Citation: Jiabi Li, Xi Wu, Shengwei Liu. Fluorinated TiO2 Hollow Photocatalysts for Photocatalytic Applications[J]. Acta Physico-Chimica Sinica, ;2021, 37(6): 200903. doi: 10.3866/PKU.WHXB202009038 shu

Fluorinated TiO2 Hollow Photocatalysts for Photocatalytic Applications


  • Author Bio:

    Shengwei Liu received his Ph.D. in Materials Chemistry & Physics in 2009 from Wuhan University of Technology. Since 2015 he has been a full professor at the School of Environmental Science and Engineering in Sun Yat-sen University. His research interests focus on environmental catalysis, CO2 capture and conversion, indoor air purification
  • Corresponding author: Shengwei Liu, liushw6@mail.sysu.edu.cn
  • Received Date: 10 September 2020
    Revised Date: 29 September 2020
    Accepted Date: 13 October 2020
    Available Online: 19 October 2020

    Fund Project: the National Natural Science Foundation of China 51572209the National Natural Science Foundation of China 51872341the Fundamental Research Funds for the Central Universities, China 19lgzd29the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program, China 2019TQ05L196the Science and Technology Planning Project of Guangdong Province, China 2020A0505100033

  • Recently, extensive studies have been carried out to synthesize spherical microassemblies with hollow interiors and specific surface functionalizations, which usually exhibit fascinating enhanced or emerging properties and have promising applications in catalysis, photocatalysis, energy conversion and storage, biomedical applications, etc. With particular emphasis on the results obtained mainly by the authors' research group, this review provides a brief summary of the recent progress on the fabrication and potential photocatalytic applications of fluorinated TiO2 porous hollow microspheres(F-TiO2 PHMs). The synthesis strategies for F-TiO2 PHMs include a simplified two-step templating method and template-free method based on the fluoride-mediated self-transformation(FMST) mechanism. Compared to the two-step templating method, the template formation, coating, and removal steps for the FMST method are programmatically proceeded in "black-box"-like one-pot reactions without additional manual steps. The four underlying steps involved in the fabrication of F-TiO2 PHMs through the FMST pathway, nucleation, self-assembly, surface recrystallization, and self-transformation, are presented. By controlling these four steps in the FMST pathway, F-TiO2 PHMs can be successfully fabricated with a high yield by a simple one-pot hydrothermal treatment. The multi-level microstructural characteristics(including the interior cavity and hierarchical porosity) and compositions of hollow TiO2 microspheres as well as the primary building blocks can be well tailored. The unique superstructures of the F-TiO2 PHM photocatalysts provide advantages for photocatalytic applications by improving the light harvesting, mass transfer, and membrane antifouling. In addition, the in situ-introduced surface fluorine species during the formation of F-TiO2 PHMs provide significant surface fluorination effects, which are not only favorable for the adsorption and activation of reactant molecules, but also beneficial for surface trapping and interfacial transfer of photo-excited electrons and holes. Moreover, the porous hollow superstructures exhibit considerably better compatibility and tolerance to guest modifications, and thus the photocatalytic performances of F-TiO2 PHMs can be increased by synergetic host and guest modifications, such as ion doping, group functionalization, and nanoparticle loading. The light-harvesting range and intensity can be increased, the charge recombination can be reduced, mass transfer and adsorption can be promoted, and the surface reactivity can be tuned by introducing specific surface functionalities or nanoparticular cocatalysts. Consequently, the entire photocatalytic process can be systematically modulated to optimize the overall photocatalytic performance. The as-prepared F-TiO2 PHMs typically integrate the merits of interior cavity, hierarchical porosity, and surface fluorination and are open to synergetic host-guest modifications, which provides abundant compositional/structural parameters and specific physicochemical properties for systematically modulating the interconnected photocatalytic processes and promising potential photocatalytic applications.
  • 加载中
    1. [1]

      Sun, S. C.; Zhang, X. Y.; Liu, X. L., Pan, L., Zhang, X. W.; Zou, J. J. Acta Phys. -Chim. Sin.2020, 36, 1905007.  doi: 10.3866/PKU.WHXB201905007

    2. [2]

      Pan, J. B.; Shen, S.; Zhou, W.; Tang, J.; Ding, H. Z.; Wang, J. B.; Chen, L.; Au, C. T.; Yin, S. F. Acta Phys. -Chim. Sin. 2020, 36, 1905068.  doi: 10.3866/PKU.WHXB201905068

    3. [3]

      Chen, X.; Mao, S. S. Chem. Rev. 2007, 107, 2891. doi:10.1021/cr0500535  doi: 10.1021/cr0500535

    4. [4]

      Liu, G.; Wang, L. Z.; Yang, H. G.; Cheng, H. M.; Lu, G. Q. J. Mater. Chem. 2010, 20, 831. doi:10.1039/B909930A  doi: 10.1039/B909930A

    5. [5]

      Hu, X. L.; Li, G. S.; Yu, J. C. Langmuir 2010, 26, 3031. doi:10.1021/la902142b  doi: 10.1021/la902142b

    6. [6]

      Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. Chem 2020, 6, 1543. doi:10.1016/j.apsusc.2016.09.093  doi: 10.1016/j.apsusc.2016.09.093

    7. [7]

      Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. ACS Appl. Mater. Inter. 2019, 11, 5581. doi:10.1021/acsami.8b02552  doi: 10.1021/acsami.8b02552

    8. [8]

      Meng, A. Y.; Zhang, L. Y.; Cheng, B. Adv. Mater. 2019, 31, 1807660. doi:10.1002/adma.201807660  doi: 10.1002/adma.201807660

    9. [9]

      Qi, K. Z.; Cheng, B.; Yu, J. G. Chin. J. Catal. 2017, 38, 1936. doi:10.1016/S1872-2067(17)62962-0  doi: 10.1016/S1872-2067(17)62962-0

    10. [10]

      Li, X.; Xie, J.; Jiang, C. J.; Yu, J. G.; Zhang. P. Y. Front. Env. Sci. Eng. 2018, 12, 14. doi:10.1007/s11783-018-1076-1  doi: 10.1007/s11783-018-1076-1

    11. [11]

      Fu, J. W.; Jiang, K. X.; Qiu, X. Q.; Yu, J. G.; Liu, M. Mater. Today 2020, 32, 222. doi:10.1016/j.mattod.2019.06.009  doi: 10.1016/j.mattod.2019.06.009

    12. [12]

      Yu, J. C.; Yu, J. G.; Ho, W. K.; Jiang, Z. T.; Zhang, L. Z. Chem. Mater. 2002, 14, 3808. doi:10.1002/chin.200247012  doi: 10.1002/chin.200247012

    13. [13]

      He, F.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Ho, W. K.; Macyk, W. Appl. Catal. B: Environ. 2020, 272, 119006. doi:10.1016/j.apcatb.2020.119006  doi: 10.1016/j.apcatb.2020.119006

    14. [14]

      Shen, J.; Wang, R.; Liu, Q. Q.; Yang, X. F.; Tang, H.; Yang, J. Chin. J. Catal. 2019, 40, 380. doi:10.1016/S1872-2067(18)63166-3  doi: 10.1016/S1872-2067(18)63166-3

    15. [15]

      Huang, G. C.; Liu, X. Y.; Shi, S. R.; Li, S. T.; Xiao, Z. T.; Zhen, W. Q.; Liu, S. W.; Wong, P. K. Chin. J. Catal. 2020, 41, 50. doi:10.1016/S1872-2067(19)63424-8  doi: 10.1016/S1872-2067(19)63424-8

    16. [16]

      Wang, W. K.; Xu, D. F.; Cheng, B.; Yu, J. G.; Jiang, C. J. J. Mater. Chem. A 2017, 5 5020. doi:10.1039/c6ta11121a  doi: 10.1039/c6ta11121a

    17. [17]

      Yu, J. G.; Liu, S. W.; Yu, H. G.J. Catal. 2007, 249, 59. doi:10.1016/j.jcat.2007.03.032  doi: 10.1016/j.jcat.2007.03.032

    18. [18]

      Li, X.; Yu, J. G.; Jaroniec, M. Chem. Soc. Rev. 2016, 45, 2603. doi:10.1039/C5CS00838G  doi: 10.1039/C5CS00838G

    19. [19]

      Duan, Y. Y.; Liang, L.; Lv, K. L.; Li, Q.; Li, M. Appl. Surf. Sci. 2018, 456, 817. doi:10.1016/j.apsusc.2018.06.128  doi: 10.1016/j.apsusc.2018.06.128

    20. [20]

      Hu, Z.; Yang, C.; Lv, K. L.; Li, X. F.; Li, Q.; Fan, J. J. Chem Comm. 2020, 56, 1745. doi:10.1039/C9CC08578E  doi: 10.1039/C9CC08578E

    21. [21]

      Xia, Y.; Li, Q.; Lv, K. L.; Li, M. Appl. Surf. Sci. 2017, 398, 81. doi:10.1016/j.apsusc.2016.12.006  doi: 10.1016/j.apsusc.2016.12.006

    22. [22]

      Li, Q.; Xia, Y.; Yang, C.; Lv, K. L.; Lei, M.; Li, M. Chem. Eng. J. 2018, 349, 287. doi:10.1016/j.cej.2018.05.094  doi: 10.1016/j.cej.2018.05.094

    23. [23]

      Zhang, J. W.; Wang, S.; Liu, F. S.; Fu, X. J.; Ma, G. Q.; Hou, M. S.; Tang, Z. Acta Phys. -Chim. Sin. 2019, 35, 885.  doi: 10.3866/PKU.WHXB20181202

    24. [24]

      Liu, Y.; Xiao, Z. Z.; Cao, S.; Li, J. H.; Piao, L. Y. Chin. J. Catal. 2020, 41, 219. doi:10.1016/S1872-2067(19)63477-7  doi: 10.1016/S1872-2067(19)63477-7

    25. [25]

      Zhu, Y. G.; Zhang, Z. Y.; Lu, N. Hua, R. N.; Dong, B. Chin. J. Catal. 2019, 40, 413. doi:10.1016/S1872-2067(18)63182-1  doi: 10.1016/S1872-2067(18)63182-1

    26. [26]

      Wang, J. Y.; Liu, B. S.; Nakata, K. Chin. J. Catal. 2019, 40, 403. doi:10.1016/S1872-2067(18)63174-2  doi: 10.1016/S1872-2067(18)63174-2

    27. [27]

      Lou, X. W.; Archer, L. A.; Yang, Z. C. Adv. Mater. 2008, 20, 3987. doi:10.1002/adma.200800854  doi: 10.1002/adma.200800854

    28. [28]

      Zhang, Q.; Wang, W. S.; Goebl, J.; Yin, Y. D. Nano Today 2009, 4 494. doi:10.1016/j.nantod.2009.10.008  doi: 10.1016/j.nantod.2009.10.008

    29. [29]

      Yu, L.; Yu, X. Y.; Lou, X. W. Adv. Mater. 2018, 30, 1800939. doi:10.1002/adma.201800939  doi: 10.1002/adma.201800939

    30. [30]

      Zhang, P.; Lou, X. W. Adv. Mater. 2018, 31, 1900281. doi:10.1002/adma.201900281  doi: 10.1002/adma.201900281

    31. [31]

      Wang, S. B.; Wang, Y.; Zang, S. Q.; Lou, X. W. Small Methods 2019, 4, 1900586. doi:10.1002/smtd.201900586  doi: 10.1002/smtd.201900586

    32. [32]

      Xiao, M.; Wang, Z. L.; Lyu, M. Q.; Luo, B.; Wang, S. C.; Liu, G.; Cheng, H. M.; Wang, L. Z. Adv. Mater. 2019, 31, 1801369. doi:10.1002/adma.201801369  doi: 10.1002/adma.201801369

    33. [33]

      Yu, J. G.; Guo, H. T.; Davis, S. A.; Mann, S. Adv. Funct. Mater. 2006, 16, 2035. doi:10.1002/adfm.200600552  doi: 10.1002/adfm.200600552

    34. [34]

      Liu, S. W.; Yu, J. G.; Cheng, B.; Jaroniec, M. Adv. Colloid Interface Sci. 2012, 173, 35. doi:10.1016/j.cis.2012.02.004  doi: 10.1016/j.cis.2012.02.004

    35. [35]

      Liu, S. W.; Yu, J. G.; Mann, S. Nanotechnology 2009, 20, 325606. doi:10.1088/0957-4484/20/32/325606  doi: 10.1088/0957-4484/20/32/325606

    36. [36]

      Yang, H. G.; Zeng, H. C. J. Phys. Chem. B 2004, 108, 3492. doi:10.1021/jp0377782  doi: 10.1021/jp0377782

    37. [37]

      Zhou, J. K.; Lv, L.; Yu, J. Q.; Li, H. L.; Guo, P. Z.; Sun, H.; Zhao, X. S. J. Phys. Chem. C. 2008, 112, 5316. doi:10.1021/jp709615x  doi: 10.1021/jp709615x

    38. [38]

      Yu, J. G.; Liu, W.; Yu, H. G. Cryst. Growth Des. 2008, 8, 930. doi:10.1021/cg700794y  doi: 10.1021/cg700794y

    39. [39]

      Yu, H. G.; Yu, J. G.; Cheng, B.; Liu, S. W. Nanotechnology 2007, 18. doi:10.1088/0957-4484/18/6/065604  doi: 10.1088/0957-4484/18/6/065604

    40. [40]

      Li, X. F.; Wu, X. F.; Liu, S. W.; Li, Y. H.; Fan, J. J.; Lv, K. L.; Chin. J. Catal. 2020, 41, 1451. doi:10.1016/S1872-2067(20)63594-X  doi: 10.1016/S1872-2067(20)63594-X

    41. [41]

      Chen, L. Q.; Tian, L. J. J.; Xie, J. Y.; Zhang, C. J.; Chen, J. N.; Wang, Y.; Li, Q.; Lv, K. L.; Deng, K. J. Appl. Surf. Sci. 2020, 504, 144353. doi:10.1016/j.apsusc.2019.144353  doi: 10.1016/j.apsusc.2019.144353

    42. [42]

      Lv, K. L.; Cheng, B.; Yu, J. G.; Liu, G. Phys. Chem. Chem. Phys. 2012, 14, 5349. doi:10.1039/C2CP23461K  doi: 10.1039/C2CP23461K

    43. [43]

      Titirici, M. M.; Antonietti, M.; Thomas, A. A. Chem. Mater. 2006, 18, 3808. doi:10.1021/cm052768u  doi: 10.1021/cm052768u

    44. [44]

      Yu, J. G.; Wang, G. H. J. Phys. Chem. Solids. 2008, 69, 1147. doi:10.1016/j.jpcs.2007.09.024  doi: 10.1016/j.jpcs.2007.09.024

    45. [45]

      Guan, J. G.; Mou, F. Z.; Sun, Z. G.; Shi, W. D. Chem. Commun. 2010, 46, 6605. doi:10.1039/C0CC01044H  doi: 10.1039/C0CC01044H

    46. [46]

      Liu, S.W.; Yu, J. G. Chapter 10: Effect of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. In Nanostructured Photocatalysts; Yamashita, H., Li, H. X., Eds.; Publisher: Springer International Publishing, Switzerland, 2016; pp. 187–200. doi:0.1007/978-3-319-26079-2

    47. [47]

      Zeng, H. C. J. Mater. Chem. 2006, 16, 649. doi:10.1039/b511296f  doi: 10.1039/b511296f

    48. [48]

      Liu, B.; Zeng, H. C. Small 2005, 1, 566. doi:10.1002/smll.200500020  doi: 10.1002/smll.200500020

    49. [49]

      Liu, S. W.; Yu, J. G.; Jaroniec, M. J. Am. Chem. Soc. 2010, 132, 11914. doi:10.1021/ja105283s  doi: 10.1021/ja105283s

    50. [50]

      Liu, Ye.; Xiao, Z. Z.; Cao, S., Li, J. H. Piao, L. Y. Chin. J. Catal. 2020, 41, 291. doi:10.1016/S1872-2067(19)63477-7  doi: 10.1016/S1872-2067(19)63477-7

    51. [51]

      Gong, C.; Xiang, S. W.; Zhang, Z. Y.; Sun, L.; Ye, C. Q.; Lin, C. J. Acta Phys. -Chim. Sin. 2019, 35, 616.  doi: 10.3866/PKU.WHXB201805082

    52. [52]

      Liu, S. W.; Huang, G. C.; Yu, J. G.; Ng, T. W.; Yip, H. Y.; Wong, P. K. ACS Appl. Mater. Interfaces 2014, 6, 2407. doi:10.1021/am4047975  doi: 10.1021/am4047975

    53. [53]

      Liu, S. W.; Xia, J. Q.; Yu, J. G. ACS Appl. Mater. Interfaces 2015, 7, 8166. doi:10.1021/acsami.5b00982  doi: 10.1021/acsami.5b00982

    54. [54]

      Liu, S. W.; Yu, J. G.; Wang, W. G. Phys. Chem. Chem. Phys. 2010, 12, 12308. doi:10.1039/C0CP00036A  doi: 10.1039/C0CP00036A

    55. [55]

      Liu, S. W.; Yu, J. G.; Mann, S. J. Phys. Chem. C 2009, 113, 10712. doi:10.1021/jp902449b  doi: 10.1021/jp902449b

    56. [56]

      Yu, J. G.; Liu, S. W.; Zhou, M. H. J. Phys. Chem. C 2008, 112, 2050. doi:10.1021/jp0770007  doi: 10.1021/jp0770007

    57. [57]

      Xiang, Q. J.; Yu, J. G.; Cheng, B.; Ong, H. C. Chem.-Asian J. 2010, 5, 1466. doi:10.1002/asia.200900695  doi: 10.1002/asia.200900695

    58. [58]

      Li, H. X.; Bian Z. F.; Zhu, J.; Zhang, D. Q.; Li, G. S.; Huo, Y. N.; Li, H.; Lu, Y. F. J. Am. Chem. Soc. 2007, 129, 8406. doi:10.1021/ja072191c  doi: 10.1021/ja072191c

    59. [59]

      Liu, X. Y.; Ye, M.; Zhang, S. P.; Huang, G. C.; Li, C. H.; Yu, J. G.; Wong, P. K.; Liu, S. W. J. Mater. Chem. A 2018, 6, 24245. doi:10.1039/C8TA09661A  doi: 10.1039/C8TA09661A

    60. [60]

      Pan, J. H.; Zhang, X. W.; Du, A. J.; Sun, D. D.; Leckie, J. O. J. Am. Chem. Soc. 2008, 130, 11256. doi:10.1021/ja803582m  doi: 10.1021/ja803582m

    61. [61]

      Wang, Q.; Chen, C. C.; Zhao, D.; Ma, W. H.; Zhao, J. C. Langmuir 2008, 24, 7338. doi:10.1021/la800313s  doi: 10.1021/la800313s

    62. [62]

      Liu, S. W.; Yin, K.; Ren, W. S.; Cheng, B.; Yu, J. G. J. Mater. Chem. 2012, 22, 17759. doi:10.1039/c2jm33337f  doi: 10.1039/c2jm33337f

    63. [63]

      Kim, J. W.; Monllor-Satoca, D.; Choi, W. Y. Energy Environ. Sci. 2012, 5, 7647. doi:10.1039/C2EE21310A  doi: 10.1039/C2EE21310A

  • 加载中
    1. [1]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    2. [2]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    3. [3]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    4. [4]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    5. [5]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    6. [6]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    7. [7]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Rui LiRuijie LuLibin YangJianwen LiZige GuoQiquan YanMengjun LiYazhuo NiKeying ChenYaoyang LiBo XuMengzhen CuiZhan LiZhiying Zhao . Immobilization of chitosan nano-hydroxyapatite alendronate composite microspheres on polyetheretherketone surface to enhance osseointegration by inhibiting osteoclastogenesis and promoting osteogenesis. Chinese Chemical Letters, 2025, 36(4): 110242-. doi: 10.1016/j.cclet.2024.110242

    10. [10]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    11. [11]

      Ruiheng LiangHuizhong WuZhongzheng HuGe SongXuyang ZhangOmotayo A. ArotibaMinghua Zhou . Hierarchical Fe-Bi/Bi7O9I3/OVs microspheres coupled with natural air diffusion electrode to achieve efficient heterogeneous visible-light-driven photoelectro-Fenton degradation of tetracycline without aeration. Chinese Chemical Letters, 2025, 36(4): 110136-. doi: 10.1016/j.cclet.2024.110136

    12. [12]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    13. [13]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    14. [14]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    15. [15]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    16. [16]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    17. [17]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    18. [18]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    19. [19]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    20. [20]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

Metrics
  • PDF Downloads(48)
  • Abstract views(750)
  • HTML views(195)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return