Citation: Jiabi Li, Xi Wu, Shengwei Liu. Fluorinated TiO2 Hollow Photocatalysts for Photocatalytic Applications[J]. Acta Physico-Chimica Sinica, ;2021, 37(6): 200903. doi: 10.3866/PKU.WHXB202009038 shu

Fluorinated TiO2 Hollow Photocatalysts for Photocatalytic Applications


  • Author Bio:

    Shengwei Liu received his Ph.D. in Materials Chemistry & Physics in 2009 from Wuhan University of Technology. Since 2015 he has been a full professor at the School of Environmental Science and Engineering in Sun Yat-sen University. His research interests focus on environmental catalysis, CO2 capture and conversion, indoor air purification
  • Corresponding author: Shengwei Liu, liushw6@mail.sysu.edu.cn
  • Received Date: 10 September 2020
    Revised Date: 29 September 2020
    Accepted Date: 13 October 2020
    Available Online: 19 October 2020

    Fund Project: the National Natural Science Foundation of China 51572209the National Natural Science Foundation of China 51872341the Fundamental Research Funds for the Central Universities, China 19lgzd29the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program, China 2019TQ05L196the Science and Technology Planning Project of Guangdong Province, China 2020A0505100033

  • Recently, extensive studies have been carried out to synthesize spherical microassemblies with hollow interiors and specific surface functionalizations, which usually exhibit fascinating enhanced or emerging properties and have promising applications in catalysis, photocatalysis, energy conversion and storage, biomedical applications, etc. With particular emphasis on the results obtained mainly by the authors' research group, this review provides a brief summary of the recent progress on the fabrication and potential photocatalytic applications of fluorinated TiO2 porous hollow microspheres(F-TiO2 PHMs). The synthesis strategies for F-TiO2 PHMs include a simplified two-step templating method and template-free method based on the fluoride-mediated self-transformation(FMST) mechanism. Compared to the two-step templating method, the template formation, coating, and removal steps for the FMST method are programmatically proceeded in "black-box"-like one-pot reactions without additional manual steps. The four underlying steps involved in the fabrication of F-TiO2 PHMs through the FMST pathway, nucleation, self-assembly, surface recrystallization, and self-transformation, are presented. By controlling these four steps in the FMST pathway, F-TiO2 PHMs can be successfully fabricated with a high yield by a simple one-pot hydrothermal treatment. The multi-level microstructural characteristics(including the interior cavity and hierarchical porosity) and compositions of hollow TiO2 microspheres as well as the primary building blocks can be well tailored. The unique superstructures of the F-TiO2 PHM photocatalysts provide advantages for photocatalytic applications by improving the light harvesting, mass transfer, and membrane antifouling. In addition, the in situ-introduced surface fluorine species during the formation of F-TiO2 PHMs provide significant surface fluorination effects, which are not only favorable for the adsorption and activation of reactant molecules, but also beneficial for surface trapping and interfacial transfer of photo-excited electrons and holes. Moreover, the porous hollow superstructures exhibit considerably better compatibility and tolerance to guest modifications, and thus the photocatalytic performances of F-TiO2 PHMs can be increased by synergetic host and guest modifications, such as ion doping, group functionalization, and nanoparticle loading. The light-harvesting range and intensity can be increased, the charge recombination can be reduced, mass transfer and adsorption can be promoted, and the surface reactivity can be tuned by introducing specific surface functionalities or nanoparticular cocatalysts. Consequently, the entire photocatalytic process can be systematically modulated to optimize the overall photocatalytic performance. The as-prepared F-TiO2 PHMs typically integrate the merits of interior cavity, hierarchical porosity, and surface fluorination and are open to synergetic host-guest modifications, which provides abundant compositional/structural parameters and specific physicochemical properties for systematically modulating the interconnected photocatalytic processes and promising potential photocatalytic applications.
  • 加载中
    1. [1]

      Sun, S. C.; Zhang, X. Y.; Liu, X. L., Pan, L., Zhang, X. W.; Zou, J. J. Acta Phys. -Chim. Sin.2020, 36, 1905007.  doi: 10.3866/PKU.WHXB201905007

    2. [2]

      Pan, J. B.; Shen, S.; Zhou, W.; Tang, J.; Ding, H. Z.; Wang, J. B.; Chen, L.; Au, C. T.; Yin, S. F. Acta Phys. -Chim. Sin. 2020, 36, 1905068.  doi: 10.3866/PKU.WHXB201905068

    3. [3]

      Chen, X.; Mao, S. S. Chem. Rev. 2007, 107, 2891. doi:10.1021/cr0500535  doi: 10.1021/cr0500535

    4. [4]

      Liu, G.; Wang, L. Z.; Yang, H. G.; Cheng, H. M.; Lu, G. Q. J. Mater. Chem. 2010, 20, 831. doi:10.1039/B909930A  doi: 10.1039/B909930A

    5. [5]

      Hu, X. L.; Li, G. S.; Yu, J. C. Langmuir 2010, 26, 3031. doi:10.1021/la902142b  doi: 10.1021/la902142b

    6. [6]

      Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. Chem 2020, 6, 1543. doi:10.1016/j.apsusc.2016.09.093  doi: 10.1016/j.apsusc.2016.09.093

    7. [7]

      Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. ACS Appl. Mater. Inter. 2019, 11, 5581. doi:10.1021/acsami.8b02552  doi: 10.1021/acsami.8b02552

    8. [8]

      Meng, A. Y.; Zhang, L. Y.; Cheng, B. Adv. Mater. 2019, 31, 1807660. doi:10.1002/adma.201807660  doi: 10.1002/adma.201807660

    9. [9]

      Qi, K. Z.; Cheng, B.; Yu, J. G. Chin. J. Catal. 2017, 38, 1936. doi:10.1016/S1872-2067(17)62962-0  doi: 10.1016/S1872-2067(17)62962-0

    10. [10]

      Li, X.; Xie, J.; Jiang, C. J.; Yu, J. G.; Zhang. P. Y. Front. Env. Sci. Eng. 2018, 12, 14. doi:10.1007/s11783-018-1076-1  doi: 10.1007/s11783-018-1076-1

    11. [11]

      Fu, J. W.; Jiang, K. X.; Qiu, X. Q.; Yu, J. G.; Liu, M. Mater. Today 2020, 32, 222. doi:10.1016/j.mattod.2019.06.009  doi: 10.1016/j.mattod.2019.06.009

    12. [12]

      Yu, J. C.; Yu, J. G.; Ho, W. K.; Jiang, Z. T.; Zhang, L. Z. Chem. Mater. 2002, 14, 3808. doi:10.1002/chin.200247012  doi: 10.1002/chin.200247012

    13. [13]

      He, F.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Ho, W. K.; Macyk, W. Appl. Catal. B: Environ. 2020, 272, 119006. doi:10.1016/j.apcatb.2020.119006  doi: 10.1016/j.apcatb.2020.119006

    14. [14]

      Shen, J.; Wang, R.; Liu, Q. Q.; Yang, X. F.; Tang, H.; Yang, J. Chin. J. Catal. 2019, 40, 380. doi:10.1016/S1872-2067(18)63166-3  doi: 10.1016/S1872-2067(18)63166-3

    15. [15]

      Huang, G. C.; Liu, X. Y.; Shi, S. R.; Li, S. T.; Xiao, Z. T.; Zhen, W. Q.; Liu, S. W.; Wong, P. K. Chin. J. Catal. 2020, 41, 50. doi:10.1016/S1872-2067(19)63424-8  doi: 10.1016/S1872-2067(19)63424-8

    16. [16]

      Wang, W. K.; Xu, D. F.; Cheng, B.; Yu, J. G.; Jiang, C. J. J. Mater. Chem. A 2017, 5 5020. doi:10.1039/c6ta11121a  doi: 10.1039/c6ta11121a

    17. [17]

      Yu, J. G.; Liu, S. W.; Yu, H. G.J. Catal. 2007, 249, 59. doi:10.1016/j.jcat.2007.03.032  doi: 10.1016/j.jcat.2007.03.032

    18. [18]

      Li, X.; Yu, J. G.; Jaroniec, M. Chem. Soc. Rev. 2016, 45, 2603. doi:10.1039/C5CS00838G  doi: 10.1039/C5CS00838G

    19. [19]

      Duan, Y. Y.; Liang, L.; Lv, K. L.; Li, Q.; Li, M. Appl. Surf. Sci. 2018, 456, 817. doi:10.1016/j.apsusc.2018.06.128  doi: 10.1016/j.apsusc.2018.06.128

    20. [20]

      Hu, Z.; Yang, C.; Lv, K. L.; Li, X. F.; Li, Q.; Fan, J. J. Chem Comm. 2020, 56, 1745. doi:10.1039/C9CC08578E  doi: 10.1039/C9CC08578E

    21. [21]

      Xia, Y.; Li, Q.; Lv, K. L.; Li, M. Appl. Surf. Sci. 2017, 398, 81. doi:10.1016/j.apsusc.2016.12.006  doi: 10.1016/j.apsusc.2016.12.006

    22. [22]

      Li, Q.; Xia, Y.; Yang, C.; Lv, K. L.; Lei, M.; Li, M. Chem. Eng. J. 2018, 349, 287. doi:10.1016/j.cej.2018.05.094  doi: 10.1016/j.cej.2018.05.094

    23. [23]

      Zhang, J. W.; Wang, S.; Liu, F. S.; Fu, X. J.; Ma, G. Q.; Hou, M. S.; Tang, Z. Acta Phys. -Chim. Sin. 2019, 35, 885.  doi: 10.3866/PKU.WHXB20181202

    24. [24]

      Liu, Y.; Xiao, Z. Z.; Cao, S.; Li, J. H.; Piao, L. Y. Chin. J. Catal. 2020, 41, 219. doi:10.1016/S1872-2067(19)63477-7  doi: 10.1016/S1872-2067(19)63477-7

    25. [25]

      Zhu, Y. G.; Zhang, Z. Y.; Lu, N. Hua, R. N.; Dong, B. Chin. J. Catal. 2019, 40, 413. doi:10.1016/S1872-2067(18)63182-1  doi: 10.1016/S1872-2067(18)63182-1

    26. [26]

      Wang, J. Y.; Liu, B. S.; Nakata, K. Chin. J. Catal. 2019, 40, 403. doi:10.1016/S1872-2067(18)63174-2  doi: 10.1016/S1872-2067(18)63174-2

    27. [27]

      Lou, X. W.; Archer, L. A.; Yang, Z. C. Adv. Mater. 2008, 20, 3987. doi:10.1002/adma.200800854  doi: 10.1002/adma.200800854

    28. [28]

      Zhang, Q.; Wang, W. S.; Goebl, J.; Yin, Y. D. Nano Today 2009, 4 494. doi:10.1016/j.nantod.2009.10.008  doi: 10.1016/j.nantod.2009.10.008

    29. [29]

      Yu, L.; Yu, X. Y.; Lou, X. W. Adv. Mater. 2018, 30, 1800939. doi:10.1002/adma.201800939  doi: 10.1002/adma.201800939

    30. [30]

      Zhang, P.; Lou, X. W. Adv. Mater. 2018, 31, 1900281. doi:10.1002/adma.201900281  doi: 10.1002/adma.201900281

    31. [31]

      Wang, S. B.; Wang, Y.; Zang, S. Q.; Lou, X. W. Small Methods 2019, 4, 1900586. doi:10.1002/smtd.201900586  doi: 10.1002/smtd.201900586

    32. [32]

      Xiao, M.; Wang, Z. L.; Lyu, M. Q.; Luo, B.; Wang, S. C.; Liu, G.; Cheng, H. M.; Wang, L. Z. Adv. Mater. 2019, 31, 1801369. doi:10.1002/adma.201801369  doi: 10.1002/adma.201801369

    33. [33]

      Yu, J. G.; Guo, H. T.; Davis, S. A.; Mann, S. Adv. Funct. Mater. 2006, 16, 2035. doi:10.1002/adfm.200600552  doi: 10.1002/adfm.200600552

    34. [34]

      Liu, S. W.; Yu, J. G.; Cheng, B.; Jaroniec, M. Adv. Colloid Interface Sci. 2012, 173, 35. doi:10.1016/j.cis.2012.02.004  doi: 10.1016/j.cis.2012.02.004

    35. [35]

      Liu, S. W.; Yu, J. G.; Mann, S. Nanotechnology 2009, 20, 325606. doi:10.1088/0957-4484/20/32/325606  doi: 10.1088/0957-4484/20/32/325606

    36. [36]

      Yang, H. G.; Zeng, H. C. J. Phys. Chem. B 2004, 108, 3492. doi:10.1021/jp0377782  doi: 10.1021/jp0377782

    37. [37]

      Zhou, J. K.; Lv, L.; Yu, J. Q.; Li, H. L.; Guo, P. Z.; Sun, H.; Zhao, X. S. J. Phys. Chem. C. 2008, 112, 5316. doi:10.1021/jp709615x  doi: 10.1021/jp709615x

    38. [38]

      Yu, J. G.; Liu, W.; Yu, H. G. Cryst. Growth Des. 2008, 8, 930. doi:10.1021/cg700794y  doi: 10.1021/cg700794y

    39. [39]

      Yu, H. G.; Yu, J. G.; Cheng, B.; Liu, S. W. Nanotechnology 2007, 18. doi:10.1088/0957-4484/18/6/065604  doi: 10.1088/0957-4484/18/6/065604

    40. [40]

      Li, X. F.; Wu, X. F.; Liu, S. W.; Li, Y. H.; Fan, J. J.; Lv, K. L.; Chin. J. Catal. 2020, 41, 1451. doi:10.1016/S1872-2067(20)63594-X  doi: 10.1016/S1872-2067(20)63594-X

    41. [41]

      Chen, L. Q.; Tian, L. J. J.; Xie, J. Y.; Zhang, C. J.; Chen, J. N.; Wang, Y.; Li, Q.; Lv, K. L.; Deng, K. J. Appl. Surf. Sci. 2020, 504, 144353. doi:10.1016/j.apsusc.2019.144353  doi: 10.1016/j.apsusc.2019.144353

    42. [42]

      Lv, K. L.; Cheng, B.; Yu, J. G.; Liu, G. Phys. Chem. Chem. Phys. 2012, 14, 5349. doi:10.1039/C2CP23461K  doi: 10.1039/C2CP23461K

    43. [43]

      Titirici, M. M.; Antonietti, M.; Thomas, A. A. Chem. Mater. 2006, 18, 3808. doi:10.1021/cm052768u  doi: 10.1021/cm052768u

    44. [44]

      Yu, J. G.; Wang, G. H. J. Phys. Chem. Solids. 2008, 69, 1147. doi:10.1016/j.jpcs.2007.09.024  doi: 10.1016/j.jpcs.2007.09.024

    45. [45]

      Guan, J. G.; Mou, F. Z.; Sun, Z. G.; Shi, W. D. Chem. Commun. 2010, 46, 6605. doi:10.1039/C0CC01044H  doi: 10.1039/C0CC01044H

    46. [46]

      Liu, S.W.; Yu, J. G. Chapter 10: Effect of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. In Nanostructured Photocatalysts; Yamashita, H., Li, H. X., Eds.; Publisher: Springer International Publishing, Switzerland, 2016; pp. 187–200. doi:0.1007/978-3-319-26079-2

    47. [47]

      Zeng, H. C. J. Mater. Chem. 2006, 16, 649. doi:10.1039/b511296f  doi: 10.1039/b511296f

    48. [48]

      Liu, B.; Zeng, H. C. Small 2005, 1, 566. doi:10.1002/smll.200500020  doi: 10.1002/smll.200500020

    49. [49]

      Liu, S. W.; Yu, J. G.; Jaroniec, M. J. Am. Chem. Soc. 2010, 132, 11914. doi:10.1021/ja105283s  doi: 10.1021/ja105283s

    50. [50]

      Liu, Ye.; Xiao, Z. Z.; Cao, S., Li, J. H. Piao, L. Y. Chin. J. Catal. 2020, 41, 291. doi:10.1016/S1872-2067(19)63477-7  doi: 10.1016/S1872-2067(19)63477-7

    51. [51]

      Gong, C.; Xiang, S. W.; Zhang, Z. Y.; Sun, L.; Ye, C. Q.; Lin, C. J. Acta Phys. -Chim. Sin. 2019, 35, 616.  doi: 10.3866/PKU.WHXB201805082

    52. [52]

      Liu, S. W.; Huang, G. C.; Yu, J. G.; Ng, T. W.; Yip, H. Y.; Wong, P. K. ACS Appl. Mater. Interfaces 2014, 6, 2407. doi:10.1021/am4047975  doi: 10.1021/am4047975

    53. [53]

      Liu, S. W.; Xia, J. Q.; Yu, J. G. ACS Appl. Mater. Interfaces 2015, 7, 8166. doi:10.1021/acsami.5b00982  doi: 10.1021/acsami.5b00982

    54. [54]

      Liu, S. W.; Yu, J. G.; Wang, W. G. Phys. Chem. Chem. Phys. 2010, 12, 12308. doi:10.1039/C0CP00036A  doi: 10.1039/C0CP00036A

    55. [55]

      Liu, S. W.; Yu, J. G.; Mann, S. J. Phys. Chem. C 2009, 113, 10712. doi:10.1021/jp902449b  doi: 10.1021/jp902449b

    56. [56]

      Yu, J. G.; Liu, S. W.; Zhou, M. H. J. Phys. Chem. C 2008, 112, 2050. doi:10.1021/jp0770007  doi: 10.1021/jp0770007

    57. [57]

      Xiang, Q. J.; Yu, J. G.; Cheng, B.; Ong, H. C. Chem.-Asian J. 2010, 5, 1466. doi:10.1002/asia.200900695  doi: 10.1002/asia.200900695

    58. [58]

      Li, H. X.; Bian Z. F.; Zhu, J.; Zhang, D. Q.; Li, G. S.; Huo, Y. N.; Li, H.; Lu, Y. F. J. Am. Chem. Soc. 2007, 129, 8406. doi:10.1021/ja072191c  doi: 10.1021/ja072191c

    59. [59]

      Liu, X. Y.; Ye, M.; Zhang, S. P.; Huang, G. C.; Li, C. H.; Yu, J. G.; Wong, P. K.; Liu, S. W. J. Mater. Chem. A 2018, 6, 24245. doi:10.1039/C8TA09661A  doi: 10.1039/C8TA09661A

    60. [60]

      Pan, J. H.; Zhang, X. W.; Du, A. J.; Sun, D. D.; Leckie, J. O. J. Am. Chem. Soc. 2008, 130, 11256. doi:10.1021/ja803582m  doi: 10.1021/ja803582m

    61. [61]

      Wang, Q.; Chen, C. C.; Zhao, D.; Ma, W. H.; Zhao, J. C. Langmuir 2008, 24, 7338. doi:10.1021/la800313s  doi: 10.1021/la800313s

    62. [62]

      Liu, S. W.; Yin, K.; Ren, W. S.; Cheng, B.; Yu, J. G. J. Mater. Chem. 2012, 22, 17759. doi:10.1039/c2jm33337f  doi: 10.1039/c2jm33337f

    63. [63]

      Kim, J. W.; Monllor-Satoca, D.; Choi, W. Y. Energy Environ. Sci. 2012, 5, 7647. doi:10.1039/C2EE21310A  doi: 10.1039/C2EE21310A

  • 加载中
    1. [1]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    2. [2]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    3. [3]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    6. [6]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    7. [7]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    8. [8]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    9. [9]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    10. [10]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    11. [11]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    12. [12]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    13. [13]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    14. [14]

      Lishan XiongXinyuan LiXiaojie LuZhendong ZhangYan ZhangWen WuChenhui Wang . Inhaled multilevel size-tunable, charge-reversible and mucus-traversing composite microspheres as trojan horse: Enhancing lung deposition and tumor penetration. Chinese Chemical Letters, 2024, 35(9): 109384-. doi: 10.1016/j.cclet.2023.109384

    15. [15]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    16. [16]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    17. [17]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    18. [18]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    19. [19]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    20. [20]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

Metrics
  • PDF Downloads(48)
  • Abstract views(619)
  • HTML views(185)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return