Citation: Jing Zijun, Khai Chen Tan, He Teng, Yu Yang, Pei Qijun, Wang Jintao, Wu Hui, Chen Ping. Synthesis, Characterization, and Crystal Structure of Lithium Pyrrolide[J]. Acta Physico-Chimica Sinica, ;2021, 37(11): 200903. doi: 10.3866/PKU.WHXB202009039 shu

Synthesis, Characterization, and Crystal Structure of Lithium Pyrrolide

  • Corresponding author: He Teng, heteng@dicp.ac.cn Wu Hui, huiwu@nist.gov
  • Received Date: 10 September 2020
    Revised Date: 19 October 2020
    Accepted Date: 19 October 2020
    Available Online: 23 October 2020

    Fund Project: the K. C. Wong Education Foundation GJTD-2018-06the National Natural Science Foundation of China 51671178The project was supported by the National Key R&D Program of China (2018YFB1502100, 2019YFE0103600), the National Natural Science Foundation of China (51671178, 51472237), the Light Source Fund of Dalian Institute of Chemical Physics, Chinese Academy of Sciences (DICP DCLS201701), the Liaoning Revitalization Talents Program (XLYC1807157), and the K. C. Wong Education Foundation (GJTD-2018-06)the Liaoning Revitalization Talents Program XLYC1807157the National Natural Science Foundation of China 51472237the National Key R&D Program of China 2018YFB1502100the Light Source Fund of Dalian Institute of Chemical Physics, Chinese Academy of Sciences DICP DCLS201701the National Key R&D Program of China 2019YFE0103600

  • Development of clean energy is an urgent requirement because of the depletion of fossil energy sources and increasingly severe environmental pollution. However, the lack of safe and efficient hydrogen storage materials is one of the bottlenecks in the implementation of hydrogen energy. Liquid organic hydrogen carriers (LOHCs) have been recognized as potential materials for the storage and transportation of hydrogen owing to their high gravimetric and volumetric hydrogen densities, reversible hydrogen absorption and desorption ability, and ease of widespread implementation with minimal modification on the existing fueling infrastructure. While some LOHCs such as cycloalkanes and N-heterocycles have been developed for hydrogen storage, they require a high hydrogen release temperature due to the large enthalpy change of dehydrogenation. In our previous work, a metallation strategy was proposed to improve the thermodynamic properties of liquid organic hydrogen carriers for hydrogen storage, and a series of metalorganic hydrides were synthesized and investigated. Among them, sodium phenoxide-cyclohexanolate pair, lithium carbazolide-perhydrocarbazolide, and sodium anilinide-cyclohexylamide pair showed promising dehydrogenation thermodynamics and improved hydrogen storage properties. Sodium pyrrolide and sodium imidazolide were also synthesized. However, pyrrolides were not well characterized, and the structure of lithium pyrrolide was not resolved. In the present study, we synthesized sodium and lithium pyrrolides by ball milling and wet chemical methods. One equivalent of hydrogen could be released from the reaction of pyrrole and metal hydrides, indicating the replacement of H by metal. The formation of pyrrolides was confirmed by nuclear magnetic resonance (NMR), X-ray diffraction (XRD) and ultraviolet-visible spectroscopy analyses. The 1H signals attributed to C-H in the NMR spectra of the alkali metal pyrrolides shifted upfield due to the replacement of the H of N-H with a stronger electron-donating species (Li or Na), resulting in a greater shielding environment upon metallation. The absorption peaks of lithium and sodium pyrrolides showed red shifts, and the intensities became obviously stronger in the UV-Vis spectra, suggesting an enhancement of the conjugation effect, in accordance with theoretical calculations. The structure of lithium pyrrolide was determined by the combined direct space method and first-principles calculations on XRD data and Rietveld refinement. This molecule crystallizes in the monoclinic P21/c (14) space group, with lattice parameters of a = 4.4364(7) Å, b = 11.969(2) Å, c = 8.192(2) Å, β = 108.789(8)°, and V = 411.8(2) Å3 (1 Å = 0.1 nm). Each Li+ cation is surrounded by three pyrrolides via cation-N σ bonding with two pyrrolides and a cation–π interaction with the third pyrrolide, where the Li+ is on the top of the π face. Our experimental findings are different from the theoretical prediction in the literature.
  • 加载中
    1. [1]

      He, T.; Pachfule, P.; Wu, H.; Xu, Q.; Chen, P. Nat. Rev. Mater. 2016, 1(12), 16059. doi: 10.1038/natrevmats.2016.59  doi: 10.1038/natrevmats.2016.59

    2. [2]

      Zhu, Q. L.; Xu, Q. Energy Environ. Sci. 2015, 8(2), 478. doi: 10.1039/C4EE03690E  doi: 10.1039/C4EE03690E

    3. [3]

      Sakintuna, B.; Lamari-Darkrim, F.; Hirscher, M. Int. J. Hydrogen Energy 2007, 32(9), 1121. doi: 10.1016/j.ijhydene.2006.11.022  doi: 10.1016/j.ijhydene.2006.11.022

    4. [4]

      Gutowska, A.; Li, L.; Shin, Y.; Wang, C. M.; Li, X. S.; Linehan, J. C.; Smith, R. S.; Kay, B. D.; Schmid, B.; Shaw, W.; et al. Angew. Chem. 2005, 117(23), 3644. doi: 10.1002/ange.200462602  doi: 10.1002/ange.200462602

    5. [5]

      Xiong, Z.; Yong, C. K.; Wu, G.; Chen, P.; Shaw, W.; Karkamkar, A.; Autrey, T.; Jones, M. O.; Johnson, S. R.; Edwards, P. P.; David, W. I. F. Nat. Mater. 2008, 7(2), 138. doi: 10.1038/nmat2081  doi: 10.1038/nmat2081

    6. [6]

      Bogdanović, B.; Schwickardi, M. J. Alloys Compd. 1997, 253–254, 1. doi: 10.1016/S0925-8388(96)03049-6  doi: 10.1016/S0925-8388(96)03049-6

    7. [7]

      Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K. L. Nature 2002, 420(6913), 302. doi: 10.1038/nature01210  doi: 10.1038/nature01210

    8. [8]

      Züttel, A.; Wenger, P.; Rentsch, S.; Sudan, P.; Mauron, P.; Emmenegger, C. J. Power Sources 2003, 118(1), 1. doi: 10.1016/S0378-7753(03)00054-5  doi: 10.1016/S0378-7753(03)00054-5

    9. [9]

      Xiao, X.; Chen, L.; Wang, X.; Li, S.; Chen, C. Acta Phys. -Chim. Sin. 2006, 22(12), 1511.  doi: 10.3866/PKU.WHXB20061215

    10. [10]

      Modisha, P. M.; Ouma, C. N. M.; Garidzirai, R.; Wasserscheid, P.; Bessarabov, D. Energy Fuels 2019, 33(4), 2778. doi: 10.1021/acs.energyfuels.9b00296  doi: 10.1021/acs.energyfuels.9b00296

    11. [11]

      Müller, K.; Thiele, S.; Wasserscheid, P. Energy Fuels 2019, 33(10), 10324. doi: 10.1021/acs.energyfuels.9b01939  doi: 10.1021/acs.energyfuels.9b01939

    12. [12]

      Preuster, P.; Papp, C.; Wasserscheid, P. Acc. Chem. Res. 2017, 50(1), 74. doi: 10.1021/acs.accounts.6b00474  doi: 10.1021/acs.accounts.6b00474

    13. [13]

      Yang, J.; Sudik, A.; Wolverton, C.; Siegel, D. J. Chem. Soc. Rev. 2010, 39(2), 656. doi: 10.1039/B802882F  doi: 10.1039/B802882F

    14. [14]

      Clot, E.; Eisenstein, O.; Crabtree, R. H. Chem. Commun. 2007, No. 22, 2231. doi: 10.1039/B705037B  doi: 10.1039/B705037B

    15. [15]

      Pez, G. P.; Scott, A. R.; Cooper, A. C.; Cheng, H. Hydrogen storage by reversible hydrogenation of pi-conjugated substrates. US Patent US07101530, 2006.

    16. [16]

      Cui, Y.; Kwok, S.; Bucholtz, A.; Davis, B.; Whitney, R. A.; Jessop, P. G. New J. Chem. 2008, 32(6), 1027. doi: 10.1039/B718209K  doi: 10.1039/B718209K

    17. [17]

      Jing, Z.; Yu, Y.; Chen, R.; Tan, K. C.; He, T.; Wu, A.; Pei, Q.; Chua, Y. S.; Zheng, D.; Zhang, X.; et al. Chem. Commun. 2020, 56(13), 1944. doi: 10.1039/C9CC08593A  doi: 10.1039/C9CC08593A

    18. [18]

      Tan, K. C.; Yu, Y.; Chen, R.; He, T.; Jing, Z.; Pei, Q.; Wang, J.; Chua, Y. S.; Wu, A.; Zhou, W.; et al. Energy Storage Mater. 2020, 26, 198. doi: 10.1016/j.ensm.2019.12.035  doi: 10.1016/j.ensm.2019.12.035

    19. [19]

      Yu, Y.; He, T.; Wu, A.; Pei, Q.; Karkamkar, A.; Autrey, T.; Chen, P. Angew. Chem. Int. Ed. 2019, 58(10), 3102. doi: 10.1002/anie.201810945  doi: 10.1002/anie.201810945

    20. [20]

      Blanco, F.; Alkorta, I.; Elguero, J. J. Phys. Chem. A 2008, 112(33), 7682. doi: 10.1021/jp801936v  doi: 10.1021/jp801936v

    21. [21]

      Ruan, C.; Yang, Z.; Rodgers, M. T. Int. J. Mass Spectrom. 2007, 267(1), 233. doi: 10.1016/j.ijms.2007.02.041  doi: 10.1016/j.ijms.2007.02.041

    22. [22]

      Scott, M. S.; Lucas, A. C.; Luckhurst, C. A.; Prodger, J. C.; Dixon, D. J. Org. Biomol. Chem. 2006, 4(7), 1313. doi: 10.1039/B515356E  doi: 10.1039/B515356E

    23. [23]

      Baltazzi, E.; Krimen, L. I. Chem. Rev. 1963, 63(5), 511. doi: 10.1021/cr60225a004  doi: 10.1021/cr60225a004

    24. [24]

      Yu, G.; Huang, X. R.; Chen, W.; Sun, C. C. J. Comput. Chem. 2011, 32(9), 2005. doi: 10.1002/jcc.21789  doi: 10.1002/jcc.21789

    25. [25]

      Goddard, R.; Heinemann, O.; Krüger, C. Acta Cryst. 1997, 53(12), 1846. doi: 10.1107/S0108270197009682  doi: 10.1107/S0108270197009682

  • 加载中
    1. [1]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    2. [2]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    3. [3]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    4. [4]

      Lingyun ShenShenxiang YinQingshu ZhengZheming SunWei WangTao Tu . A rechargeable and portable hydrogen storage system grounded on soda water. Chinese Chemical Letters, 2025, 36(3): 110580-. doi: 10.1016/j.cclet.2024.110580

    5. [5]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    6. [6]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    7. [7]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    8. [8]

      Zhexin ChenYuqing ShiFang ZhongKai ZhangFurong ZhangShenghong XieZhongbin ChengQian ZhouYi-You HuangHai-Bin Luo . Discovery of amentoflavone as a natural PDE4 inhibitor with anti-fibrotic effects. Chinese Chemical Letters, 2025, 36(4): 109956-. doi: 10.1016/j.cclet.2024.109956

    9. [9]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    10. [10]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    11. [11]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    12. [12]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    13. [13]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    14. [14]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    15. [15]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    16. [16]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    17. [17]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    18. [18]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    19. [19]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    20. [20]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

Metrics
  • PDF Downloads(21)
  • Abstract views(1037)
  • HTML views(128)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return