Co2P@P-Doped 3D Porous Carbon for Bifunctional Oxygen Electrocatalysis
- Corresponding author: Wang Deyi, deyi.wang@imdea.org Wang Jiacheng, jiacheng.wang@mail.sic.ac.cn
Citation: Xiao Yao, Pei Yu, Hu Yifan, Ma Ruguang, Wang Deyi, Wang Jiacheng. Co2P@P-Doped 3D Porous Carbon for Bifunctional Oxygen Electrocatalysis[J]. Acta Physico-Chimica Sinica, ;2021, 37(7): 200905. doi: 10.3866/PKU.WHXB202009051
Lv, L.; Yang, Z. X.; Chen, K.; Wang, C. D.; Xiong, Y. J. Adv. Energy Mater. 2019, 9, e1803358. doi: 10.1002/aenm.201803358
doi: 10.1002/aenm.201803358
Wang, H. F.; Tang, C.; Zhang, Q. Adv. Funct. Mater. 2018, 28, e1803329. doi: 10.1002/adfm.201803329
doi: 10.1002/adfm.201803329
Shen, H.; Thomas, T.; Rasaki, S. A.; Saad, A.; Hu, C.; Wang, J.; Yang, M. Electrochem. Energy Rev. 2019, 2, 252. doi: 10.1007/s41918-019-00030-w
doi: 10.1007/s41918-019-00030-w
He, W. T.; Ma, R. G.; Zhu, Y. F.; Yang, M. J.; Wang, J. C. J. Inorg. Mater. 2019, 34, 1115. doi: 10.15541/jim20190036
doi: 10.15541/jim20190036
Ju, Q. J.; Ma, R. G.; Hu, Y. F.; Guo, B. B.; Liu, Q.; Thomas, T.; Zhang, T.; Yang, M. H.; Chen, W.; Wang, J. C. ACS Catal. 2020, 10, 9366. doi: 10.1021/acscatal.0c00474
doi: 10.1021/acscatal.0c00474
Wu, G.; Mack, N. H.; Gao, W.; Ma, S.; Zhong, R.; Han, J.; Baldwin, J. K.; Zelenay, P. ACS Nano. 2012, 6, 9764. doi: 10.1021/nn303275d
doi: 10.1021/nn303275d
Ma, R.; Lin, G.; Ju, Q.; Tang, W.; Chen, G.; Chen, Z.; Liu, Q.; Yang, M.; Lu, Y.; Wang, J. Appl. Catal. B: Environ. 2020, 265, e118593. doi: 10.1016/j.apcatb.2020.118593
doi: 10.1016/j.apcatb.2020.118593
Pan, J.; Xu, Y. Y.; Yang, H.; Dong, Z.; Liu, H.; Xia, B. Y. Adv. Sci. 2018, 5, 1700691. doi: 10.1002/advs.201700691
doi: 10.1002/advs.201700691
Zhu, Y. -P.; Liu, Y. -P.; Ren, T. -Z.; Yuan, Z. -Y. Adv. Funct. Mater. 2015, 25, 7337. doi: 10.1002/adfm.201503666
doi: 10.1002/adfm.201503666
Guo, B. B.; Ju, Q. J.; Ma, R. G.; Li, Z. C.; Liu, Q.; Ai, F.; Yang, M. H.; Kaskel, S.; Luo, J.; Zhang, T.; Wang, J. C. J. Mater. Chem. A 2019, 7, 19355. doi: 10.1039/c9ta06411g
doi: 10.1039/c9ta06411g
Guo, B. B.; Ma, R. G.; Li, Z. C.; Guo, S. K.; Luo, J.; Yang, M. H.; Liu, Q.; Thomas, T.; Wang, J. C. Nano-Micro Lett. 2020, 12, 20. doi: 10.1007/s40820-019-0364-z
doi: 10.1007/s40820-019-0364-z
Zhong, H. X.; Zhang, Y.; Zhang, X. B. Chem 2018, 4, 196. doi: 10.1016/j.chempr.2018.01.015
doi: 10.1016/j.chempr.2018.01.015
Tao, L.; Wang, Y. Q.; Zou, Y. Q.; Zhang, N. N.; Zhang, Y. Q.; Wu, Y. J.; Wang, Y. Y.; Chen, R.; Wang, S. Y. Adv. Energy. Mater. 2020, 10, 1901227. doi: 10.1002/aenm.201901227
doi: 10.1002/aenm.201901227
Cai, P.; Li, Y.; Wang, G.; Wen, Z. Angew. Chem. Int. Ed. 2018, 57, 3910. doi: 10.1002/anie.201712765
doi: 10.1002/anie.201712765
Zhong, H. X.; Li, K.; Zhang, Q.; Wang, J.; Meng, F. L.; Wu, Z. J.; Yan, J. M.; Zhang, X. B. NPG Asia Mater. 2016, 8, e308. doi: 10.1038/am.2016.132
doi: 10.1038/am.2016.132
Wang, Z. L.; Xu, D.; Zhong, H. X.; Wang, J.; Meng, F. L.; Zhang, X. B. Sci. Adv. 2015, 1, e1400035. doi: 10.1126/sciadv.1400035
doi: 10.1126/sciadv.1400035
Hou, J. G.; Wu, Y. Z.; Zhang, B.; Cao, S. Y.; Li, Z. W.; Sun, L. C. Adv. Funct. Mater. 2019, 29, e1808367. doi: 10.1002/adfm.201808367
doi: 10.1002/adfm.201808367
Gewirth, A. A.; Varnell, J. A.; DiAscro, A. M. Chem. Rev. 2018, 118, 2313. doi: 10.1021/acs.chemrev.7b00335
doi: 10.1021/acs.chemrev.7b00335
Dinh, K. N.; Liang, Q. H.; Du, C. F.; Zhao, J.; Tok, A. L. Y.; Mao, H.; Yan, Q. Y. Nano. Today 2019, 25, 99. doi: 10.1016/j.nantod.2019.02.008
doi: 10.1016/j.nantod.2019.02.008
Guo, Y. Y.; Yuan, P. F.; Zhang, J. A.; Xia, H. C.; Cheng, F. Y.; Zhou, M. F.; Li, J.; Qiao, Y. Y.; Mu, S. C.; Xu, Q. Adv. Funct. Mater. 2018, 28, e1805641. doi: 10.1002/adfm.201805641
doi: 10.1002/adfm.201805641
Jiang, D.; Ma, W.; Zhou, Y.; Xing, Y.; Quan, B.; Li, D. J. Colloid Interface Sci. 2019, 550, 10. doi: 10.1016/j.jcis.2019.04.080
doi: 10.1016/j.jcis.2019.04.080
Yao, L. H.; Zhang, N.; Wang, Y.; Ni, Y. M.; Yan, D. P.; Hu, C. W. J. Power. Sources 2018, 374, 142. doi: 10.1016/j.jpowsour.2017.11.028
doi: 10.1016/j.jpowsour.2017.11.028
Ahn, S. H.; Manthiram, A. Small 2017, 13, e1702068. doi: 10.1002/smll.201702068
doi: 10.1002/smll.201702068
Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Science 2009, 323, 760. doi: 10.1126/science.1168049
doi: 10.1126/science.1168049
Li, H.; Li, Q.; Wen, P.; Williams, T. B.; Adhikari, S.; Dun, C.; Lu, C.; Itanze, D.; Jiang, L.; Geyer, S. M.; et al. Adv. Mater. 2018, 30, e1705796. doi: 10.1002/adma.201705796
doi: 10.1002/adma.201705796
Han, C.; Bo, X.; Zhang, Y.; Li, M.; Wang, A.; Guo, L. Chem. Commun. 2015, 51, 15015. doi: 10.1039/c5cc05314e
doi: 10.1039/c5cc05314e
Gao, K.; Wang, B.; Tao, L.; Cunning, B. V.; Zhang, Z.; Wang, S.; Ruoff, R. S.; Qu, L. Adv. Mater. 2019, 31, e1805121. doi: 10.1002/adma.201805121
doi: 10.1002/adma.201805121
Li, J. S.; Kong, L. X.; Wu, Z. X.; Zhang, S.; Yang, X. Y.; Sha, J. Q.; Liu, G. D. Carbon 2019, 145, 694. doi: 10.1016/j.carbon.2018.12.032
doi: 10.1016/j.carbon.2018.12.032
Tian, J. Q.; Chen, J.; Liu, J. Y.; Tian, Q. H.; Chen, P. Nano Energy 2018, 48, 284. doi: 10.1016/j.nanoen.2018.03.063
doi: 10.1016/j.nanoen.2018.03.063
Yuan, K.; Lutzenkirchen-Hecht, D.; Li, L.; Shuai, L.; Li, Y.; Cao, R.; Qiu, M.; Zhuang, X.; Leung, M. K. H.; Chen, Y.; et al. J. Am. Chem. Soc. 2020, 142, 2404. doi: 10.1021/jacs.9b11852
doi: 10.1021/jacs.9b11852
Meng, F. L.; Liu, K. H.; Zhang, Y.; Shi, M. M.; Zhang, X. B.; Yan, J. M.; Jiang, Q. Small 2018, 14, e1703843. doi: 10.1002/smll.201703843
doi: 10.1002/smll.201703843
Pan, F.; Li, B.; Sarnello, E.; Fei, Y.; Gang, Y.; Xiang, X.; Du, Z.; Zhang, P.; Wang, G.; Li, Y.; et al. ACS Nano 2020, 14, 5506. doi: 10.1021/acsnano.9b09658
doi: 10.1021/acsnano.9b09658
Hua, Y. P.; Xu, Q. C.; Hu, Y. J.; Jiang, H.; Li, C. Z. J. Energy Chem. 2019, 37, 1. doi: 10.1016/j.jechem.2018.11.010
doi: 10.1016/j.jechem.2018.11.010
Zhang, S. L.; Guan, B. Y.; Lou, X. W. D. Small 2019, 15, e1805324. doi: 10.1002/smll.201805324
doi: 10.1002/smll.201805324
Meng, F.; Zhong, H.; Bao, D.; Yan, J.; Zhang, X. J. Am. Chem. Soc. 2016, 138, 10226. doi: 10.1021/jacs.6b05046
doi: 10.1021/jacs.6b05046
Li, D.; Yang, D.; Yang, X.; Wang, Y.; Guo, Z.; Xia, Y.; Sun, S.; Guo, S. Angew. Chem. Int. Ed. 2016, 55, 15925. doi: 10.1002/anie.201610301
doi: 10.1002/anie.201610301
Shen, R.; Xie, J.; Zhang, H.; Zhang, A.; Chen, X.; Li, X. ACS Sustain. Chem. Eng. 2017, 6, 816. doi: 10.1021/acssuschemeng.7b03169
doi: 10.1021/acssuschemeng.7b03169
Gao, J.; Wang, J.; Zhou, L.; Cai, X.; Zhan, D.; Hou, M.; Lai, L. ACS Appl. Mater. Interfaces 2019, 11, 10364. doi: 10.1021/acsami.8b20003
doi: 10.1021/acsami.8b20003
Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C. T.; Fan, F.; Sargent, E. H.; et al. Nature 2016, 537, 382. doi: 10.1038/nature19060
doi: 10.1038/nature19060
Li, Y. Z.; Wang, Z.; Hu, J.; Li, S. W.; Du, Y. C.; Han, X. J.; Xu, P. Adv. Funct. Mater. 2020, 30, e1910498. doi: 10.1002/adfm.201910498
doi: 10.1002/adfm.201910498
Li, D.; Sun, Y.; Chen, S.; Yao, J.; Zhang, Y.; Xia, Y.; Yang, D. ACS Appl. Mater. Interfaces 2018, 10, 17175. doi: 10.1021/acsami.8b03059
doi: 10.1021/acsami.8b03059
Yan, D.; Li, Y.; Huo, J.; Chen, R.; Dai, L.; Wang, S. Adv. Mater. 2017, 29, e1606459. doi: 10.1002/adma.201606459
doi: 10.1002/adma.201606459
Lin, Y.; Yang, L.; Zhang, Y.; Jiang, H.; Xiao, Z.; Wu, C.; Zhang, G.; Jiang, J.; Song, L. Adv. Energy Mater. 2018, 8, e1703623. doi: 10.1002/aenm.201703623
doi: 10.1002/aenm.201703623
Yan, X.; Jia, Y.; Yao, X. Chem. Soc. Rev. 2018, 47, 7628. doi: 10.1039/c7cs00690j
doi: 10.1039/c7cs00690j
Martinez, U.; Komini Babu, S.; Holby, E. F.; Chung, H. T.; Yin, X.; Zelenay, P. Adv. Mater. 2019, 31, e1806545. doi: 10.1002/adma.201806545
doi: 10.1002/adma.201806545
Das, D.; Nanda, K. K. Nano Energy 2016, 30, 303. doi: 10.1016/j.nanoen.2016.10.024
doi: 10.1016/j.nanoen.2016.10.024
Li, X.; Wang, Y.; Wang, J.; Da, Y.; Zhang, J.; Li, L.; Zhong, C.; Deng, Y.; Han, X.; Hu, W. Adv. Mater. 2020, 32, e2003414. doi: 10.1002/adma.202003414
doi: 10.1002/adma.202003414
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Yufeng Wu , Mingjun Jing , Juan Li , Wenhui Deng , Mingguang Yi , Zhanpeng Chen , Meixia Yang , Jinyang Wu , Xinkai Xu , Yanson Bai , Xiaoqing Zou , Tianjing Wu , Xianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806
Zhenyu Hu , Zhenchun Yang , Shiqi Zeng , Kun Wang , Lina Li , Chun Hu , Yubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Lian Sun , Honglei Wang , Ming Ma , Tingting Cao , Leilei Zhang , Xingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188
Yaxin Sun , Huiyu Li , Shiquan Guo , Congju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418