Citation: Zhou Wentao, Chen Yihua, Zhou Huanping. Strategies to Improve the Stability of Perovskite-based Tandem Solar Cells[J]. Acta Physico-Chimica Sinica, ;2021, 37(4): 200904. doi: 10.3866/PKU.WHXB202009044 shu

Strategies to Improve the Stability of Perovskite-based Tandem Solar Cells


  • Author Bio:

    Huanping Zhou received her PhD degree in inorganic chemistry from the Peking University in 2010. After that, she joined University of California, Los Angeles, as a post-doctoral researcher from 2010 to 2015. From July 2015, she joined Peking University as an assistant professor in Department of Materials Science and Engineering, College of Engineering. She is a materials chemist with expertise in the fields of nanoscience, thin film optoelectronics, and the development of related devices, such as photovoltaic cells, LEDs, etc. Currently, her research lab is focused on thin film optoelectronics, e.g., perovskite materials and solar cells
  • Corresponding author: Zhou Huanping, happy_zhou@pku.edu.cn
  • Received Date: 14 September 2020
    Revised Date: 13 October 2020
    Accepted Date: 24 October 2020
    Available Online: 2 November 2020

    Fund Project: the National Natural Science Foundation of China 51672008the Natural Science Foundation of Beijing, China 4182026the National Key Research and Development Program of China 2017YFA0206701the National Natural Science Foundation of China 51972004the National Natural Science Foundation of China 51722201The project was supported by the National Natural Science Foundation of China (51972004, 51722201, 51672008, 91733301), the National Key Research and Development Program of China (2017YFA0206701), and the Natural Science Foundation of Beijing, China (4182026)the National Natural Science Foundation of China 91733301

  • Organic-inorganic metal halide perovskite-based tandem solar cells have attracted significant research attention in recent years. The power conversion efficiency of perovskite-based tandem can efficiently meet the requirements of practical applications; however, their instability limits their commercialization. The most commonly used wide-bandgap perovskites suitable for top sub-cells, which are based on I/Br alloying at X site, often suffer from severe phase segregation. When exposed to light illumination, a smaller bandgap phase appears and acts as a carrier trap, leading to a reduction in the quasi-Fermi level splitting and large VOC deficit. The narrow-bandgap perovskites suitable for bottom sub-cells, which are based on Sn/Pb alloying at B sites, always face atmospheric instability. When exposed to air, Sn2+ is rapidly oxidized to Sn4+, which can shorten the carrier diffusion length and result in a drop in efficiency. Herein, we summarize the recent advances in perovskite-based tandem solar cells from the viewpoint of stability. We analyzed the stability data of highly efficient perovskite-based tandems reported so far, such as perovskite/silicon, perovskite/perovskite, and perovskite/copper indium gallium selenide (CIGS) tandems. We found that the key to improve the perovskite-based tandems is to improve the stability of the perovskite sub-cells. Then, we systematically analyzed the phase and atmospheric instability of wide- and narrow-bandgap perovskite, respectively, providing some reasonable strategies to tackle the instability. Compositional engineering, crystallinity optimization, and employing other perovskites with wide bandgaps are effective means to avoid phase instability of the I/Br alloying perovskite. Introducing the reducing additives, improving the film morphology, and forming a 2D/3D structure can help in improving the atmospheric stability of Sn-Pb narrow bandgap perovskites. Furthermore, we review the intrinsic instability of perovskite and corresponding improvement methods, which are inevitable in future tandem solar cells. By reducing the methylamine (MA) content in perovskite component and suppressing ion migration, the long-term operational stability is greatly enhanced. Finally, we briefly summarize the instability issues related to the interconnecting layer. In addition to the optimization of perovskite-based tandem devices, encapsulation also plays a crucial role in improving stability against environmental stressors. Studies based on improving the stability of perovskite-based tandems are still in the early stage. However, with a deeper understanding of the stability of perovskite sub-cells and the interconnecting layer, the commercialization of perovskite-based tandems, especially perovskite/silicon tandem devices, is promising to be achieved in the near future.
  • 加载中
    1. [1]

      Branker, K.; Pathak, M. J. M.; Pearce, J. M. Renew. Sust. Energ. Rev. 2011, 15, 4470. doi: 10.1016/j.rser.2011.07.104  doi: 10.1016/j.rser.2011.07.104

    2. [2]

      Shockley, W.; Queisser, H. J. J. Appl. Phys. 1961, 32, 510. doi: 10.1063/1.1736034  doi: 10.1063/1.1736034

    3. [3]

      Vos, A. D. J. Phys. D: Appl. Phys. 1980, 13, 839. doi: 10.1088/0022-3727/13/5/018  doi: 10.1088/0022-3727/13/5/018

    4. [4]

      Filipič, M.; Löper, P.; Niesen, B.; De Wolf, S.; Krč, J.; Ballif, C.; Topič, M. Opt. Express 2015, 23, A263. doi: 10.1364/OE.23.00A263  doi: 10.1364/OE.23.00A263

    5. [5]

      Albrecht, S.; Saliba, M.; Correa-Baena, J. P.; Jäger, K.; Korte, L.; Hagfeldt, A.; Grätzel, M.; Rech, B. J. Opt. 2016, 18, 064012. doi: 10.1088/2040-8978/18/6/064012  doi: 10.1088/2040-8978/18/6/064012

    6. [6]

      Eperon, G. E.; Leijtens, T.; Bush, K. A.; Prasanna, R.; Green, T.; Wang, J. T. W.; McMeekin, D. P.; Volonakis, G.; Milot, R. L.; May, R.; et al. Science 2016, 354, 861. doi: 10.1126/science.aaf9717  doi: 10.1126/science.aaf9717

    7. [7]

      Jaysankar, M.; Filipič, M.; Zielinski, B.; Schmager, R.; Song, W.; Qiu, W.; Paetzold, U. W.; Aernouts, T.; Debucquoy, M.; Gehlhaar, R.; et al. Energy Environ. Sci. 2018, 11, 1489. doi: 10.1039/C8EE00237A  doi: 10.1039/C8EE00237A

    8. [8]

      https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200406.pdf (accessed Dar April 2020)

    9. [9]

      Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T.; et al. J. Phys. Chem. Lett. 2014, 5, 1004. doi: 10.1021/jz5002117  doi: 10.1021/jz5002117

    10. [10]

      Zhou, Z.; Cui, Y.; Deng, H. X.; Huang, L.; Wei, Z.; Li, J. Appl. Phys. Lett. 2017, 110, 113901. doi: 10.1063/1.4978598  doi: 10.1063/1.4978598

    11. [11]

      Filip, M. R.; Eperon, G. E.; Snaith, H. J.; Giustino, F. Nat. Commun. 2014, 5, 5757. doi: 10.1038/ncomms6757  doi: 10.1038/ncomms6757

    12. [12]

      Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982. doi: 10.1039/C3EE43822H  doi: 10.1039/C3EE43822H

    13. [13]

      Eperon, G. E.; Paternò, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. J. Mater. Chem. A 2015, 3, 19688. doi: 10.1039/C5TA06398A  doi: 10.1039/C5TA06398A

    14. [14]

      Chen, B.; Yu, Z. J.; Manzoor, S.; Wang, S.; Weigand, W.; Yu, Z.; Yang, G.; Ni, Z.; Dai, X.; Holman, Z. C.; et al. Joule 2020, 4, 850. doi: 10.1016/j.joule.2020.01.008  doi: 10.1016/j.joule.2020.01.008

    15. [15]

      Shen, H.; Duong, T.; Peng, J.; Jacobs, D.; Wu, N.; Gong, J.; Wu, Y.; Karuturi, S. K.; Fu, X.; Weber, K.; et al. Energy Environ. Sci. 2018, 11, 394. doi: 10.1039/C7EE02627G  doi: 10.1039/C7EE02627G

    16. [16]

      Liu, Y.; Renna, L. A.; Bag, M.; Page, Z. A.; Kim, P.; Choi, J.; Emrick, T.; Venkataraman, D.; Russell, T. P. ACS Appl. Mater. Interfaces 2016, 8, 7070. doi: 10.1021/acsami.5b12740  doi: 10.1021/acsami.5b12740

    17. [17]

      Gao, K.; Zhu, Z.; Xu, B.; Jo, S. B.; Kan, Y.; Peng, X.; Jen, A. K. Y. Adv. Mater. 2017, 29, 1703980. doi: 10.1002/adma.201703980  doi: 10.1002/adma.201703980

    18. [18]

      Li, C.; Wang, Y.; Choy, W. C. H. Small Methods 2020, 4, 2000093. doi: 10.1002/smtd.202000093  doi: 10.1002/smtd.202000093

    19. [19]

      Bailie, C. D.; Christoforo, M. G.; Mailoa, J. P.; Bowring, A. R.; Unger, E. L.; Nguyen, W. H.; Burschka, J.; Pellet, N.; Lee, J. Z.; Grätzel, M.; et al. Energy Environ. Sci. 2015, 8, 956. doi: 10.1039/C4EE03322A  doi: 10.1039/C4EE03322A

    20. [20]

      https://www.oxfordpv.com/news/oxford-pv-perovskite-solar-cell-achieves-28-efficiency. (accessed Dar April 2020)

    21. [21]

      Xu, J.; Boyd, C. C.; Yu, Z. J.; Palmstrom, A. F.; Witter, D. J.; Larson, B. W.; France, R. M.; Werner, J.; Harvey, S. P.; Wolf, E. J.; et al. Science 2020, 367, 1097. doi: 10.1126/science.aaz5074  doi: 10.1126/science.aaz5074

    22. [22]

      Bush, K. A.; Palmstrom, A. F.; Yu, Z. J.; Boccard, M.; Cheacharoen, R.; Mailoa, J. P.; McMeekin, D. P.; Hoye, R. L. Z.; Bailie, C. D.; Leijtens, T.; et al. Nat. Energy 2017, 2, 17009. doi: 10.1038/nenergy.2017.9  doi: 10.1038/nenergy.2017.9

    23. [23]

      Sahli, F.; Werner, J.; Kamino, B. A.; Bräuninger, M.; Monnard, R.; Paviet-Salomon, B.; Barraud, L.; Ding, L.; Diaz Leon, J. J.; Sacchetto, D.; et al. Nat. Mater. 2018, 17, 820. doi: 10.1038/s41563-018-0115-4  doi: 10.1038/s41563-018-0115-4

    24. [24]

      Kim, D.; Jung, H. J.; Park, I. J.; Larson, B. W.; Dunfield, S. P.; Xiao, C.; Kim, J.; Tong, J.; Boonmongkolras, P.; Ji, S. G.; et al. Science 2020, 368, 155. doi: 10.1126/science.aba3433  doi: 10.1126/science.aba3433

    25. [25]

      Hou, Y.; Aydin, E.; De Bastiani, M.; Xiao, C.; Isikgor, F. H.; Xue, D. J.; Chen, B.; Chen, H.; Bahrami, B.; Chowdhury, A. H.; et al. Science 2020, 367, 1135. doi: 10.1126/science.aaz3691  doi: 10.1126/science.aaz3691

    26. [26]

      Zhao, D.; Chen, C.; Wang, C.; Junda, M. M.; Song, Z.; Grice, C. R.; Yu, Y.; Li, C.; Subedi, B.; Podraza, N. J.; et al. Nat. Energy 2018, 3, 1093. doi: 10.1038/s41560-018-0278-x  doi: 10.1038/s41560-018-0278-x

    27. [27]

      Tong, J.; Song, Z.; Kim, D. H.; Chen, X.; Chen, C.; Palmstrom, A. F.; Ndione, P. F.; Reese, M. O.; Dunfield, S. P.; Reid, O. G.; et al. Science 2019, 364, 475. doi: 10.1126/science.aav7911  doi: 10.1126/science.aav7911

    28. [28]

      Yang, Z.; Yu, Z.; Wei, H.; Xiao, X.; Ni, Z.; Chen, B.; Deng, Y.; Habisreutinger, S. N.; Chen, X.; Wang, K.; et al. Nat. Commun. 2019, 10, 4498. doi: 10.1038/s41467-019-12513-x  doi: 10.1038/s41467-019-12513-x

    29. [29]

      Lin, R.; Xiao, K.; Qin, Z.; Han, Q.; Zhang, C.; Wei, M.; Saidaminov, M. I.; Gao, Y.; Xu, J.; Xiao, M.; et al. Nat. Energy 2019, 4, 864. doi: 10.1038/s41560-019-0466-3  doi: 10.1038/s41560-019-0466-3

    30. [30]

      Wei, M.; Xiao, K.; Walters, G.; Lin, R.; Zhao, Y.; Saidaminov, M. I.; Todorović, P.; Johnston, A.; Huang, Z.; Chen, H.; et al. Adv. Mater. 2020, 32, 1907058. doi: 10.1002/adma.201907058  doi: 10.1002/adma.201907058

    31. [31]

      Yu, Z.; Yang, Z.; Ni, Z.; Shao, Y.; Chen, B.; Lin, Y.; Wei, H.; Yu, Z. J.; Holman, Z.; Huang, J. Nat. Energy 2020, 5, 657. doi: 10.1038/s41560-020-0657-y  doi: 10.1038/s41560-020-0657-y

    32. [32]

      Han, Q.; Hsieh, Y. T.; Meng, L.; Wu, J. L.; Sun, P.; Yao, E. P.; Chang, S. Y.; Bae, S. H.; Kato, T.; Bermudez, V.; et al. Science 2018, 361, 904. doi: 10.1126/science.aat5055  doi: 10.1126/science.aat5055

    33. [33]

      Al-Ashouri, A.; Magomedov, A.; Roß , M.; Jošt, M.; Talaikis, M.; Chistiakova, G.; Bertram, T.; Márquez, J. A.; Köhnen, E.; Kasparavičius, E.; et al. Energy Environ. Sci. 2019, 12, 3356. doi: 10.1039/C9EE02268F  doi: 10.1039/C9EE02268F

    34. [34]

      Leijtens, T.; Bush, K. A.; Prasanna, R.; McGehee, M. D. Nat. Energy 2018, 3, 828. doi: 10.1038/s41560-018-0190-4  doi: 10.1038/s41560-018-0190-4

    35. [35]

      Eperon, G. E.; Hörantner, M. T.; Snaith, H. J. Nat. Rev. Chem. 2017, 1, 0095. doi: 10.1038/s41570-017-0095  doi: 10.1038/s41570-017-0095

    36. [36]

      Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764. doi: 10.1021/nl400349b  doi: 10.1021/nl400349b

    37. [37]

      Kulkarni, S. A.; Baikie, T.; Boix, P. P.; Yantara, N.; Mathews, N.; Mhaisalkar, S. J. Mater. Chem. A 2014, 2, 9221. doi: 10.1039/C4TA00435C  doi: 10.1039/C4TA00435C

    38. [38]

      Hoke, E. T.; Slotcavage, D. J.; Dohner, E. R.; Bowring, A. R.; Karunadasa, H. I.; McGehee, M. D. Chem. Sci. 2015, 6, 613. doi: 10.1039/C4SC03141E  doi: 10.1039/C4SC03141E

    39. [39]

      Tang, X.; van den Berg, M.; Gu, E.; Horneber, A.; Matt, G. J.; Osvet, A.; Meixner, A. J.; Zhang, D.; Brabec, C. J. Nano Lett. 2018, 18, 2172. doi: 10.1021/acs.nanolett.8b00505  doi: 10.1021/acs.nanolett.8b00505

    40. [40]

      Brivio, F.; Caetano, C.; Walsh, A. J. Phys. Chem. Lett. 2016, 7, 1083. doi: 10.1021/acs.jpclett.6b00226  doi: 10.1021/acs.jpclett.6b00226

    41. [41]

      Bischak, C. G.; Hetherington, C. L.; Wu, H.; Aloni, S.; Ogletree, D. F.; Limmer, D. T.; Ginsberg, N. S. Nano Lett. 2017, 17, 1028. doi: 10.1021/acs.nanolett.6b04453  doi: 10.1021/acs.nanolett.6b04453

    42. [42]

      Barker, A. J.; Sadhanala, A.; Deschler, F.; Gandini, M.; Senanayak, S. P.; Pearce, P. M.; Mosconi, E.; Pearson, A. J.; Wu, Y.; Srimath Kandada, A. R.; et al. ACS Energy Lett. 2017, 2, 1416. doi: 10.1021/acsenergylett.7b00282  doi: 10.1021/acsenergylett.7b00282

    43. [43]

      McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Hörantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; et al. Science 2016, 351, 151. doi: 10.1126/science.aad5845  doi: 10.1126/science.aad5845

    44. [44]

      Duong, T.; Wu, Y.; Shen, H.; Peng, J.; Fu, X.; Jacobs, D.; Wang, E. C.; Kho, T. C.; Fong, K. C.; Stocks, M.; et al. Adv. Energy Mater. 2017, 7, 1700228. doi: 10.1002/aenm.201700228  doi: 10.1002/aenm.201700228

    45. [45]

      Bush, K. A.; Frohna, K.; Prasanna, R.; Beal, R. E.; Leijtens, T.; Swifter, S. A.; McGehee, M. D. ACS Energy Lett. 2018, 3, 428. doi: 10.1021/acsenergylett.7b01255  doi: 10.1021/acsenergylett.7b01255

    46. [46]

      Kim, M.; Kim, G. H.; Lee, T. K.; Choi, I. W.; Choi, H. W.; Jo, Y.; Yoon, Y. J.; Kim, J. W.; Lee, J.; Huh, D.; et al. Joule 2019, 3, 2179. doi: 10.1016/j.joule.2019.06.014  doi: 10.1016/j.joule.2019.06.014

    47. [47]

      Chen, Q.; Zhou, H.; Fang, Y.; Stieg, A. Z.; Song, T. B.; Wang, H. H.; Xu, X.; Liu, Y.; Lu, S.; You, J.; et al. Nat. Commun. 2015, 6, 7269. doi: 10.1038/ncomms8269  doi: 10.1038/ncomms8269

    48. [48]

      Palmstrom, A. F.; Eperon, G. E.; Leijtens, T.; Prasanna, R.; Habisreutinger, S. N.; Nemeth, W.; Gaulding, E. A.; Dunfield, S. P.; Reese, M.; Nanayakkara, S.; et al. Joule 2019, 3, 2193. doi: 10.1016/j.joule.2019.05.009  doi: 10.1016/j.joule.2019.05.009

    49. [49]

      Hu, M.; Bi, C.; Yuan, Y.; Bai, Y.; Huang, J. Adv. Science 2016, 3, 1500301. doi: 10.1002/advs.201500301  doi: 10.1002/advs.201500301

    50. [50]

      Li, W.; Rothmann, M. U.; Liu, A.; Wang, Z.; Zhang, Y.; Pascoe, A. R.; Lu, J.; Jiang, L.; Chen, Y.; Huang, F.; et al. Adv. Energy Mater. 2017, 7, 1700946. doi: 10.1002/aenm.201700946  doi: 10.1002/aenm.201700946

    51. [51]

      Braly, I. L.; Stoddard, R. J.; Rajagopal, A.; Uhl, A. R.; Katahara, J. K.; Jen, A. K. Y.; Hillhouse, H. W. ACS Energy Lett. 2017, 2, 1841. doi: 10.1021/acsenergylett.7b00525  doi: 10.1021/acsenergylett.7b00525

    52. [52]

      Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. J. Phys. Chem. Lett. 2016, 7, 167. doi: 10.1021/acs.jpclett.5b02597  doi: 10.1021/acs.jpclett.5b02597

    53. [53]

      Chen, C. Y.; Lin, H. Y.; Chiang, K. M.; Tsai, W. L.; Huang, Y. C.; Tsao, C. S.; Lin, H. W. Adv. Mater. 2017, 29, 1605290. doi: 10.1002/adma.201605290  doi: 10.1002/adma.201605290

    54. [54]

      Lau, C. F. J.; Deng, X.; Ma, Q.; Zheng, J.; Yun, J. S.; Green, M. A.; Huang, S.; Ho-Baillie, A. W. Y. ACS Energy Lett. 2016, 1, 573. doi: 10.1021/acsenergylett.6b00341  doi: 10.1021/acsenergylett.6b00341

    55. [55]

      Liang, J.; Wang, C.; Wang, Y.; Xu, Z.; Lu, Z.; Ma, Y.; Zhu, H.; Hu, Y.; Xiao, C.; Yi, X.; et al. J. Am. Chem. Soc. 2016, 138, 15829. doi: 10.1021/jacs.6b10227  doi: 10.1021/jacs.6b10227

    56. [56]

      Wang, Y.; Dar, M. I.; Ono, L. K.; Zhang, T.; Kan, M.; Li, Y.; Zhang, L.; Wang, X.; Yang, Y.; Gao, X.; et al. Science 2019, 365, 591. doi: 10.1126/science.aav8680  doi: 10.1126/science.aav8680

    57. [57]

      Wang, Y.; Liu, X.; Zhang, T.; Wang, X.; Kan, M.; Shi, J.; Zhao, Y. Angew. Chem. Int. Ed. 2019, 58, 16691. doi: 10.1002/anie.201910800  doi: 10.1002/anie.201910800

    58. [58]

      Wang, P.; Zhang, X.; Zhou, Y.; Jiang, Q.; Ye, Q.; Chu, Z.; Li, X.; Yang, X.; Yin, Z.; You, J. Nat. Commun. 2018, 9, 2225. doi: 10.1038/s41467-018-04636-4  doi: 10.1038/s41467-018-04636-4

    59. [59]

      Stoumpos, C. C.; Kanatzidis, M. G. Acc. Chem. Res. 2015, 48, 2791. doi: 10.1021/acs.accounts.5b00229  doi: 10.1021/acs.accounts.5b00229

    60. [60]

      Goldschmidt, V. M. Naturwissenschaften 1926, 14, 477. doi: 10.1007/BF01507527  doi: 10.1007/BF01507527

    61. [61]

      Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Hörantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T.; et al. Adv. Energy Mater. 2016, 6, 1502458. doi: 10.1002/aenm.201502458  doi: 10.1002/aenm.201502458

    62. [62]

      Chen, W.; Chen, H.; Xu, G.; Xue, R.; Wang, S.; Li, Y.; Li, Y. Joule 2019, 3, 191. doi: 10.1016/j.joule.2018.10.011  doi: 10.1016/j.joule.2018.10.011

    63. [63]

      Liu, C.; Li, W.; Zhang, C.; Ma, Y.; Fan, J.; Mai, Y. J. Am. Chem. Soc. 2018, 140, 3825. doi: 10.1021/jacs.7b13229  doi: 10.1021/jacs.7b13229

    64. [64]

      Tian, J.; Xue, Q.; Tang, X.; Chen, Y.; Li, N.; Hu, Z.; Shi, T.; Wang, X.; Huang, F.; Brabec, C. J.; et al. Adv. Mater. 2019, 31, 1901152. doi: 10.1002/adma.201901152  doi: 10.1002/adma.201901152

    65. [65]

      Xiang, S.; Fu, Z.; Li, W.; Wei, Y.; Liu, J.; Liu, H.; Zhu, L.; Zhang, R.; Chen, H. ACS Energy Lett. 2018, 3, 1824. doi: 10.1021/acsenergylett.8b00820  doi: 10.1021/acsenergylett.8b00820

    66. [66]

      Zhao, B.; Jin, S. F.; Huang, S.; Liu, N.; Ma, J. Y.; Xue, D. J.; Han, Q.; Ding, J.; Ge, Q. Q.; Feng, Y.; et al. J. Am. Chem. Soc. 2018, 140, 11716. doi: 10.1021/jacs.8b06050  doi: 10.1021/jacs.8b06050

    67. [67]

      Ke, W.; Spanopoulos, I.; Stoumpos, C. C.; Kanatzidis, M. G. Nat. Commun. 2018, 9, 4785. doi: 10.1038/s41467-018-07204-y  doi: 10.1038/s41467-018-07204-y

    68. [68]

      Swarnkar, A.; Marshall, A. R.; Sanehira, E. M.; Chernomordik, B. D.; Moore, D. T.; Christians, J. A.; Chakrabarti, T.; Luther, J. M. Science 2016, 354, 92. doi: 10.1126/science.aag2700  doi: 10.1126/science.aag2700

    69. [69]

      Ding, L. M.; Cheng, Y. B.; Tang, J. Acta Phys. -Chim. Sin. 2018, 34, 449.  doi: 10.3866/PKU.WHXB201710121

    70. [70]

      Slavney, A. H.; Hu, T.; Lindenberg, A. M.; Karunadasa, H. I. J. Am. Chem. Soc. 2016, 138, 2138. doi: 10.1021/jacs.5b13294  doi: 10.1021/jacs.5b13294

    71. [71]

      Saparov, B.; Hong, F.; Sun, J. P.; Duan, H. S.; Meng, W.; Cameron, S.; Hill, I. G.; Yan, Y.; Mitzi, D. B. Chem. Mater. 2015, 27, 5622. doi: 10.1021/acs.chemmater.5b01989  doi: 10.1021/acs.chemmater.5b01989

    72. [72]

      Wu, C.; Zhang, Q.; Liu, Y.; Luo, W.; Guo, X.; Huang, Z.; Ting, H.; Sun, W.; Zhong, X.; Wei, S.; et al. Adv. Sci. 2018, 5, 1700759. doi: 10.1002/advs.201700759  doi: 10.1002/advs.201700759

    73. [73]

      Zhao, D.; Yu, Y.; Wang, C.; Liao, W.; Shrestha, N.; Grice, C. R.; Cimaroli, A. J.; Guan, L.; Ellingson, R. J.; Zhu, K.; et al. Nat. Energy 2017, 2, 17018. doi: 10.1038/nenergy.2017.18  doi: 10.1038/nenergy.2017.18

    74. [74]

      Li, Z.; Zhao, Y.; Wang, X.; Sun, Y.; Zhao, Z.; Li, Y.; Zhou, H.; Chen, Q. Joule 2018, 2, 1559. doi: 10.1016/j.joule.2018.05.001  doi: 10.1016/j.joule.2018.05.001

    75. [75]

      Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019. doi: 10.1021/ic401215x  doi: 10.1021/ic401215x

    76. [76]

      Hao, F.; Stoumpos, C. C.; Chang, R. P. H.; Kanatzidis, M. G. J. Am. Chem. Soc. 2014, 136, 8094. doi: 10.1021/ja5033259  doi: 10.1021/ja5033259

    77. [77]

      Liao, W.; Zhao, D.; Yu, Y.; Shrestha, N.; Ghimire, K.; Grice, C. R.; Wang, C.; Xiao, Y.; Cimaroli, A. J.; Ellingson, R. J.; et al. J. Am. Chem. Soc. 2016, 138, 12360. doi: 10.1021/jacs.6b08337  doi: 10.1021/jacs.6b08337

    78. [78]

      Klug, M. T.; Milot, R. L.; Patel, J. B.; Green, T.; Sansom, H. C.; Farrar, M. D.; Ramadan, A. J.; Martani, S.; Wang, Z.; Wenger, B.; et al. Energy Environ. Sci. 2020, 13, 1776. doi: 10.1039/D0EE00132E  doi: 10.1039/D0EE00132E

    79. [79]

      Chung, I.; Song, J. H.; Im, J.; Androulakis, J.; Malliakas, C. D.; Li, H.; Freeman, A. J.; Kenney, J. T.; Kanatzidis, M. G. J. Am. Chem. Soc. 2012, 134, 8579. doi: 10.1021/ja301539s  doi: 10.1021/ja301539s

    80. [80]

      Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; et al. Adv. Mater. 2014, 26, 7122. doi: 10.1002/adma.201401991  doi: 10.1002/adma.201401991

    81. [81]

      Jiang, T.; Chen, Z.; Chen, X.; Liu, T.; Chen, X.; Sha, W. E. I.; Zhu, H.; Yang, Y. Sol. RRL 2019, 4, 1900467. doi: 10.1002/solr.201900467  doi: 10.1002/solr.201900467

    82. [82]

      Xu, X.; Chueh, C. C.; Yang, Z.; Rajagopal, A.; Xu, J.; Jo, S. B.; Jen, A. K. Y. Nano Energy 2017, 34, 392. doi: 10.1016/j.nanoen.2017.02.040  doi: 10.1016/j.nanoen.2017.02.040

    83. [83]

      Tai, Q.; Guo, X.; Tang, G.; You, P.; Ng, T. W.; Shen, D.; Cao, J.; Liu, C. K.; Wang, N.; Zhu, Y.; et al. Angew. Chem. Int. Ed. 2019, 58, 806. doi: 10.1002/anie.201811539  doi: 10.1002/anie.201811539

    84. [84]

      He, X.; Wu, T.; Liu, X.; Wang, Y.; Meng, X.; Wu, J.; Noda, T.; Yang, X.; Moritomo, Y.; Segawa, H.; et al. J. Mater. Chem. A 2020, 8, 2760. doi: 10.1039/C9TA13159K  doi: 10.1039/C9TA13159K

    85. [85]

      Prasanna, R.; Leijtens, T.; Dunfield, S. P.; Raiford, J. A.; Wolf, E. J.; Swifter, S. A.; Werner, J.; Eperon, G. E.; de Paula, C.; Palmstrom, A. F.; et al. Nat. Energy 2019, 4, 939. doi: 10.1038/s41560-019-0471-6  doi: 10.1038/s41560-019-0471-6

    86. [86]

      Liao, Y.; Liu, H.; Zhou, W.; Yang, D.; Shang, Y.; Shi, Z.; Li, B.; Jiang, X.; Zhang, L.; Quan, L. N.; et al. J. Am. Chem. Soc. 2017, 139, 6693. doi: 10.1021/jacs.7b01815  doi: 10.1021/jacs.7b01815

    87. [87]

      Meng, L.; You, J.; Yang, Y. Nat. Commun. 2018, 9, 5265. doi: 10.1038/s41467-018-07255-1  doi: 10.1038/s41467-018-07255-1

    88. [88]

      Christians, J. A.; Miranda Herrera, P. A.; Kamat, P. V. J. Am. Chem. Soc. 2015, 137, 1530. doi: 10.1021/ja511132a  doi: 10.1021/ja511132a

    89. [89]

      Niu, G.; Guo, X.; Wang, L. J. Mater. Chem. A 2015, 3, 8970. doi: 10.1039/C4TA04994B  doi: 10.1039/C4TA04994B

    90. [90]

      Juarez-Perez, E. J.; Hawash, Z.; Raga, S. R.; Ono, L. K.; Qi, Y. Energy Environ. Sci. 2016, 9, 3406. doi: 10.1039/C6EE02016J  doi: 10.1039/C6EE02016J

    91. [91]

      Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D'Haen, J.; D'Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; et al. Adv. Energy Mater. 2015, 5, 1500477. doi: 10.1002/aenm.201500477  doi: 10.1002/aenm.201500477

    92. [92]

      Misra, R. K.; Aharon, S.; Li, B.; Mogilyansky, D.; Visoly-Fisher, I.; Etgar, L.; Katz, E. A. J. Phys. Chem. Lett. 2015, 6, 326. doi: 10.1021/jz502642b  doi: 10.1021/jz502642b

    93. [93]

      Turren-Cruz, S.-H.; Hagfeldt, A.; Saliba, M. Science 2018, 362, 449. doi: 10.1126/science.aat3583  doi: 10.1126/science.aat3583

    94. [94]

      Bi, F.; Zheng, X.; Yam, Z. Acta Phys. -Chim. Sin. 2019, 35, 69.  doi: 10.3866/PKU.WHXB201801082

    95. [95]

      Lee, J. W.; Kim, D. H.; Kim, H. S.; Seo, S. W.; Cho, S. M.; Park, N. G. Adv. Energy Mater. 2015, 5, 1501310. doi: 10.1002/aenm.201501310  doi: 10.1002/aenm.201501310

    96. [96]

      Buin, A.; Pietsch, P.; Xu, J.; Voznyy, O.; Ip, A. H.; Comin, R.; Sargent, E. H. Nano Lett. 2014, 14, 6281. doi: 10.1021/nl502612m  doi: 10.1021/nl502612m

    97. [97]

      Yin, W. J.; Shi, T.; Yan, Y. Adv. Mater. 2014, 26, 4653. doi: 10.1002/adma.201306281  doi: 10.1002/adma.201306281

    98. [98]

      Wetzelaer, G. J. A. H.; Scheepers, M.; Sempere, A. M.; Momblona, C.; Ávila, J.; Bolink, H. J. Adv. Mater. 2015, 27, 1837. doi: 10.1002/adma.201405372  doi: 10.1002/adma.201405372

    99. [99]

      Fan, R.; Zhou, W.; Huang, Z.; Zhou, H. EnergyChem 2020, 2, 100032. doi: 10.1016/j.enchem.2020.100032  doi: 10.1016/j.enchem.2020.100032

    100. [100]

      Chen, Y.; Li, N.; Wang, L.; Li, L.; Xu, Z.; Jiao, H.; Liu, P.; Zhu, C.; Zai, H.; Sun, M.; et al. Nat. Commun. 2019, 10, 1112. doi: 10.1038/s41467-019-09093-1  doi: 10.1038/s41467-019-09093-1

    101. [101]

      Wang, F.; Geng, W.; Zhou, Y.; Fang, H. H.; Tong, C. J.; Loi, M. A.; Liu, L. M.; Zhao, N. Adv. Mater. 2016, 28, 9986. doi: 10.1002/adma.201603062  doi: 10.1002/adma.201603062

    102. [102]

      Calado, P.; Telford, A. M.; Bryant, D.; Li, X.; Nelson, J.; O'Regan, B. C.; Barnes, P. R. F. Nat. Commun. 2016, 7, 13831. doi: 10.1038/ncomms13831  doi: 10.1038/ncomms13831

    103. [103]

      Shao, Y.; Fang, Y.; Li, T.; Wang, Q.; Dong, Q.; Deng, Y.; Yuan, Y.; Wei, H.; Wang, M.; Gruverman, A.; et al. Energy Environ. Sci. 2016, 9, 1752. doi: 10.1039/C6EE00413J  doi: 10.1039/C6EE00413J

    104. [104]

      Yuan, Y.; Huang, J. Acc. Chem. Res. 2016, 49, 286. doi: 10.1021/acs.accounts.5b00420  doi: 10.1021/acs.accounts.5b00420

    105. [105]

      Domanski, K.; Roose, B.; Matsui, T.; Saliba, M.; Turren-Cruz, S. H.; Correa-Baena, J. P.; Carmona, C. R.; Richardson, G.; Foster, J. M.; De Angelis, F.; et al. Energy Environ. Sci. 2017, 10, 604. doi: 10.1039/C6EE03352K  doi: 10.1039/C6EE03352K

    106. [106]

      Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Cacovich, S.; Stavrakas, C.; Philippe, B.; Richter, J. M.; Alsari, M.; Booker, E. P.; Hutter, E. M.; Pearson, A. J.; et al. Nature 2018, 555, 497. doi: 10.1038/nature25989  doi: 10.1038/nature25989

    107. [107]

      Li, N.; Tao, S.; Chen, Y.; Niu, X.; Onwudinanti, C. K.; Hu, C.; Qiu, Z.; Xu, Z.; Zheng, G.; Wang, L.; et al. Nat. Energy 2019, 4, 408. doi: 10.1038/s41560-019-0382-6  doi: 10.1038/s41560-019-0382-6

    108. [108]

      Wang, L.; Zhou, H.; Hu, J.; Huang, B.; Sun, M.; Dong, B.; Zheng, G.; Huang, Y.; Chen, Y.; Li, L.; et al. Science 2019, 363, 265. doi: 10.1126/science.aau5701  doi: 10.1126/science.aau5701

    109. [109]

      Lin, Y.; Bai, Y.; Fang, Y.; Wang, Q.; Deng, Y.; Huang, J. ACS Energy Lett. 2017, 2, 1571. doi: 10.1021/acsenergylett.7b00442  doi: 10.1021/acsenergylett.7b00442

    110. [110]

      Lee, J. W.; Dai, Z.; Han, T. H.; Choi, C.; Chang, S. Y.; Lee, S. J.; De Marco, N.; Zhao, H.; Sun, P.; Huang, Y.; et al. Nat. Commun. 2018, 9, 3021. doi: 10.1038/s41467-018-05454-4  doi: 10.1038/s41467-018-05454-4

    111. [111]

      Liu, Y.; Yang, Z.; Cui, D.; Ren, X.; Sun, J.; Liu, X.; Zhang, J.; Wei, Q.; Fan, H.; Yu, F.; et al. Adv. Mater. 2015, 27, 5176. doi: 10.1002/adma.201502597  doi: 10.1002/adma.201502597

    112. [112]

      Xie, F.; Chen, C. C.; Wu, Y.; Li, X.; Cai, M.; Liu, X.; Yang, X.; Han, L. Energy Environ. Sci. 2017, 10, 1942. doi: 10.1039/C7EE01675A  doi: 10.1039/C7EE01675A

    113. [113]

      Yu, H.; Wang, F.; Xie, F.; Li, W.; Chen, J.; Zhao, N. Adv. Funct. Mater. 2014, 24, 7102. doi: 10.1002/adfm.201401872  doi: 10.1002/adfm.201401872

    114. [114]

      Liu, J.; Gao, C.; He, X.; Ye, Q.; Ouyang, L.; Zhuang, D.; Liao, C.; Mei, J.; Lau, W. ACS Appl. Mater. Interfaces 2015, 7, 24008. doi: 10.1021/acsami.5b06780  doi: 10.1021/acsami.5b06780

    115. [115]

      Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542. doi: 10.1126/science.1254050  doi: 10.1126/science.1254050

    116. [116]

      Xiao, Z.; Dong, Q.; Bi, C.; Shao, Y.; Yuan, Y.; Huang, J. Adv. Mater. 2014, 26, 6503. doi: 10.1002/adma.201401685  doi: 10.1002/adma.201401685

    117. [117]

      Jain, S. M.; Qiu, Z.; Häggman, L.; Mirmohades, M.; Johansson, M. B.; Edvinsson, T.; Boschloo, G. Energy Environ. Sci. 2016, 9, 3770. doi: 10.1039/C6EE02544G  doi: 10.1039/C6EE02544G

    118. [118]

      Xiao, S.; Bai, Y.; Meng, X.; Zhang, T.; Chen, H.; Zheng, X.; Hu, C.; Qu, Y.; Yang, S. Adv. Funct. Mater. 2017, 27, 1604944. doi: 10.1002/adfm.201604944  doi: 10.1002/adfm.201604944

    119. [119]

      Bush, K. A.; Bailie, C. D.; Chen, Y.; Bowring, A. R.; Wang, W.; Ma, W.; Leijtens, T.; Moghadam, F.; McGehee, M. D. Adv. Mater. 2016, 28, 3937. doi: 10.1002/adma.201505279  doi: 10.1002/adma.201505279

    120. [120]

      Löper, P.; Moon, S. J.; Martín de Nicolas, S.; Niesen, B.; Ledinsky, M.; Nicolay, S.; Bailat, J.; Yum, J. H.; De Wolf, S.; Ballif, C. Phys. Chem. Chem. Phys. 2015, 17, 1619. doi: 10.1039/C4CP03788J  doi: 10.1039/C4CP03788J

    121. [121]

      Chang, C. Y.; Tsai, B. C.; Hsiao, Y. C.; Lin, M. Z.; Meng, H. F. Nano Energy 2019, 55, 354. doi: 10.1016/j.nanoen.2018.10.014  doi: 10.1016/j.nanoen.2018.10.014

    122. [122]

      Jiang, F.; Liu, T.; Luo, B.; Tong, J.; Qin, F.; Xiong, S.; Li, Z.; Zhou, Y. J. Mater. Chem. A 2016, 4, 1208. doi: 10.1039/C5TA08744A  doi: 10.1039/C5TA08744A

    123. [123]

      Yeo, J. S.; Kang, R.; Lee, S.; Jeon, Y. J.; Myoung, N.; Lee, C. L.; Kim, D. Y.; Yun, J. M.; Seo, Y. H.; Kim, S. S.; et al. Nano Energy 2015, 12, 96. doi: 10.1016/j.nanoen.2014.12.022  doi: 10.1016/j.nanoen.2014.12.022

    124. [124]

      Khenkin, M. V.; Katz, E. A.; Abate, A.; Bardizza, G.; Berry, J. J.; Brabec, C.; Brunetti, F.; Bulović, V.; Burlingame, Q.; Di Carlo, A.; et al. Nat. Energy 2020, 5, 35. doi: 10.1038/s41560-019-0529-5  doi: 10.1038/s41560-019-0529-5

  • 加载中
    1. [1]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    2. [2]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    3. [3]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    4. [4]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    5. [5]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    6. [6]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    7. [7]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    8. [8]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    9. [9]

      Wenxiang MaXinyu HeTianyi ChenDe-Li MaHongzheng ChenChang-Zhi Li . Near-infrared non-fused electron acceptors for efficient organic photovoltaics. Chinese Chemical Letters, 2024, 35(4): 109099-. doi: 10.1016/j.cclet.2023.109099

    10. [10]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    11. [11]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    12. [12]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    13. [13]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    14. [14]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    15. [15]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    16. [16]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    17. [17]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    18. [18]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    19. [19]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    20. [20]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

Metrics
  • PDF Downloads(13)
  • Abstract views(292)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return