.; Meng, W.; Dai, S.; Zhou, Y.; Zhan, X. Polymer 2016, 107, 108. doi:10.1016/j.polymer.2016.11.015  doi: 10.1016/j.polymer.2016.11.015

    78. [78]

      Liu, Y.; Cheng, P.; Li, T.; Wang, R.; Li, Y.; Chang, S. Y.; Zhu, Y.; Cheng, H. W.; Wei, K. H.; Zhan, X.; et al. ACS Nano 2019, 13, 1071. doi:10.1021/acsnano.8b08577  doi: 10.1021/acsnano.8b08577

    79. [79]

      Song, W.; Fanady, B.; Peng, R. X.; Hong, L.; Wu, L. R.; Zhang, W. X.; Yan, T. T.; Wu, T.; Chen, S. H.; Ge, Z. Y. Adv. Energy Mater. 2020, 10, 2000136. doi:10.1002/aenm.202000136  doi: 10.1002/aenm.202000136

    80. [80]

      Yue, Q.; Liu, W.; Zhu, X. J. Am. Chem. Soc. 2020, 142, 11613. doi:10.1021/jacs.0c04084  doi: 10.1021/jacs.0c04084

    81. [81]

      Geng, Y. H. Acta Phys. -Chim. Sin. 2019, 35, 1311.  doi: 10.3866/PKU.WHXB201909019

    82. [82]

      Xie, Y.; Xia, R.; Li, T.; Ye, L.; Zhan, X.; Yip, H. L.; Sun, Y. Small Methods 2019, 3, 1900424. doi:10.1002/smtd.201900424  doi: 10.1002/smtd.201900424

    83. [83]

      Dai, S.; Zhan, X. Adv. Energy Mater. 2018, 8, 1800002. doi:10.1002/aenm.201800002  doi: 10.1002/aenm.201800002

    84. [84]

      Feng, S. Y.; Lu, H.; Liu, Z. K.; Liu, Y. H.; Li, C. H.; Bo, Z. S. Acta Phys. -Chim. Sin. 2019, 35, 355.  doi: 10.3866/PKU.WHXB201805161

    85. [85]

      Yang, F.; Li, C.; Lai, W.; Zhang, A.; Huang, H.; Li, W. Mater. Chem. Front. 2017, 1, 1389. doi:10.1039/c7qm00025a  doi: 10.1039/c7qm00025a

    86. [86]

      Hou, J.; Inganas, O.; Friend, R. H.; Gao, F. Nat. Mater. 2018, 17, 119. doi:10.1038/nmat5063  doi: 10.1038/nmat5063

    87. [87]

      Li, Y.; Xu, Y. H.; Yang, F.; Jiang, X. D.; Li, C.; You, S. Y.; Li, W. W. Chin. Chem. Lett. 2019, 30, 222. doi:10.1016/j.cclet.2018.09.014  doi: 10.1016/j.cclet.2018.09.014

    88. [88]

      Han, G.; Hu, T.; Yi, Y. Adv. Mater. 2020, 32, 2000975. doi:10.1002/adma.202000975  doi: 10.1002/adma.202000975

    89. [89]

      Lu, B.; Chen, Z.; Jia, B.; Wang, J.; Ma, W.; Lian, J.; Zeng, P.; Qu, J.; Zhan, X. ACS Appl. Mater. Interfaces 2020, 12, 14029. doi:10.1021/acsami.0c00733  doi: 10.1021/acsami.0c00733

    90. [90]

      Dai, S.; Li, T.; Wang, W.; Xiao, Y.; Lau, T. K.; Li, Z.; Liu, K.; Lu, X.; Zhan, X. Adv. Mater. 2018, 30, 1706571. doi:10.1002/adma.201706571  doi: 10.1002/adma.201706571

    91. [91]

      Liao, S. H.; Jhuo, H. J.; Cheng, Y. S.; Chen, S. A. Adv. Mater. 2013, 25, 4766. doi:10.1002/adma.201301476  doi: 10.1002/adma.201301476

    92. [92]

      Zhu, J.; Ke, Z.; Zhang, Q.; Wang, J.; Dai, S.; Wu, Y.; Xu, Y.; Lin, Y.; Ma, W.; You, W.; Zhan, X. Adv. Mater. 2018, 30, 1704713. doi:10.1002/adma.201704713  doi: 10.1002/adma.201704713

    93. [93]

      Zhu, J.; Xiao, Y.; Wang, J.; Liu, K.; Jiang, H.; Lin, Y.; Lu, X.; Zhan, X. Chem. Mater. 2018, 30, 4150. doi:10.1021/acs.chemmater.8b01677  doi: 10.1021/acs.chemmater.8b01677

    94. [94]

      Li, T.; Dai, S.; Ke, Z.; Yang, L.; Wang, J.; Yan, C.; Ma, W.; Zhan, X. Adv. Mater. 2018, 30, 1705969. doi:10.1002/adma.201705969  doi: 10.1002/adma.201705969

    95. [95]

      Shi, X. L.; Chen, J. D.; Gao, K.; Zuo, L. J.; Yao, Z. Y.; Liu, F.; Tang, J. X.; Jen, A. K. Y. Adv. Energy Mater. 2018, 8, 1702831. doi:10.1002/aenm.201702831  doi: 10.1002/aenm.201702831

    96. [96]

      Li, Y.; Guo, X.; Peng, Z.; Qu, B.; Yan, H.; Ade, H.; Zhang, M.; Forrest, S. R. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 21147. doi:10.1073/pnas.2007799117  doi: 10.1073/pnas.2007799117

    97. [97]

      Wang, J.; Zhang, J.; Xiao, Y.; Xiao, T.; Zhu, R.; Yan, C.; Fu, Y.; Lu, G.; Lu, X.; Marder, S. R.; Zhan, X. J. Am. Chem. Soc. 2018, 140, 9140. doi:10.1021/jacs.8b04027  doi: 10.1021/jacs.8b04027

    98. [98]

      Xiao, T.; Wang, J.; Yang, S.; Zhu, Y.; Li, D.; Wang, Z.; Feng, S.; Bu, L.; Zhan, X.; Lu, G. J. Mater. Chem. A 2020, 8, 401. doi:10.1039/C9TA11613C  doi: 10.1039/C9TA11613C

    99. [99]

      Liu, F.; Zhou, Z.; Zhang, C.; Zhang, J.; Hu, Q.; Vergote, T.; Liu, F.; Russell, T. P.; Zhu, X. Adv. Mater. 2017, 29, 1606574. doi:10.1002/adma.201606574  doi: 10.1002/adma.201606574

    100. [100]

      Li, Y.; Lin, J. D.; Che, X.; Qu, Y.; Liu, F.; Liao, L. S.; Forrest, S. R. J. Am. Chem. Soc. 2017, 139, 17114. doi:10.1021/jacs.7b11278  doi: 10.1021/jacs.7b11278

    101. [101]

      Wang, W.; Yan, C.; Lau, T. K.; Wang, J.; Liu, K.; Fan, Y.; Lu, X.; Zhan, X. Adv. Mater. 2017, 29, 1701308. doi:10.1002/adma.201701308  doi: 10.1002/adma.201701308

    102. [102]

      Huang, H.; Li, X.; Zhong, L.; Qiu, B.; Yang, Y.; Zhang, Z. G.; Zhang, Z.; Li, Y. J. Mater. Chem. A 2018, 6, 4670. doi:10.1039/c8ta00581h  doi: 10.1039/c8ta00581h

    103. [103]

      Hu, Z.; Wang, Z.; Zhang, F. J. Mater. Chem. A 2019, 7, 7025. doi:10.1039/c9ta00907h  doi: 10.1039/c9ta00907h

    104. [104]

      Cui, Y.; Yang, C.; Yao, H.; Zhu, J.; Wang, Y.; Jia, G.; Gao, F.; Hou, J. Adv. Mater. 2017, 29, 1703080. doi:10.1002/adma.201703080  doi: 10.1002/adma.201703080

    105. [105]

      Hu, Z.; Wang, J.; Wang, Z.; Gao, W.; An, Q.; Zhang, M.; Ma, X.; Wang, J.; Miao, J.; Yang, C.; Zhang, F. Nano Energy 2019, 55, 424. doi:10.1016/j.nanoen.2018.11.010  doi: 10.1016/j.nanoen.2018.11.010

    106. [106]

      Luo, M.; Zhao, C. Y.; Yuan, J.; Hai, J. F.; Cai, F. F.; Hu, Y. B.; Peng, H. J.; Bai, Y. M.; Tan, Z. A.; Zou, Y. P. Mater. Chem. Front. 2019, 3, 2483. doi:10.1039/c9qm00499h  doi: 10.1039/c9qm00499h

    107. [107]

      Hu, Z. H.; Wang, Z.; An, Q. S.; Zhang, F. J. Sci. Bull. 2020, 65, 131. doi:10.1016/j.scib.2019.09.016  doi: 10.1016/j.scib.2019.09.016

    108. [108]

      Li, X.; Meng, H.; Shen, F.; Su, D.; Huo, S.; Shan, J.; Huang, J.; Zhan, C. Dyes Pigm. 2019, 166, 196. doi:10.1016/j.dyepig.2019.03.024  doi: 10.1016/j.dyepig.2019.03.024

    109. [109]

      Xie, Y. P.; Cai, Y. H.; Zhu, L.; Xia, R. X.; Ye, L. L.; Feng, X.; Yip, H. L.; Liu, F.; Lu, G. H.; Tan, S. T.; Sun, Y. M. Adv. Funct. Mater. 2020, 30, 2002181. doi:10.1002/adfm.202002181  doi: 10.1002/adfm.202002181

    110. [110]

      Song, Y.; Zhang, K.; Dong, S.; Xia, R.; Huang, F.; Cao, Y. ACS Appl. Mater. Interfaces 2020, 12, 18473. doi:10.1021/acsami.0c00396  doi: 10.1021/acsami.0c00396

    111. [111]

      Yao, H.; Cui, Y.; Yu, R.; Gao, B.; Zhang, H.; Hou, J. Angew. Chem. Int. Ed. 2017, 56, 3045. doi:10.1002/anie.201610944  doi: 10.1002/anie.201610944

    112. [112]

      Ye, L.; Xie, Y.; Weng, K.; Ryu, H. S.; Li, C.; Cai, Y.; Fu, H.; Wei, D.; Woo, H. Y.; Tan, S.; Sun, Y. Nano Energy 2019, 58, 220. doi:10.1016/j.nanoen.2019.01.039  doi: 10.1016/j.nanoen.2019.01.039

    113. [113]

      Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; et al. Joule 2019, 3, 1140. doi:10.1016/j.joule.2019.01.004  doi: 10.1016/j.joule.2019.01.004

    114. [114]

      Liu, F.; Li, C.; Li, J. Y.; Wang, C.; Xiao, C. Y.; Wu, Y. G.; Li, W. W. Chin. Chem. Lett. 2020, 31, 865. doi:10.1016/j.cclet.2019.06.051  doi: 10.1016/j.cclet.2019.06.051

    115. [115]

      Zhang, M.; Xiao, Z.; Gao, W.; Liu, Q. S.; Jin, K. B.; Wang, W. B.; Mi, Y.; An, Q. S.; Ma, X. L.; Liu, X. F.; et al. Adv. Energy Mater. 2018, 8, 1801968. doi:10.1002/aenm.201801968  doi: 10.1002/aenm.201801968

    116. [116]

      Wang, D.; Qin, R.; Zhou, G.; Li, X.; Xia, R.; Li, Y.; Zhan, L.; Zhu, H.; Lu, X.; Yip, H. L.; et al. Adv. Mater. 2020, 32, 2001621. doi:10.1002/adma.202001621  doi: 10.1002/adma.202001621

    117. [117]

      Shi, H.; Xia, R. X.; Zhang, G. C.; Yip, H. L.; Cao, Y. Adv. Energy Mater. 2019, 9, 1803438. doi:10.1002/aenm.201803438  doi: 10.1002/aenm.201803438

    118. [118]

      Cheng, P.; Wang, H. C.; Zhu, Y.; Zheng, R.; Li, T.; Chen, C. H.; Huang, T.; Zhao, Y.; Wang, R.; Meng, D.; et al. Adv. Mater. 2020, 32, 2003891. doi:10.1002/adma.202003891  doi: 10.1002/adma.202003891

    119. [119]

      Chen, S. S.; Yao, H. T.; Hu, B.; Zhang, G. Y.; Arunagiri, L.; Ma, L. K.; Huang, J. C.; Zhang, J. Q.; Zhu, Z. L.; Bai, F. J.; et al. Adv. Energy Mater. 2018, 8, 1800529. doi:10.1002/aenm.201800529  doi: 10.1002/aenm.201800529

    120. [120]

      Zhang, J.; Li, Y.; Huang, J.; Hu, H.; Zhang, G.; Ma, T.; Chow, P. C. Y.; Ade, H.; Pan, D.; Yan, H. J. Am. Chem. Soc. 2017, 139, 16092. doi:10.1021/jacs.7b09998  doi: 10.1021/jacs.7b09998

    121. [121]

      Yeom, H. R.; Song, S.; Park, S. Y.; Ryu, H. S.; Kim, J. W.; Heo, J.; Cho, H. W.; Walker, B.; Ko, S. J.; Woo, H. Y.; Kim, J. Y. Nano Energy 2020, 77, 105146. doi:10.1016/j.nanoen.2020.105146  doi: 10.1016/j.nanoen.2020.105146

    122. [122]

      Bin, H.; Zhang, Z. G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y. J. Am. Chem. Soc. 2016, 138, 4657. doi:10.1021/jacs.6b01744  doi: 10.1021/jacs.6b01744

    123. [123]

      Qian, D.; Ye, L.; Zhang, M.; Liang, Y.; Li, L.; Huang, Y.; Guo, X.; Zhang, S.; Tan, Z. A.; Hou, J. Macromolecules 2012, 45, 9611. doi:10.1021/ma301900h  doi: 10.1021/ma301900h

  • 加载中
    1. [1]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    2. [2]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    3. [3]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    7. [7]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    17. [17]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    18. [18]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    19. [19]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(21)
  • Abstract views(1991)
  • HTML views(751)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return