Citation: Xiao Yao, Pei Yu, Hu Yifan, Ma Ruguang, Wang Deyi, Wang Jiacheng. Co2P@P-Doped 3D Porous Carbon for Bifunctional Oxygen Electrocatalysis[J]. Acta Physico-Chimica Sinica, ;2021, 37(7): 200905. doi: 10.3866/PKU.WHXB202009051 shu

Co2P@P-Doped 3D Porous Carbon for Bifunctional Oxygen Electrocatalysis

  • Corresponding author: Wang Deyi, deyi.wang@imdea.org Wang Jiacheng, jiacheng.wang@mail.sic.ac.cn
  • Received Date: 15 September 2020
    Revised Date: 12 October 2020
    Accepted Date: 16 November 2020
    Available Online: 20 November 2020

    Fund Project: This research is financially supported by the Program of Shanghai Academic Research Leader (20XD1424300) for financial supportthe Program of Shanghai Academic Research Leader 20XD1424300

  • The existing energy and environmental issues are the primary issues that restrict the continual development of the mankind. Cost-effective energy storage and conversion devices have attracted significant attention. Rechargeable zinc-air batteries (ZABs) are widely studied because they are portable, possess high power density, and are environmentally friendly. However, the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) limit their practical application. It is crucial to develop dual-functional electrocatalysts with excellent electrocatalytic performance, low price, simple operation, and outstanding stability. Therefore, transition metals and carbon-based materials should be combined. Although Co2P has been widely reported as an efficient OER catalyst, there are few studies based on the ORR activity. Herein, a facile pyrolysis of cobalt salt, phytic acid, and k-carrageenan aerogel was carried out on Co2P nanoparticles within P-doped porous carbon (Co2P-PCA-800), showing enhanced ORR activity. The resulting composite (Co2P-PCA-800) with a three-dimensional (3D) hierarchical porous architecture exhibited outstanding ORR activity with a high half-wave potential (E1/2) of approximately 0.84 V, which is comparable to that of Pt/C. Simultaneously, we fabricated phosphorus-doped porous carbon (PCA) and cobalt-doped porous carbon (Co-CA) to compare the effect of structural morphology on the catalytic performance. Studies have found that a regular interconnected porous structure can be beneficial for mass transfer and can ensure uniform distribution of ion current, thereby resulting in increased number of effective active sites. The outstanding ORR activity mainly results from the synergistic effect of the 3D honeycomb hierarchical porous structure and positively charged Co2P nanoparticles encapsulated in P-doped carbon. In addition, the 3D honeycomb porous carbon structure not only facilitates mass transfer and accelerates electron transfer but also protects the cobalt phosphide. Finally, we assembled a rechargeable ZAB with Co2P-PCA-800 as the air cathode catalyst. Compared with precious metal catalysts, the catalyst has considerable charge-discharge performance and energy density as well as higher specific capacity and better cycle stability. We believe that this study will provide a significant direction for solving energy and environmental issues.
  • 加载中
    1. [1]

      Lv, L.; Yang, Z. X.; Chen, K.; Wang, C. D.; Xiong, Y. J. Adv. Energy Mater. 2019, 9, e1803358. doi: 10.1002/aenm.201803358  doi: 10.1002/aenm.201803358

    2. [2]

      Wang, H. F.; Tang, C.; Zhang, Q. Adv. Funct. Mater. 2018, 28, e1803329. doi: 10.1002/adfm.201803329  doi: 10.1002/adfm.201803329

    3. [3]

      Shen, H.; Thomas, T.; Rasaki, S. A.; Saad, A.; Hu, C.; Wang, J.; Yang, M. Electrochem. Energy Rev. 2019, 2, 252. doi: 10.1007/s41918-019-00030-w  doi: 10.1007/s41918-019-00030-w

    4. [4]

      He, W. T.; Ma, R. G.; Zhu, Y. F.; Yang, M. J.; Wang, J. C. J. Inorg. Mater. 2019, 34, 1115. doi: 10.15541/jim20190036  doi: 10.15541/jim20190036

    5. [5]

      Ju, Q. J.; Ma, R. G.; Hu, Y. F.; Guo, B. B.; Liu, Q.; Thomas, T.; Zhang, T.; Yang, M. H.; Chen, W.; Wang, J. C. ACS Catal. 2020, 10, 9366. doi: 10.1021/acscatal.0c00474  doi: 10.1021/acscatal.0c00474

    6. [6]

      Wu, G.; Mack, N. H.; Gao, W.; Ma, S.; Zhong, R.; Han, J.; Baldwin, J. K.; Zelenay, P. ACS Nano. 2012, 6, 9764. doi: 10.1021/nn303275d  doi: 10.1021/nn303275d

    7. [7]

      Ma, R.; Lin, G.; Ju, Q.; Tang, W.; Chen, G.; Chen, Z.; Liu, Q.; Yang, M.; Lu, Y.; Wang, J. Appl. Catal. B: Environ. 2020, 265, e118593. doi: 10.1016/j.apcatb.2020.118593  doi: 10.1016/j.apcatb.2020.118593

    8. [8]

      Pan, J.; Xu, Y. Y.; Yang, H.; Dong, Z.; Liu, H.; Xia, B. Y. Adv. Sci. 2018, 5, 1700691. doi: 10.1002/advs.201700691  doi: 10.1002/advs.201700691

    9. [9]

      Zhu, Y. -P.; Liu, Y. -P.; Ren, T. -Z.; Yuan, Z. -Y. Adv. Funct. Mater. 2015, 25, 7337. doi: 10.1002/adfm.201503666  doi: 10.1002/adfm.201503666

    10. [10]

      Guo, B. B.; Ju, Q. J.; Ma, R. G.; Li, Z. C.; Liu, Q.; Ai, F.; Yang, M. H.; Kaskel, S.; Luo, J.; Zhang, T.; Wang, J. C. J. Mater. Chem. A 2019, 7, 19355. doi: 10.1039/c9ta06411g  doi: 10.1039/c9ta06411g

    11. [11]

      Guo, B. B.; Ma, R. G.; Li, Z. C.; Guo, S. K.; Luo, J.; Yang, M. H.; Liu, Q.; Thomas, T.; Wang, J. C. Nano-Micro Lett. 2020, 12, 20. doi: 10.1007/s40820-019-0364-z  doi: 10.1007/s40820-019-0364-z

    12. [12]

      Zhong, H. X.; Zhang, Y.; Zhang, X. B. Chem 2018, 4, 196. doi: 10.1016/j.chempr.2018.01.015  doi: 10.1016/j.chempr.2018.01.015

    13. [13]

      Tao, L.; Wang, Y. Q.; Zou, Y. Q.; Zhang, N. N.; Zhang, Y. Q.; Wu, Y. J.; Wang, Y. Y.; Chen, R.; Wang, S. Y. Adv. Energy. Mater. 2020, 10, 1901227. doi: 10.1002/aenm.201901227  doi: 10.1002/aenm.201901227

    14. [14]

      Cai, P.; Li, Y.; Wang, G.; Wen, Z. Angew. Chem. Int. Ed. 2018, 57, 3910. doi: 10.1002/anie.201712765  doi: 10.1002/anie.201712765

    15. [15]

      Zhong, H. X.; Li, K.; Zhang, Q.; Wang, J.; Meng, F. L.; Wu, Z. J.; Yan, J. M.; Zhang, X. B. NPG Asia Mater. 2016, 8, e308. doi: 10.1038/am.2016.132  doi: 10.1038/am.2016.132

    16. [16]

      Wang, Z. L.; Xu, D.; Zhong, H. X.; Wang, J.; Meng, F. L.; Zhang, X. B. Sci. Adv. 2015, 1, e1400035. doi: 10.1126/sciadv.1400035  doi: 10.1126/sciadv.1400035

    17. [17]

      Hou, J. G.; Wu, Y. Z.; Zhang, B.; Cao, S. Y.; Li, Z. W.; Sun, L. C. Adv. Funct. Mater. 2019, 29, e1808367. doi: 10.1002/adfm.201808367  doi: 10.1002/adfm.201808367

    18. [18]

      Gewirth, A. A.; Varnell, J. A.; DiAscro, A. M. Chem. Rev. 2018, 118, 2313. doi: 10.1021/acs.chemrev.7b00335  doi: 10.1021/acs.chemrev.7b00335

    19. [19]

      Dinh, K. N.; Liang, Q. H.; Du, C. F.; Zhao, J.; Tok, A. L. Y.; Mao, H.; Yan, Q. Y. Nano. Today 2019, 25, 99. doi: 10.1016/j.nantod.2019.02.008  doi: 10.1016/j.nantod.2019.02.008

    20. [20]

      Guo, Y. Y.; Yuan, P. F.; Zhang, J. A.; Xia, H. C.; Cheng, F. Y.; Zhou, M. F.; Li, J.; Qiao, Y. Y.; Mu, S. C.; Xu, Q. Adv. Funct. Mater. 2018, 28, e1805641. doi: 10.1002/adfm.201805641  doi: 10.1002/adfm.201805641

    21. [21]

      Jiang, D.; Ma, W.; Zhou, Y.; Xing, Y.; Quan, B.; Li, D. J. Colloid Interface Sci. 2019, 550, 10. doi: 10.1016/j.jcis.2019.04.080  doi: 10.1016/j.jcis.2019.04.080

    22. [22]

      Yao, L. H.; Zhang, N.; Wang, Y.; Ni, Y. M.; Yan, D. P.; Hu, C. W. J. Power. Sources 2018, 374, 142. doi: 10.1016/j.jpowsour.2017.11.028  doi: 10.1016/j.jpowsour.2017.11.028

    23. [23]

      Ahn, S. H.; Manthiram, A. Small 2017, 13, e1702068. doi: 10.1002/smll.201702068  doi: 10.1002/smll.201702068

    24. [24]

      Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Science 2009, 323, 760. doi: 10.1126/science.1168049  doi: 10.1126/science.1168049

    25. [25]

      Li, H.; Li, Q.; Wen, P.; Williams, T. B.; Adhikari, S.; Dun, C.; Lu, C.; Itanze, D.; Jiang, L.; Geyer, S. M.; et al. Adv. Mater. 2018, 30, e1705796. doi: 10.1002/adma.201705796  doi: 10.1002/adma.201705796

    26. [26]

      Han, C.; Bo, X.; Zhang, Y.; Li, M.; Wang, A.; Guo, L. Chem. Commun. 2015, 51, 15015. doi: 10.1039/c5cc05314e  doi: 10.1039/c5cc05314e

    27. [27]

      Gao, K.; Wang, B.; Tao, L.; Cunning, B. V.; Zhang, Z.; Wang, S.; Ruoff, R. S.; Qu, L. Adv. Mater. 2019, 31, e1805121. doi: 10.1002/adma.201805121  doi: 10.1002/adma.201805121

    28. [28]

      Li, J. S.; Kong, L. X.; Wu, Z. X.; Zhang, S.; Yang, X. Y.; Sha, J. Q.; Liu, G. D. Carbon 2019, 145, 694. doi: 10.1016/j.carbon.2018.12.032  doi: 10.1016/j.carbon.2018.12.032

    29. [29]

      Tian, J. Q.; Chen, J.; Liu, J. Y.; Tian, Q. H.; Chen, P. Nano Energy 2018, 48, 284. doi: 10.1016/j.nanoen.2018.03.063  doi: 10.1016/j.nanoen.2018.03.063

    30. [30]

      Yuan, K.; Lutzenkirchen-Hecht, D.; Li, L.; Shuai, L.; Li, Y.; Cao, R.; Qiu, M.; Zhuang, X.; Leung, M. K. H.; Chen, Y.; et al. J. Am. Chem. Soc. 2020, 142, 2404. doi: 10.1021/jacs.9b11852  doi: 10.1021/jacs.9b11852

    31. [31]

      Meng, F. L.; Liu, K. H.; Zhang, Y.; Shi, M. M.; Zhang, X. B.; Yan, J. M.; Jiang, Q. Small 2018, 14, e1703843. doi: 10.1002/smll.201703843  doi: 10.1002/smll.201703843

    32. [32]

      Pan, F.; Li, B.; Sarnello, E.; Fei, Y.; Gang, Y.; Xiang, X.; Du, Z.; Zhang, P.; Wang, G.; Li, Y.; et al. ACS Nano 2020, 14, 5506. doi: 10.1021/acsnano.9b09658  doi: 10.1021/acsnano.9b09658

    33. [33]

      Hua, Y. P.; Xu, Q. C.; Hu, Y. J.; Jiang, H.; Li, C. Z. J. Energy Chem. 2019, 37, 1. doi: 10.1016/j.jechem.2018.11.010  doi: 10.1016/j.jechem.2018.11.010

    34. [34]

      Zhang, S. L.; Guan, B. Y.; Lou, X. W. D. Small 2019, 15, e1805324. doi: 10.1002/smll.201805324  doi: 10.1002/smll.201805324

    35. [35]

      Meng, F.; Zhong, H.; Bao, D.; Yan, J.; Zhang, X. J. Am. Chem. Soc. 2016, 138, 10226. doi: 10.1021/jacs.6b05046  doi: 10.1021/jacs.6b05046

    36. [36]

      Li, D.; Yang, D.; Yang, X.; Wang, Y.; Guo, Z.; Xia, Y.; Sun, S.; Guo, S. Angew. Chem. Int. Ed. 2016, 55, 15925. doi: 10.1002/anie.201610301  doi: 10.1002/anie.201610301

    37. [37]

      Shen, R.; Xie, J.; Zhang, H.; Zhang, A.; Chen, X.; Li, X. ACS Sustain. Chem. Eng. 2017, 6, 816. doi: 10.1021/acssuschemeng.7b03169  doi: 10.1021/acssuschemeng.7b03169

    38. [38]

      Gao, J.; Wang, J.; Zhou, L.; Cai, X.; Zhan, D.; Hou, M.; Lai, L. ACS Appl. Mater. Interfaces 2019, 11, 10364. doi: 10.1021/acsami.8b20003  doi: 10.1021/acsami.8b20003

    39. [39]

      Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C. T.; Fan, F.; Sargent, E. H.; et al. Nature 2016, 537, 382. doi: 10.1038/nature19060  doi: 10.1038/nature19060

    40. [40]

      Li, Y. Z.; Wang, Z.; Hu, J.; Li, S. W.; Du, Y. C.; Han, X. J.; Xu, P. Adv. Funct. Mater. 2020, 30, e1910498. doi: 10.1002/adfm.201910498  doi: 10.1002/adfm.201910498

    41. [41]

      Li, D.; Sun, Y.; Chen, S.; Yao, J.; Zhang, Y.; Xia, Y.; Yang, D. ACS Appl. Mater. Interfaces 2018, 10, 17175. doi: 10.1021/acsami.8b03059  doi: 10.1021/acsami.8b03059

    42. [42]

      Yan, D.; Li, Y.; Huo, J.; Chen, R.; Dai, L.; Wang, S. Adv. Mater. 2017, 29, e1606459. doi: 10.1002/adma.201606459  doi: 10.1002/adma.201606459

    43. [43]

      Lin, Y.; Yang, L.; Zhang, Y.; Jiang, H.; Xiao, Z.; Wu, C.; Zhang, G.; Jiang, J.; Song, L. Adv. Energy Mater. 2018, 8, e1703623. doi: 10.1002/aenm.201703623  doi: 10.1002/aenm.201703623

    44. [44]

      Yan, X.; Jia, Y.; Yao, X. Chem. Soc. Rev. 2018, 47, 7628. doi: 10.1039/c7cs00690j  doi: 10.1039/c7cs00690j

    45. [45]

      Martinez, U.; Komini Babu, S.; Holby, E. F.; Chung, H. T.; Yin, X.; Zelenay, P. Adv. Mater. 2019, 31, e1806545. doi: 10.1002/adma.201806545  doi: 10.1002/adma.201806545

    46. [46]

      Das, D.; Nanda, K. K. Nano Energy 2016, 30, 303. doi: 10.1016/j.nanoen.2016.10.024  doi: 10.1016/j.nanoen.2016.10.024

    47. [47]

      Li, X.; Wang, Y.; Wang, J.; Da, Y.; Zhang, J.; Li, L.; Zhong, C.; Deng, Y.; Han, X.; Hu, W. Adv. Mater. 2020, 32, e2003414. doi: 10.1002/adma.202003414  doi: 10.1002/adma.202003414

  • 加载中
    1. [1]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    2. [2]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    3. [3]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

    4. [4]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    5. [5]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    6. [6]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    7. [7]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    8. [8]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    9. [9]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    10. [10]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    11. [11]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    12. [12]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    13. [13]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    14. [14]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    15. [15]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    16. [16]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    17. [17]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    18. [18]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    19. [19]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    20. [20]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

Metrics
  • PDF Downloads(39)
  • Abstract views(1931)
  • HTML views(399)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return