Citation: Xu Tong, Ma Benyuan, Liang Jie, Yue Luchao, Liu Qian, Li Tingshuai, Zhao Haitao, Luo Yonglan, Lu Siyu, Sun Xuping. Recent Progress in Metal-Free Electrocatalysts toward Ambient N2 Reduction Reaction[J]. Acta Physico-Chimica Sinica, ;2021, 37(7): 200904. doi: 10.3866/PKU.WHXB202009043 shu

Recent Progress in Metal-Free Electrocatalysts toward Ambient N2 Reduction Reaction


  • Author Bio:








    Xuping Sun received his Ph.D. degree in Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences in 2006. During 2006–2009, he carried out postdoctoral researches at Konstanz University, University of Toronto, and Purdue University. In 2010, he started his independent research career as a full Professor at CIAC and then moved to Sichuan University in 2015. In 2018, he joined University of Electronic Science and Technology of China where he found the Research Center of Nanocatalysis & Sensing. He was recognized as a highly cited researcher (2018 & 2019) in both areas of chemistry and materials science by Clarivate Analytics. He published over 470 papers with total citations over 40000 and an h-index of 106. His research mainly focuses on rational design of functional nanostructures toward applications in electrochemistry for energy conversion and storage, sensing, and environment
  • Corresponding author: Sun Xuping, xpsun@uestc.edu.cn
  • Received Date: 11 September 2020
    Revised Date: 18 November 2020
    Accepted Date: 18 November 2020
    Available Online: 24 November 2020

  • NH3 plays an important role in modern society as an essential building block in the manufacture of fertilizers, aqueous ammonia, plastics, explosives, and dyes. Additionally, it is regarded as a green alternative fuel, owing to its carbon-free nature, large hydrogen capacity, high energy density, and easy transportation. The Haber-Bosch process plays a dominant role in global NH3 synthesis; however, it involves high pressure and temperature and employs N2 and H2 as feeding gases, thus suffering from high energy consumption and substantial CO2 emission. As a promising alternative to the Haber-Bosch process, electrochemical N2 reduction enables sustainable and environmentally benign NH3 synthesis under ambient conditions. Moreover, its applied potential is compatible with intermittent solar, wind, and other renewable energies. However, efficient electrocatalysts are required to drive N2-to-NH3 conversion because of the extremely inert N≡N bond. To date, significant efforts have been made to explore high-performance catalysts with high efficiency and selectivity. Generally, noble-metal catalysts exhibit efficient performance for the NRR, but their scarcity and high cost limit their large-scale application. Therefore, considerable attention has been focused on earth-abundant transition-metal (TM) catalysts that can use empty or unoccupied orbitals to accept the lone-pair electrons of N2, while donating the abundant d-orbital electrons to the antibonding orbitals of N2. However, these catalysts may release metal ions, leading to environmental pollution. Most of these TM electrocatalysts may also favor the formation of TM—H bonds, facilitating the hydrogen evolution reaction (HER) during the electrocatalytic reaction. Recent years have seen a surge in the exploration of metal-free catalysts (MFCs). MFCs mainly include carbon-based catalysts (CBCs) and some boron-based and phosphorus-based catalysts. Generally, CBCs exhibit a porous structure and high surface area, which are favorable for exposing more active sites and providing rich accessible channels for mass/electron transfer. Moreover, the Lewis acid sites of most metal-free compounds could accept the lone-pair electron of N2 and adsorb N2 molecules by forming nonmetal—N bonds, further widening their potential for electrocatalytic NRR. Compared with metal-based catalysts, the occupied orbitals of metal-free catalysts can only form covalent bonds or conjugated π bonds, hindering electron donation from the electrocatalyst to N2 and molecular activation. In this review, we summarize the recent progress in the design and development of metal-free electrocatalysts (MFCs) for the ambient NRR, including carbon-based catalysts, boron-based catalysts, and phosphorus-based catalysts. In particular, heteroatom doping (N, O, S, B, P, F, and co-dopants), organic polymers, carbon nitride, and defect engineering are highlighted. We also discuss strategies to boost NRR performance and provide an outlook on the development perspectives of MFCs.
  • 加载中
    1. [1]

      Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Chem. Rev. 2009, 109, 2209. doi: 10.1021/cr8003696  doi: 10.1021/cr8003696

    2. [2]

      Schlögl, R. Angew. Chem. Int. Ed. 2003, 42, 2004. doi: 10.1002/anie.200301553  doi: 10.1002/anie.200301553

    3. [3]

      Klerke, A.; Christensen, C. H.; Nørskov, J. K.; Vegge, T. J. Mater. Chem. 2008, 18, 2304. doi: 10.1039/b720020j  doi: 10.1039/b720020j

    4. [4]

      Dybkjaer, I. Ammonia Production Processes.In Ammonia, Catalysis and Manufacture; Nielsen, A., Ed.; Springer Publishing: Heidelberg, Germany, 1995; pp. 199−327.

    5. [5]

      Shipman, M. A.; Symes, M. D. Catal. Today 2017, 286, 57. doi: 10.1016/j.cattod.2016.05.008  doi: 10.1016/j.cattod.2016.05.008

    6. [6]

      Qiu, W. B.; Xie, X. Y.; Qiu, J. D.; Fang, W. H.; Liang, R. P.; Ren, X.; Ji, X. Q.; Cui, G. W.; Asiri, A. M.; Cui, G. L.; et al. Nat. Commun. 2018, 9, 3485. doi: 10.1038/s41467-018-05758-5  doi: 10.1038/s41467-018-05758-5

    7. [7]

      Zhu, X. J.; Mou, S. Y.; Peng, Q. L.; Liu, Q.; Luo, Y. L.; Chen, G.; Gao, S. Y.; Sun, X. P. J. Mater. Chem. A 2020, 8, 1545. doi: 10.1039/c9ta13044f  doi: 10.1039/c9ta13044f

    8. [8]

      Lv, X.; Wang, F. Y.; Du, J.; Liu, Q.; Luo, Y. S.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Zheng, B. Z.; Sun, X. P. Sustain. Energy Fuels 2020, 4, 4469. doi: 10.1039/d0se00828a  doi: 10.1039/d0se00828a

    9. [9]

      Zhao, R. B.; Liu, C. W.; Zhang, X. X; Zhu, X. J.; Wei, P. P.; Ji, L.; Guo, Y. B.; Gao, S. Y.; Luo, Y. S.; Wang, Z. M.; et al. J. Mater. Chem. A 2020, 8, 77. doi: 10.1039/c9ta10346e  doi: 10.1039/c9ta10346e

    10. [10]

      Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Adv. Mater. 2017, 29, 1604799. doi: 10.1002/adma.201604799  doi: 10.1002/adma.201604799

    11. [11]

      Deng, G. R.; Wang, T.; Alshehri, A. A.; Alzahrani, K. A.; Wang, Y.; Ye, H. J.; Luo, Y. L.; Sun, X. P. J. Mater. Chem. A 2019, 7, 21674. doi: 10.1039/c9ta06523g  doi: 10.1039/c9ta06523g

    12. [12]

      Liu, H. M.; Han, S. H.; Zhao, Y.; Zhu, Y. Y.; Tian, X. L.; Zeng, J. H.; Jiang, J. X.; Xia, B. Y.; Chen, Y. J. Mater. Chem. A 2018, 6, 3211. doi: 10.1039/c7ta10866d  doi: 10.1039/c7ta10866d

    13. [13]

      Wang, J.; Liu, Y. P.; Zhang, H.; Huang, D. J.; Chu, K. Catal. Sci. Technol. 2019, 9, 4248. doi: 10.1039/c9cy00907h  doi: 10.1039/c9cy00907h

    14. [14]

      Yu, J. L.; Li, C. B.; Li, B. Y.; Zhu, X. J.; Zhang, R.; Ji, L.; Tang, D. P.; Asiri, A. M.; Sun, X. P.; Li, Q.; et al. Chem. Commun. 2019, 55, 6401. doi: 10.1039/c9cc02310k  doi: 10.1039/c9cc02310k

    15. [15]

      Li, C. B.; Ma, D. W.; Mou, S. Y.; Luo, Y. S.; Ma, B. Y.; Lu, S. Y.; Cui, G. W.; Li, Q.; Liu, Q.; Sun, X. P. J. Energy Chem. 2020, 50, 402. doi: 10.1016/j.jechem.2020.03.044  doi: 10.1016/j.jechem.2020.03.044

    16. [16]

      Gao, J. J.; Lv, X.; Wang, F. Y.; Luo, Y. S.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Zhong, B. H.; Guo, X. D.; Sun, X. P. J. Mater. Chem. A2020, 8, 17956. doi: 10.1039/d0ta07720h  doi: 10.1039/d0ta07720h

    17. [17]

      Liu, Q.; Zhang, X. X.; Zhang, B.; Luo, Y. L.; Cui, G. W.; Xie, F. Y.; Sun, X. P. Nanoscale 2018, 10, 14386. doi: 10.1039/c8nr04524k  doi: 10.1039/c8nr04524k

    18. [18]

      Ren, X.; Zhao, J. X.; Wei, Q.; Ma, Y. J.; Guo, H. R.; Liu, Q.; Wang, Y.; Cui, G. W.; Asiri, A. M.; Li, B. H.; et al. ACS Cent. Sci. 2019, 5, 116. doi: 10.1021/acscentsci.8b00734  doi: 10.1021/acscentsci.8b00734

    19. [19]

      Wang, Y.; Jia, K.; Pan, Q.; Xu, Y. D.; Liu, Q.; Cui, G. W.; Guo, X. D.; Sun, X. P. ACS Sustain. Chem. Eng. 2019, 7, 117. doi: 10.1021/acssuschemeng.8b05332  doi: 10.1021/acssuschemeng.8b05332

    20. [20]

      Wei, P. P.; Xie, H. T.; Zhu, X. J.; Zhao, R. B.; Ji, L.; Tong, X.; Luo, Y. S.; Cui, G. W.; Wang, Z. M.; Sun, X. P. ACS Sustain. Chem. Eng. 2020, 8, 29. doi: 10.1021/acssuschemeng.9b06272  doi: 10.1021/acssuschemeng.9b06272

    21. [21]

      Zhu, X. J.; Liu, Z. C.; Wang, H. B.; Zhao, R. B.; Chen, H. Y.; Wang, T.; Wang, F. X.; Luo, Y. L.; Wu, Y. P.; Sun, X. P. Chem. Commun. 2019, 55, 3987. doi: 10.1039/c9cc00647h  doi: 10.1039/c9cc00647h

    22. [22]

      Xiong, W.; Cheng, X.; Wang, T.; Luo, Y. S.; Feng, J.; Lu, S. Y.; Asiri, A. M.; Li, W.; Jiang, Z. J.; Sun, X. P. Nano Res. 2020, 13, 1008. doi: 10.1007/s12274-020-2733-9  doi: 10.1007/s12274-020-2733-9

    23. [23]

      Liu, Y. P.; Li, Y. B.; Huang, D. J.; Zhang, H.; Chu, K. Chem. Eur. J. 2019, 25, 11933. doi: 10.1002/chem.201902156  doi: 10.1002/chem.201902156

    24. [24]

      Cheng, X.; Wang, J. W.; Xiong, W.; Wang, T.; Wu, T. W.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Shi, X. F.; Jiang, Z. J.; et al. ChemNanoMat 2020, 6, 1315. doi: 10.1002/cnma.202000110  doi: 10.1002/cnma.202000110

    25. [25]

      Xu, T.; Ma, D. W.; Li, C. B.; Liu, Q.; Lu, S. Y.; Asiri, A. M.; Yang, C.; Sun, X. P. Chem. Commun. 2020, 56, 3673. doi: 10.1039/c9cc10087c  doi: 10.1039/c9cc10087c

    26. [26]

      Wu, T. W.; Zhao, H. T.; Zhu, X. J.; Xing, Z.; Liu, Q.; Liu, T.; Gao, S. Y.; Lu, S. Y.; Chen, G.; Asiri, A. M.; et al. Adv. Mater. 2020, 32, 2000299. doi: 10.1002/adma.202000299  doi: 10.1002/adma.202000299

    27. [27]

      Xia, L.; Li, B. H.; Zhang, Y.; Zhang, R.; Ji, L.; Chen, H. Y.; Cui, G. W.; Zheng, H. G.; Sun, X. P.; Xie, F. Y.; Liu, Q. Inorg. Chem. 2019, 58, 2257. doi: 10.1021/acs.inorgchem.8b03143  doi: 10.1021/acs.inorgchem.8b03143

    28. [28]

      Qin, Q.; Zhao, Y.; Schmallegger, M.; Heil, T.; Schmidt, J.; Walczak, R.; Gescheidt, D. G.; Jiao, H. J.; Oschatz, M. Angew. Chem. Int. Ed. 2019, 58, 13101. doi: 10.1002/anie.201906056  doi: 10.1002/anie.201906056

    29. [29]

      Wu, T. W.; Kong, W. H.; Zhang, Y.; Xing, Z.; Zhao, J. X.; Wang, T.; Shi, X. F.; Luo, Y. L.; Sun, X. P. Small Methods 2019, 3, 1900356. doi: 10.1002/smtd.201900356  doi: 10.1002/smtd.201900356

    30. [30]

      Zhang, X. X.; Liu, Q.; Shi, X. F.; Asiri, A. M.; Luo, Y. L.; Sun, X. P.; Li, T. S. J. Mater. Chem. A 2018, 6, 17303. doi: 10.1039/c8ta05627g  doi: 10.1039/c8ta05627g

    31. [31]

      Han, J. R.; Liu, Z. C.; Ma, Y. J.; Cui, G. W.; Xie, F. Y.; Wang, F. X.; Wu, Y. P.; Gao, S. Y.; Xu, Y. H.; Sun, X. P. Nano Energy 2018, 52, 264. doi: 10.1016/j.nanoen.2018.07.045  doi: 10.1016/j.nanoen.2018.07.045

    32. [32]

      Zhang, Y.; Qiu, W. B.; Ma, Y. J.; Luo, Y. L.; Tian, Z. Q.; Cui, G. W.; Xie, F. Y.; Chen, L.; Li, T. S.; Sun, X. P. ACS Catal. 2018, 8, 8540. doi: 10.1021/acscatal.8b02311  doi: 10.1021/acscatal.8b02311

    33. [33]

      Zhu, X. J.; Liu, Z. C.; Liu, Q.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Wu, Y. P.; Sun, X. P. Chem. Commun. 2018, 54, 11332. doi: 10.1039/c8cc06366d  doi: 10.1039/c8cc06366d

    34. [34]

      Li, Y. F.; Li, T. S.; Zhu, X. J.; Alshehri, A. A.; Alzahrani, K. A.; Lu, S. Y.; Sun, X. P. Chem. Asian J. 2020, 15, 487. doi: 10.1002/asia.201901624.  doi: 10.1002/asia.201901624

    35. [35]

      Zhu, X. J.; Wu, T. W.; Ji, L.; Liu, Q.; Luo, Y. L.; Cui, G. W.; Xiang, Y. M.; Zhang, Y. N.; Zheng, B. Z.; Sun, X. P. Chem. Commun. 2020, 56, 731. doi: 10.1039/c9cc08352a  doi: 10.1039/c9cc08352a

    36. [36]

      Chen, J. Y.; Huang, H.; Xia, L.; Xie, H. T.; Ji, L.; Wei, P. P.; Zhao, R. B.; Chen, H. Y.; Asiri, A. M.; Sun, X. P. ChemistrySelect 2019, 4, 3547. doi: 10.1002/slct.201900253  doi: 10.1002/slct.201900253

    37. [37]

      Wu, T. T.; Li, P. P.; Wang, H. B.; Zhao, R. B.; Li, H.; Kong, W. H.; Liu, M. L.; Zhang, Y. Y.; Sun, X. P.; Gong, F. Chem. Commun. 2019, 55, 2684. doi: 10.1039/c8cc09867k  doi: 10.1039/c8cc09867k

    38. [38]

      Zhao, S. L.; Lu, X. Y.; Wang, L. Z.; Gale, J.; Amal, R. Adv. Mater. 2019, 31, 1805367. doi: 10.1002/adma.201805367  doi: 10.1002/adma.201805367

    39. [39]

      Zhang, L. L.; Chen, G. F.; Ding, L. X.; Wang, H. H. Chem. Eur. J. 2019, 25, 12464. doi: 10.1002/chem.201901668  doi: 10.1002/chem.201901668

    40. [40]

      Lv, C. D.; Qian, Y. M.; Yan, C. S.; Ding, Y.; Liu, Y. Y.; Chen, G.; Yu, G. H. Angew. Chem. Int. Ed. 2018, 57, 10246. doi: 10.1002/anie.201806386  doi: 10.1002/anie.201806386

    41. [41]

      Wan, Y. C.; Xu, J. C.; Lv, R. T. Mater. Today 2019, 27, 69. doi: 10.1016/j.mattod.2019.03.002  doi: 10.1016/j.mattod.2019.03.002

    42. [42]

      Kitano, M.; Kanbara, S.; Inoue, Y.; Kuganathan, N.; Sushko, P. V.; Yokoyama, T.; Hara, M.; Hosono, H. Nat. Commun. 2015, 6, 6731. doi: 10.1038/ncomms7731  doi: 10.1038/ncomms7731

    43. [43]

      Huang, C. S.; Li, Y. J.; Wang, N.; Xue, Y. R.; Zuo, Z. C.; Liu, H. B.; Li, Y. L. Chem. Rev. 2018, 118, 7744. doi: 10.1021/acs.chemrev.8b00288  doi: 10.1021/acs.chemrev.8b00288

    44. [44]

      Liu, Q. L.; Wang, S. N.; Chen, G. L.; Liu, Q. C.; Kong, X. K. Inorg. Chem. 2019, 58, 11843. doi: 10.1021/acs.inorgchem.9b02280  doi: 10.1021/acs.inorgchem.9b02280

    45. [45]

      Huang, H.; Xia, L.; Cao, R. R.; Niu, Z. G.; Chen, H. Y.; Liu, Q.; Li, T. S.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Chem. Eur. J.2019, 25, 1914. doi: 10.1002/chem.201805523  doi: 10.1002/chem.201805523

    46. [46]

      Ling, C. Y.; Bai, X. W.; Ouyang, Y. X.; Du, A. J.; Wang, J. L. J. Phys. Chem. C 2018, 122, 16842. doi: 10.1021/acs.jpcc.8b05257  doi: 10.1021/acs.jpcc.8b05257

    47. [47]

      Liu, Y. M.; Su, Y.; Quan, X.; Fan, X. F.; Chen, S.; Yu, H. T.; Zhao, H. M.; Zhang, Y. B.; Zhao, J. J. ACS Catal. 2018, 8, 1186. doi: 10.1021/acscatal.7b02165  doi: 10.1021/acscatal.7b02165

    48. [48]

      Mukherjee, S.; Cullen, D. A.; Karakalos, S.; Liu, K. X.; Zhang, H.; Zhao, S.; Xu, H.; More, K. L.; Wang, G. F.; Wu, G. Nano Energy 2018, 48, 217. doi: 10.1016/j.nanoen.2018.03.059  doi: 10.1016/j.nanoen.2018.03.059

    49. [49]

      Song, Y.; Johnson, D.; Peng, R.; Hensley, D. K.; Bonnesen, P. V.; Liang, L. B.; Huang, J. S.; Yang, F. C.; Zhang, F.; Qiao, R.; et al. Sci. Adv. 2018, 4, e1700336. doi: 10.1126/sciadv.1700336  doi: 10.1126/sciadv.1700336

    50. [50]

      Wang, H.; Wang, L.; Wang, Q.; Ye, S. Y.; Sun, W.; Shao, Y.; Jiang, Z. P.; Qiao, Q.; Zhu, Y. M.; Song, P. F.; et al. Angew. Chem. Int. Ed. 2018, 57, 12360. doi: 10.1002/anie.201805514  doi: 10.1002/anie.201805514

    51. [51]

      Li, Q. L.; Chen, X. F.; Yang, Y. Catalysts 2020, 10, 353. doi: 10.3390/catal10030353  doi: 10.3390/catal10030353

    52. [52]

      Zhao, C. J.; Zhang, S. B.; Han, M. M.; Zhang, X.; Liu, Y. Y.; Li, W. Y.; Chen, C.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. ACS Energy Lett. 2019, 4, 377. doi: 10.1021/acsenergylett.8b02138  doi: 10.1021/acsenergylett.8b02138

    53. [53]

      Chen, X. R.; Guo, Y. T.; Du, X. C.; Zeng, Y. S.; Chu, J. W.; Gong, C. H.; Huang, J. W.; Fan, C.; Wang, X. F.; Xiong, J. Adv. Energy Mater. 2020, 10, 1903172. doi: 10.1002/aenm.201903172  doi: 10.1002/aenm.201903172

    54. [54]

      Yang, X. X.; Li, K.; Cheng, D. M.; Pang, W. L.; Lv, J. Q.; Chen, X. Y.; Zang, H. Y.; Wu, X. L.; Tan, H. Q.; Wang, Y. H.; et al. J. Mater. Chem. A 2018, 6, 7762. doi: 10.1039/c8ta01078a  doi: 10.1039/c8ta01078a

    55. [55]

      Wang, T.; Xia, L.; Yang, J. J.; Wang, H. B.; Fang, W. H.; Chen, H. Y.; Tang, D. P.; Asiri, A. M.; Luo, Y. L.; Cui, G. L.; et al. Chem. Commun. 2019, 55, 7502. doi: 10.1039/c9cc01999e  doi: 10.1039/c9cc01999e

    56. [56]

      Hoffman, B. M.; Lukoyanov, D.; Yang, Z. Y.; Dean, D. R.; Seefeldt, L. C. Chem. Rev. 2014, 114, 4041. doi: 10.1021/cr400641x  doi: 10.1021/cr400641x

    57. [57]

      Xia, L.; Wu, X. F.; Wang, Y.; Niu, Z. G.; Liu, Q.; Li, T. S.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Small Methods 2018, 3, 1800251. doi: 10.1002/smtd.201800251  doi: 10.1002/smtd.201800251

    58. [58]

      Xia, L.; Yang, J. J.; Wang, H. B.; Zhao, R. B.; Chen, H. Y.; Fang, W. H.; Asiri, A. M.; Xie, F. Y.; Cui, G. L.; Sun, X. P. Chem. Commun. 2019, 55, 3371. doi: 10.1039/c9cc00602h  doi: 10.1039/c9cc00602h

    59. [59]

      Wang, J.; Wang, S.; Li, J. P. Dalton Trans. 2020, 49, 2258. doi: 10.1039/c9dt04827h  doi: 10.1039/c9dt04827h

    60. [60]

      Chen, H. Y.; Zhu, X. J.; Huang, H.; Wang, H. B.; Wang, T.; Zhao, R. B.; Zheng, H. G.; Asiri, A. M.; Luo, Y. L.; Sun, X. P. Chem. Commun. 2019, 55, 3152. doi: 10.1039/c9cc00461k  doi: 10.1039/c9cc00461k

    61. [61]

      Légaré, M. A.; Bélanger-Chabot, G.; Dewhurst, R. D.; Welz, E.; Krummenacher, I.; Engels, B.; Braunschweig, H. Science 2018, 359, 896. doi: 10.1126/science.aaq1684  doi: 10.1126/science.aaq1684

    62. [62]

      Hering-Junghans, C. Angew. Chem. Int. Ed. 2018, 57, 6738. doi: 10.1002/anie.201802675  doi: 10.1002/anie.201802675

    63. [63]

      Liu, C. W.; Li, Q. Y.; Wu, C. Z.; Zhang, J.; Jin, Y. G.; MacFarlane, D. R.; Sun, C. H. J. Am. Chem. Soc. 2019, 141, 2884. doi: 10.1021/jacs.8b13165  doi: 10.1021/jacs.8b13165

    64. [64]

      Yu, X. M.; Han, P.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Peng, S. J.; Ma, J. M.; Zheng, G. F. Joule 2018, 2, 1610. doi: 10.1016/j.joule.2018.06.007  doi: 10.1016/j.joule.2018.06.007

    65. [65]

      Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. J. Am. Chem. Soc. 2018, 140, 14161. doi: 10.1021/jacs.8b07472  doi: 10.1021/jacs.8b07472

    66. [66]

      Wu, T. W.; Li, X. Y.; Zhu, X. J.; Mou, S. Y.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Zhang, Y. N.; Zheng, B. Z.; Zhao, H. T.; et al. Chem. Commun. 2020, 56, 1831. doi: 10.1039/c9cc09179c  doi: 10.1039/c9cc09179c

    67. [67]

      Inagaki, M.; Kang, F. Y. J. Mater. Chem. A 2014, 2, 13193. doi: 10.1039/c4ta01183j  doi: 10.1039/c4ta01183j

    68. [68]

      Paupitz, R.; Autreto, P. A. S.; Legoas, S. B.; Srinivasan, S. G.; van Duin, A. C. T.; Galvão, D. S. Nanotechnology 2012, 24, 035706. doi: 10.1088/0957-4484/24/3/035706  doi: 10.1088/0957-4484/24/3/035706

    69. [69]

      Zhao, J. X.; Yang, J. J; Ji, L.; Wang, H. B.; Chen, H. Y.; Niu, Z. G.; Liu, Q.; Li, T. S.; Cui, G. W.; Sun, X. P. Chem. Commun. 2019, 55, 4266. doi: 10.1039/c9cc01920k  doi: 10.1039/c9cc01920k

    70. [70]

      Liu, Y.; Li, Q. Y.; Guo, X.; Kong, X. D.; Ke, J. W.; Chi, M. F.; Li, Q. X.; Geng, Z. G.; Zeng, J. Adv. Mater. 2020, 32, 1907690. doi: 10.1002/adma.201907690  doi: 10.1002/adma.201907690

    71. [71]

      Montoya, J. H.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. ChemSusChem 2015, 8, 2180. doi: 10.1002/cssc.201500322  doi: 10.1002/cssc.201500322

    72. [72]

      Ling, C. Y.; Ouyang, Y. X.; Li, Q.; Bai, X. W.; Mao, X.; Du, A. J.; Wang, J. L. Small Methods 2018, 1800376. doi: 10.1002/smtd.201800376  doi: 10.1002/smtd.201800376

    73. [73]

      Chen, C.; Yan, D. F.; Wang, Y.; Zhou, Y. Y.; Zou, Y. Q.; Li, Y. F.; Wang, S. Y. Small 2019, 15, 1805029. doi: 10.1002/smll.201805029  doi: 10.1002/smll.201805029

    74. [74]

      Kong, Y.; Li, Y.; Yang, B.; Li, Z. J.; Yao, Y.; Lu, J. G.; Lei, L. C.; Wen, Z. H.; Shao, M. H.; Hou, Y. J. Mater. Chem. A 2019, 7, 26272. doi: 10.1039/c9ta06076f  doi: 10.1039/c9ta06076f

    75. [75]

      Song, P. F.; Wang, H.; Kang, L.; Ran, B. C.; Song, H. H.; Wang, R. M. Chem. Commun. 2019, 55, 687. doi: 10.1039/c8cc09256g  doi: 10.1039/c8cc09256g

    76. [76]

      Tian, Y.; Xu, D. Z.; Chu, K.; Wei, Z.; Liu, W. M. J. Mater. Sci. 2019, 54, 9088. doi: 10.1007/s10853-019-03538-0  doi: 10.1007/s10853-019-03538-0

    77. [77]

      Köleli, F.; Röpke, T. Appl. Catal. B: Environ. 2006, 62, 306. doi: 10.1016/j.apcatb.2005.08.006  doi: 10.1016/j.apcatb.2005.08.006

    78. [78]

      Köleli, F.; Kayan, D. B. J. Electroanal. Chem. 2010, 638, 119. doi: 10.1016/j.jelechem.2009.10.010  doi: 10.1016/j.jelechem.2009.10.010

    79. [79]

      Yu, J. L.; Li, J.; Zhu, X. J.; Zhang, X. X.; Jia, K.; Kong, W. H.; Wei, P. P.; Chen, H. Y.; Shi, X. F.; Asiri, A. M.; et al. ChemElectroChem 2019, 6, 2215. doi: 10.1002/celc.201900320  doi: 10.1002/celc.201900320

    80. [80]

      Kumar, C. V. S.; Subramanian, V. Phys. Chem. Chem. Phys. 2017, 19, 15377. doi: 10.1039/c7cp02220d  doi: 10.1039/c7cp02220d

    81. [81]

      Li, P. P.; Wang, J. W.; Chen, H. Y.; Sun, X. P.; You, J. M.; Liu, S. H.; Zhang, Y. Y.; Liu, M. L.; Niu, X. B.; Luo, Y. L. J. Mater. Chem. A 2019, 7, 12446. doi: 10.1039/c9ta03654g  doi: 10.1039/c9ta03654g

    82. [82]

      Marcia, M.; Hirsch, A.; Hauke, F. FlatChem 2017, 1, 89. doi: 10.1016/j.flatc.2017.01.001  doi: 10.1016/j.flatc.2017.01.001

    83. [83]

      Yuan, Y. L.; Gou, X. X.; Yuan, R.; Chai, Y. Q.; Zhuo, Y.; Ye, X. Y.; Gan, X. X. Biosens. Bioelectron. 2011, 30, 123. doi: 10.1016/j.bios.2011.08.041  doi: 10.1016/j.bios.2011.08.041

    84. [84]

      Chen, G. F.; Cao, X. R.; Wu, S. Q.; Zeng, X. Y.; Ding, L. X.; Zhu, M.; Wang, H. H. J. Am. Chem. Soc. 2017, 139, 9771. doi: 10.1021/jacs.7b04393  doi: 10.1021/jacs.7b04393

    85. [85]

      Ji, S.; Wang, Z. X.; Zhao, J. X. J. Mater. Chem. A 2019, 7, 2392. doi: 10.1039/c8ta10497b  doi: 10.1039/c8ta10497b

    86. [86]

      Cao, Y. Y.; Deng, S. W.; Fang, Q. J.; Sun, X.; Zhao, C. X.; Zheng, J. N.; Gao, Y. J.; Zhuo, H.; Li, Y. J.; Yao, Z. H.; et al. Nanotechnol. 2019, 30, 335403. doi: 10.1088/1361-6528/ab1d01  doi: 10.1088/1361-6528/ab1d01

    87. [87]

      Zhang, J.; Zhao, Y. M; Wang, Z.; Yang, G.; Tian, J. L.; Ma, D. W.; Wang, Y. X. New J. Chem. 2020, 44, 422. doi: 10.1039/c9nj04792a  doi: 10.1039/c9nj04792a

    88. [88]

      Li, W. Y.; Wu, T. X.; Zhang, S. B.; Liu, Y. Y.; Zhao, C. J.; Liu, G. Q.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Chem. Commun. 2018, 54, 11188. doi: 10.1039/c8cc06000b  doi: 10.1039/c8cc06000b

    89. [89]

      Du, Y. Q.; Jiang, C.; Xia, W.; Song, L.; Li, P.; Gao, B.; Wu, C.; Sheng, L.; Ye, J. H.; Wang, T.; et al. J. Mater. Chem. A 2020, 8, 55. doi: 10.1039/c9ta10071g  doi: 10.1039/c9ta10071g

    90. [90]

      Zhao, J. X.; Wang, B.; Zhou, Q.; Wang, H. B.; Li, X. H.; Chen, H. Y.; Wei, Q.; Wu, D.; Luo, Y. L.; You, J. M.; et al. Chem. Commun. 2019, 55, 4997. doi: 10.1039/c9cc00726a  doi: 10.1039/c9cc00726a

    91. [91]

      Song, Y. Y.; Wang, T.; Sun, J. W.; Wang, Z. C.; Luo, Y. L.; Zhang, L. X.; Ye, H. J.; Sun, X. P. ACS Sustain. Chem. Eng. 2019, 7, 14368. doi: 10.1021/acssuschemeng.9b03890  doi: 10.1021/acssuschemeng.9b03890

    92. [92]

      Liu, C. W.; Li, Q. Y.; Zhang, J.; Jin, Y. G.; MacFarlane, D. R.; Sun, C. H. J. Phys. Chem. C 2018, 122, 25268. doi: 10.1021/acs.jpcc.8b10021  doi: 10.1021/acs.jpcc.8b10021

    93. [93]

      Tang, H.; Ismail-Beigi, S. Phys. Rev. Lett. 2007, 11, 115501. doi: 10.1103/physrevlett.99.115501  doi: 10.1103/physrevlett.99.115501

    94. [94]

      Szwacki, G. N.; Sadrzadeh, A.; Yakobson, B. I. Phys. Rev. Lett. 2007, 16, 166804. doi: 10.1103/physrevlett.98.166804  doi: 10.1103/physrevlett.98.166804

    95. [95]

      Oganov, A. R.; Chen, J. H.; Gatti, C.; Ma, Y. Z.; Ma, Y. M.; Glass, C. W.; Liu, Z. X.; Yu, T.; Kurakevych, O. O.; Solozhenko, V. L. Nature 2009, 460, 292. doi: 10.1038/nature07736  doi: 10.1038/nature07736

    96. [96]

      Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Nat. Chem. 2016, 8, 563. doi: 10.1038/nchem.2491  doi: 10.1038/nchem.2491

    97. [97]

      Zhang, X. X.; Wu, T. W.; Wang, H. B.; Zhao, R. B.; Chen, H. Y.; Wang, T.; Wei, P. P.; Luo, Y. L.; Zhang, Y. N.; Sun, X. P. ACS Catal. 2019, 9, 4609. doi: 10.1021/acscatal.8b05134  doi: 10.1021/acscatal.8b05134

    98. [98]

      Minakshi, M.; Blackford, M. G. Mater. Chem. Phys. 2010, 123, 700. doi: 10.1016/j.matchemphys.2010.05.041  doi: 10.1016/j.matchemphys.2010.05.041

    99. [99]

      Lv, H. F.; Peng, T.; Wu, P.; Pan, M.; Mu, S. C. J. Mater. Chem. 2012, 22, 9155. doi: 10.1039/c2jm30538k  doi: 10.1039/c2jm30538k

    100. [100]

      Mu, S. C.; Chen, X.; Sun, R. H.; Liu, X. B.; Wu, H.; He, D. P.; Cheng, K. Carbon 2016, 103, 449. doi: 10.1016/j.carbon.2016.03.044  doi: 10.1016/j.carbon.2016.03.044

    101. [101]

      Song, S.; Xu, W.; Cao, R. G.; Luo, L. L.; Engelhard, M. H.; Bowden, M. E.; Liu, B.; Estevez, L.; Wang, C. M.; Zhang, J. G. Nano Energy 2017, 33, 195. doi: 10.1016/j.nanoen.2017.01.042  doi: 10.1016/j.nanoen.2017.01.042

    102. [102]

      Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C. C.; Zhi, C. Z. ACS Nano 2010, 4, 2979. doi: 10.1021/nn1006495  doi: 10.1021/nn1006495

    103. [103]

      Zeng, H. B.; Zhi, C. Y.; Zhang, Z. Z.; Wei, X. L.; Wang, X. B.; Guo, W. L.; Bando, Y.; Golberg, D. Nano Lett. 2010, 10, 5049. doi: 10.1021/nl103251m  doi: 10.1021/nl103251m

    104. [104]

      Zhang, Y.; Du, H. T.; Ma, Y. J.; Ji, L.; Guo, H. R.; Tian, Z. Q.; Chen, H. Y.; Huang, H.; Cui, G. W.; Asiri, A. M.; et al. Nano Res. 2019, 12, 919. doi: 10.1007/s12274-019-2323-x  doi: 10.1007/s12274-019-2323-x

    105. [105]

      Lee, J.; Kang, J. J. Catal. 2019, 375, 68. doi: 10.1016/j.jcat.2019.05.018  doi: 10.1016/j.jcat.2019.05.018

    106. [106]

      Mao, X.; Zhou, S.; Yan, C.; Zhu, Z. H.; Du, A. J. Phys. Chem. Chem. Phys. 2019, 21, 1110. doi: 10.1039/c8cp07064d  doi: 10.1039/c8cp07064d

    107. [107]

      Yang, B. C.; Wan, B. S.; Zhou, Q. H.; Wang, Y.; Hu, W. T.; Lv, W. M.; Chen, Q.; Zeng, Z. M.; Wen, F. S.; Xiang, J. Y.; et al. Adv. Mater. 2016, 28, 9408. doi: 10.1002/adma.201603723  doi: 10.1002/adma.201603723

    108. [108]

      Kang, J.; Wells, S. A.; Wood, J. D.; Lee, J. H.; Liu, X. L; Ryder, C. R.; Zhu, J.; Guest, J. R.; Husko, C. A.; Hersam, M. C. Proc. Natl. Acad. Sci. USA 2016, 113, 11688. doi: 10.1073/pnas.1602215113  doi: 10.1073/pnas.1602215113

    109. [109]

      Yang, D.; Yang, G. X.; Yang, P. P.; Lv, R. C.; Gai, S. L.; Li, C. X.; He, F.; Lin, J. Adv. Funct. Mater. 2017, 27, 1700371. doi: 10.1002/adfm.201700371  doi: 10.1002/adfm.201700371

    110. [110]

      Kou, L. Z.; Frauenheim, T.; Chen, C. F. J. Phys. Chem. Lett. 2014, 5, 2675. doi: 10.1021/jz501188k  doi: 10.1021/jz501188k

    111. [111]

      Zhang, L. L.; Ding, L. X.; Chen, G. F.; Yang, X. F.; Wang, H. H. Angew. Chem. Int. Ed. 2019, 58, 2612. doi: 10.1002/anie.201813174  doi: 10.1002/anie.201813174

    112. [112]

      Shi, L.; Li, P.; Zhou, W.; Wang, T.; Chang, K.; Zhang, H. B.; Kako, T.; Liu, G. G.; Ye, J. H. Nano Energy 2016, 28, 158. doi: 10.1016/j.nanoen.2016.08.041  doi: 10.1016/j.nanoen.2016.08.041

    113. [113]

      Chen, Z.; Zhao, J. X.; Yin, L. C.; Chen, Z. F. J. Mater. Chem. A 2019, 7, 13284. doi: 10.1039/c9ta01410a  doi: 10.1039/c9ta01410a

    114. [114]

      Zhou, F. L.; Azofra, L. M.; Ali, M.; Kar, M.; Simonov, A. N.; McDonnell-Worth, C.; Sun, C. H.; Zhang, X. Y.; MacFarlane, D. R. Energy Environ. Sci. 2017, 10, 2516. doi: 10.1039/c7ee02716h  doi: 10.1039/c7ee02716h

    115. [115]

      Zhu, X. J.; Wu, T. W.; Ji, L.; Li, C. B.; Wang, T.; Wen, S. H.; Gao, S. Y.; Shi, X. F.; Luo, Y. L.; Peng, Q. L.; Sun, X. P. J. Mater. Chem. A 2019, 7, 16117. doi: 10.1039/c9ta05016g  doi: 10.1039/c9ta05016g

  • 加载中
    1. [1]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    2. [2]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    3. [3]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    4. [4]

      Zixuan GuoXiaoshuai HanChunmei ZhangShuijian HeKunming LiuJiapeng HuWeisen YangShaoju JianShaohua JiangGaigai Duan . Activation of biomass-derived porous carbon for supercapacitors: A review. Chinese Chemical Letters, 2024, 35(7): 109007-. doi: 10.1016/j.cclet.2023.109007

    5. [5]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    6. [6]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    7. [7]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    8. [8]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    9. [9]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    10. [10]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    11. [11]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    12. [12]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    13. [13]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    14. [14]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    15. [15]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    16. [16]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    17. [17]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    18. [18]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    19. [19]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    20. [20]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

Metrics
  • PDF Downloads(59)
  • Abstract views(1224)
  • HTML views(459)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return