Citation: Yan Daqiang, Zhang Lin, Chen Zupeng, Xiao Weiping, Yang Xiaofei. Nickel-Based Metal-Organic Framework-Derived Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution Reactions[J]. Acta Physico-Chimica Sinica, ;2021, 37(7): 200905. doi: 10.3866/PKU.WHXB202009054 shu

Nickel-Based Metal-Organic Framework-Derived Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution Reactions

  • Corresponding author: Xiao Weiping, wpxiao@njfu.edu.cn Yang Xiaofei, xiaofei.yang@njfu.edu.cn
  • Received Date: 16 September 2020
    Revised Date: 23 October 2020
    Accepted Date: 16 November 2020
    Available Online: 20 November 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (21975129), Natural Science Foundation of Jiangsu Province, China (BK20190759), Natural Science Foundation of Jiangsu Higher Education Institutions of China (19KJB430003), Science Fund for Distinguished Young Scholars, Nanjing Forestry University, China (JC2019002)Science Fund for Distinguished Young Scholars, Nanjing Forestry University, China JC2019002Natural Science Foundation of Jiangsu Higher Education Institutions of China 19KJB430003the National Natural Science Foundation of China 21975129Natural Science Foundation of Jiangsu Province, China BK20190759

  • In recent years, electrochemical water splitting that involves the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) has attracted widespread attention because the process is clean, environmentally friendly, and the generated oxygen/hydrogen gas can be converted into electricity in a fuel cell. However, the HER and OER kinetics are sluggish and require highly efficient electrocatalysts for enhancing the reaction rate. Currently, precious metals such as Pt and RuO2 have shown excellent HER and OER performance, respectively, but their practical applications are limited by their scarcity and high price. Therefore, the use of 3d transition metals, such as iron (Fe) and nickel (Ni), as electrocatalysts has attracted significant attention. To obtain a catalytic performance similar to that of precious metals, several methods have been explored, such as alloying 3d transition metals with precious metals, compositing a variety of transition metals, or requiring good carbon-based materials as a supporter. Metal-organic framework (MOF)-derived nanomaterials have emerged as some of the most promising non-precious metal bifunctional electrocatalysts. The MOF structure consists of metal-based units and special organic ligands, and after annealing, metal atoms can be converted into unsaturated metal-based active sites, and the organic ligands can be converted into carbon support. This could accelerate the charge transfer efficiency and can be beneficial for achieving excellent HER and OER performance. However, bifunctional electrocatalysts derived from nickel (Ni)-based MOFs have not been studied intensively, and their catalytic activity and stability remain to be improved. Herein, a Ni-MOF precursor was synthesized via a liquid-phase coordination reaction using Ni2+ and benzene-1, 3, 5-tricarboxylic acid. The obtained Ni-MOF samples were annealed under H2/Ar atmosphere at 600, 700, and 800 ℃, named Ni/C-H2-600, Ni/C-H2-700, Ni/C-Ar-700, and Ni/C-H2-800, respectively. During high-temperature annealing treatment, Ni nanoparticles were grown in situ on a rod-shaped carbon substrate to form novel hybrid architecture Ni/C nanoparticles used as a high-performance bifunctional electrocatalyst for overall water splitting. The HER overpotential of Ni/C-H2-700 was 120 mV at a current density of 10 mA∙cm−2, which is much lower than that of Ni/C-H2-600 (250 mV), Ni/C-H2-800 (348 mV), and Ni/C-Ar-700 (275 mV). Ni/C-H2-700 required an OER overpotential of 350 mV to achieve a current density of 10 mA∙cm−2, which is lower than that of Ni/C-H2-600 (370 mV), Ni/C-H2-800 (430 mV), and Ni/C-Ar-700 (380 mV). Furthermore, Ni/C-H2-700 showed the idea of HER and OER durability. Presumably, good structural properties and the abundant surface area of the carbon substrate elevated HER/OER activity owing to the synergistic advantages of accessible active sites and enhanced electronic conductivity.
  • 加载中
    1. [1]

      Yang, J.; Chen, B.; Liu, X.; Liu, W.; Li, Z.; Dong, J.; Chen, W.; Yan, W.; Yao, T.; Duan, X.; et al. Angew. Chem. Int. Ed. 2018, 57, 9495. doi: 10.1002/anie.201804854  doi: 10.1002/anie.201804854

    2. [2]

      Yan, Y.; He, T.; Zhao, B.; Qi, K.; Liu, H.; Xia, B. Y. J. Mater. Chem. 2018, 6, 15905. doi: 10.1039/C8TA05985C  doi: 10.1039/C8TA05985C

    3. [3]

      Moore, E. A.; Babbitt, C. W.; Gaustad, G.; Moore, S. T. Environ. Sci. Technol. 2018, 52, 4440. doi: 10.1021/acs.est.7b04912  doi: 10.1021/acs.est.7b04912

    4. [4]

      Xie, Y.; Cai, J.; Wu, Y.; Zang, Y.; Zheng, X.; Ye, J.; Cui, P.; Niu, S.; Liu, Y.; Zhu, J.; et al. Adv. Mater. 2019, 31, 1807780. doi: 10.1002/adma.201807780  doi: 10.1002/adma.201807780

    5. [5]

      Xiao, W.; Bukhvalov, D.; Zou, Z.; Zhang, L.; Lin, Z.; Yang, X. ChemSusChem 2019, 12, 5015. doi: 10.1002/cssc.201902149  doi: 10.1002/cssc.201902149

    6. [6]

      Bao, M.; Amiinu, I. S.; Peng, T.; Li, W.; Liu, S.; Wang, Z.; Pu, Z.; He, D.; Xiong, Y.; Mu, S. ACS Energy Lett. 2018, 3, 940. doi: 10.1021/acsenergylett.8b00330  doi: 10.1021/acsenergylett.8b00330

    7. [7]

      Zhao, Z.; Liu, H.; Gao, W.; Xue, W.; Liu, Z.; Huang, J.; Pan, X.; Huang, Y. J. Am. Chem. Soc. 2018, 140, 9046. doi: 10.1021/jacs.8b04770  doi: 10.1021/jacs.8b04770

    8. [8]

      Anantharaj, S.; Karthik, P. E.; Subramanian, B.; Kundu, S. ACS Catal. 2016, 6, 4660. doi: 10.1021/acscatal.6b00965  doi: 10.1021/acscatal.6b00965

    9. [9]

      Ge, R.; Li, L.; Su, J.; Lin, Y.; Tian, Z.; Chen, L. Adv. Energy Mater. 2019, 9, 1901313. doi: 10.1002/aenm.201901313  doi: 10.1002/aenm.201901313

    10. [10]

      Zhang, C.; Bhoyate, S.; Kahol, P. K.; Siam, K.; Poudel, T. P.; Mishra, S. R.; Perez, F.; Gupta, A.; Gupta, G.; Gupta, R. K. ChemNanoMat 2018, 4, 1240. doi: 10.1002/cnma.201800301  doi: 10.1002/cnma.201800301

    11. [11]

      Li, F.; Han, G.; Noh, H.; Ahmad, I.; Jeon, I.; Baek, J. Adv. Mater. 2018, 30, 1803676. doi: 10.1002/adma.201803676  doi: 10.1002/adma.201803676

    12. [12]

      Sahoo, S. K.; Ye, Y.; Lee, S.; Park, J.; Lee, H.; Lee, J.; Han, J. W. ACS Energy Lett. 2019, 4, 126. doi: 10.1021/acsenergylett.8b01942  doi: 10.1021/acsenergylett.8b01942

    13. [13]

      Shan, J.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Z. Adv. Mater. 2019, 31, 1900510. doi: 10.1002/adma.201900510  doi: 10.1002/adma.201900510

    14. [14]

      Yang, W.; Rehman, S.; Chu, X.; Hou, Y.; Gao, S. ChemNanoMat 2015, 1, 376. doi: 10.1002/cnma.201500073  doi: 10.1002/cnma.201500073

    15. [15]

      Liu, Y.; Liu, S.; Wang, Y.; Zhang, Q.; Gu, L.; Zhao, S.; Xu, D.; Li, Y.; Bao, J.; Dai, Z. J. Am. Chem. Soc. 2018, 140, 2731. doi: 10.1021/jacs.7b12615  doi: 10.1021/jacs.7b12615

    16. [16]

      Zhang, Z.; Li, P.; Feng, Q.; Wei, B.; Deng, C.; Fan, J.; Li, H.; Wang, H. ACS Appl. Mater. Interfaces 2018, 10, 32171. doi: 10.1021/acsami.8b10502  doi: 10.1021/acsami.8b10502

    17. [17]

      Zhang, J.; Zhao, Y.; Guo, X.; Chen, C.; Dong, C.; Liu, R.; Han, C.; Li, Y.; Gogotsi, Y.; Wang, G. Nat. Catal. 2018, 1, 985. doi: 10.1038/s41929-018- 0195-1  doi: 10.1038/s41929-018-0195-1

    18. [18]

      Xiao, W.; Zhang, L.; Bukhvalov, D.; Chen, Z.; Zo u, Z.; Shang, L.; Yang, X.; Yan, D.; Han, F.; Zhang, T. Nano Energy 2020, 70, 104445. doi: 10.1016/jnanoen.2020.104445  doi: 10.1016/jnanoen.2020.104445

    19. [19]

      Liu, T.; Li, A.; Wang, C.; Zhou, W.; Liu, S.; Guo, L. Adv. Mater. 2018, 30, 1803590. doi: 10.1002/adma.201803590  doi: 10.1002/adma.201803590

    20. [20]

      Lee, S.; Banjac, K.; Lingenfelder, M.; Hu, X. Angew. Chem. Int. Ed. 2019, 58, 10295. doi: 10.1039/C7CS00690J  doi: 10.1039/C7CS00690J

    21. [21]

      Xiao, Z.; Xie, C.; Wang, Y.; Chen, R.; Wang, S. J. Energy Chem. 2021, 53, 208. doi: 10.1016/j.jechem.2020.04.063  doi: 10.1016/j.jechem.2020.04.063

    22. [22]

      Jiang, Y.; Yang, L.; Sun, T.; Zhao, J.; Lyu, Z.; Zhuo, O.; Wang, X.; Wu, Q.; Ma, J.; Hu, Z. ACS Catal. 2015, 5, 6707. doi: 10.1021/acscatal.5b01835  doi: 10.1021/acscatal.5b01835

    23. [23]

      Lei, Z.; Xue, Y.; Chen, W.; Qiu, W.; Zhang, Y.; Horike, S.; Tang, L. Adv. Energy Mater. 2018, 8, 1801587. doi: 10.1002/aenm.201801587  doi: 10.1002/aenm.201801587

    24. [24]

      Altintas, C.; Keskin, S. ACS Sustainable Chem. Eng. 2018, 7, 2739. doi: 10.1021/acssuschemeng.8b05832  doi: 10.1021/acssuschemeng.8b05832

    25. [25]

      Qiao, L.; Zhu, A.; Zeng, W.; Dong, R.; Tan, P.; Ding, Z.; Gao, P.; Wang, S.; Pan, J. J. Mater. Chem. A 2020, 8, 2453. doi: 10.1039/C9TA10682K  doi: 10.1039/C9TA10682K

    26. [26]

      Lei, C.; Wang, Y.; Hou, Y.; Liu, P.; Yang, J.; Zhang, T.; Zhuang, X.; Chen, M.; Yang, B.; Lei, L.; et al. Energy Environ. Sci. 2019, 12, 149. doi: 10.1039/C8EE01841C  doi: 10.1039/C8EE01841C

    27. [27]

      Yang, Y.; Sun, X.; Han, G.; Liu, X.; Zhang, X.; Sun, Y.; Zhang, M.; Cao, Z.; Sun, Y. Angew. Chem. Int. Ed. 2019, 58, 10644. doi: 10.1002/anie.201905430  doi: 10.1002/anie.201905430

    28. [28]

      Pender, J. P.; Guerrera, J. V.; Wygant, B. R.; Weeks, J. A.; Ciufo, R. A.; Burrow, J. N.; Walk, M. F.; Rahman, M. Z.; Heller, A.; Mullins, C. B. ACS Nano. 2019, 13, 9279. doi: 10.1021/acsnano.9b03861  doi: 10.1021/acsnano.9b03861

    29. [29]

      Ding, J.; Shao, Q.; Feng, Y.; Huang, X. Nano Energy 2018, 47, 1. doi: 10.1016/j.nanoen.201802017  doi: 10.1016/j.nanoen.201802017

  • 加载中
    1. [1]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    2. [2]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    3. [3]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    4. [4]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    5. [5]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    6. [6]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    7. [7]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    8. [8]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    9. [9]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    10. [10]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    11. [11]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    12. [12]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    13. [13]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    14. [14]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    15. [15]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    16. [16]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    17. [17]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    18. [18]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    19. [19]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    20. [20]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

Metrics
  • PDF Downloads(43)
  • Abstract views(782)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return